Model organisms in genetics

For scientists it is basic to work with models to discover what happens in a complete organism, which is more complex than the sum of its parts. It is for this reason that there are certain organisms, that by their characteristics, it is easy to use them as model in science. Below I present the 7 most commonly used species as model organisms in genetics.


Model organisms are easily studied organisms, which thanks to them we can study important phenomena and extrapolate them to the organism that interests us. As Jacques Monod, Nobel Prize in Medicine in 1965, said, “What is true for bacteria is for elephants“.

These are characterized by:

  • Easy maintenance: it is not a big cost to have them in the laboratory.
  • Rapid biological cycle: in a few hours or days your biological cycle is completed.
  • High number of descendants: they have a high number of children in a short time.
  • Simple genome: they have few genes.

Model organisms are used to obtain information about other species that are more difficult to study directly. These are widely studied because they are easy to maintain and reproduce in a laboratory environment and have particular experimental advantages (Video 1).

Video 1. What is model organism? What does model organism mean? Model organism meaning & explanation (Source: YouTube)

The most commonly used are: Drosophila melanogaster (fruit fly), Mus musculus (mouse), Escherichia coli (colon bacteria), Arabidopsis thaliana (meadowsweet), Caenorhabditis elegans (worm), Sacharomyces cerevisiae (yeast) i Danio rerio (fish).


Drosophila melanogaster (Figure 1) is better known as the fruit fly or vinegar. Surely you have seen in your kitchens, flying over ripe fruit or initial decomposition, and sweetened or alcoholic liquids.

It is one of the best-known animals, each of its body parts and the different stages of its life cycle is known up to the formation of an adult animal. It can live 30 days and the process from egg to adult lasts 7 days. In addition, its genome was sequenced in 2000.

In research it has a prominent role in biomedicine because it is used to study aspects related to cancer, neurodegenerative diseases or drug addiction.

drosophila melanogaster
Figure 1. Drosophila melanogaster (Source: YourGenome)


Mus musculus (Figure 2) is the scientific name of the common mouse, the most commonly used mammal in the laboratory. The adult mice gets to measure (from the nose to the tail) between 7.5 and 10 cm long and weighs between 10 and 25 grams. Its gestation period is 19-21 days and it has between 3 and 14 offspring.

Its genome was completely sequenced in 2002. This phenomenon generated a great expectation for being a mammal that has a great scientific relevance for the human species.

Laboratory mice are not within the general laws of animal protection, but bioethical protocols and standards are followed.

It is used as a model in many fields, such as in the investigation of cardiovascular diseases, diabetes, neurological disorders, cancer … and in genetic engineering.

mus musculus
Figure 2. Mus muculus (Source: eLife)


Escherichia coli (Figure 3) is the best known organism in the scientific field. It is a bacterium that lives in the lower part of the intestines of warm-blooded animals, including birds and mammals, and is necessary for the proper digestion of food. Its genome was sequenced in 1997 and it could be observed that the number of genes that comprise it is one seventh of the number of genes in humans.

In recent decades, this bacterium has become an instrument in the laboratory, especially in the field of molecular biology. Thanks to this, it has reached the knowledge of the foundations of modern biology and has earned the recognition of different Nobel prizes, such as the processes of genetic recombination of bacteria, RNA transcription, DNA replication and gene regulation.

Figure 3. Escherichia coli (Source: Public Health England)


It is an annual plant (Figure 4) that was introduced into laboratories about 40 years ago. You can complete your entire life cycle in six weeks. The central floriferous stem grows in about three weeks from germination and the flowers naturally self-pollinate. In the laboratory, it can grow inside plates or sherds under fluorescent light or in greenhouses.

Like Drosophila melanogaster, its genome was sequenced in 2000 and it was the first sequenced genome.

Currently, researchers try to discover the secrets behind their development, growth or flowering.

Figure 4. Arabidopsis thaliana (Source: Biology pages)


It is a 1 mm long earthworm (Figure 5) that lives in temperate environments. Although more than 40 years ago we can find it in the laboratory, in the last decades it has achieved the prestige of more traditional organisms, such as Drosophila melanogaster or Mus musculus. The sequence of its genome as the first multicellular organism was published in 1998 and is considered complete today.

In research it has helped in the knowledge of the causes of aging, cell death and the structure of the genome.

Figure 5. Caenorhabditis elegans (Source: Society for mucosal immunology)


Sacharomyces cerevisiae is a yeast (Figure 6), the yeast of bread, wine and beer. Its sequencing, specifically of strain S288C, was completed in 1996, after four years of a project led by the European Union and the participation of more than 100 laboratories from around the world. It was the first eukaryotic organism to be sequenced and it is currently the most known eukaryotic genome. This has made it gain weight and has become a powerful biological model of eukaryotic organisms.

It is used above all in biotechnological research, improving and innovating the processes of baking and production of alcoholic beverages.

Figure 6. Sacharomyces cerevisiae (Source: Fratelli Pasini)


It is a zebrafish (Figure 7), a tropical freshwater fish that is surely known to lovers of aquariums. Genetically speaking, it is more similar to the human species than the Drosophila melanogaster or Caenorhabditis elegans and it is easier to manipulate, maintain and breed than Mus musculus. It is capable of producing between 300 and 500 eggs per laying and it can live up to 5 years. The draft of the sequencing of its genome was published in 2002.

A little more than 30 years ago, it was introduced as a model species for research in the field of development biology and genetics. It is widely used for the study of human biology.

Figure 7. Danio rerio (Source: NCBI)

(Main picture: eLife)


Comentaris / Comentarios / Comments:

Fill in your details below or click an icon to log in: Logo

Esteu comentant fent servir el compte Log Out /  Canvia )

Google photo

Esteu comentant fent servir el compte Google. Log Out /  Canvia )

Twitter picture

Esteu comentant fent servir el compte Twitter. Log Out /  Canvia )

Facebook photo

Esteu comentant fent servir el compte Facebook. Log Out /  Canvia )

S'està connectant a %s

Aquest lloc utilitza Akismet per reduir els comentaris brossa. Apreneu com es processen les dades dels comentaris.