There are people who remember with great impact the first time they saw their own blood. Even in adulthood and in controlled conditions (for example, during an extraction in a medical center) the vision of the red fluid is not always pleasant. Sometimes more intense, sometimes darker, but always red… or not? Do you know if there are animals with blue, green or maybe yellow blood? Keep reading to find out.
BEYOND RED: THE COLOR OF BLOOD
We are used to the color of blood being red, since it is the color of our blood and many vertebrates, like all mammals. The color of the blood is due to respiratory pigments, those responsible for transporting oxygen to cells throughout the body and carbon dioxide to the lungs. As you may remember, the human respiratory pigment is hemoglobin, which is found in red blood cells or erythrocytes.
But other animals have respiratory pigments other than hemoglobin, which endow their blood with colors as varied as green, blue, yellow and even purple.

RED BLOOD
As mentioned, the respiratory pigment of mammals and many other vertebrates is hemoglobin, a protein. In its molecular structure, hemoglobin is formed by 4 subunits (called globins) linked to a heme group. The heme group has a central iron atom (iron II) that is responsible for the red color.

The hue of red may vary, depending on how oxygenated hemoglobin is. When it is attached to oxygen (O2), it is called oxyhemoglobin and its color is an intense light red (arterial blood). In contrast, deoxyhemoglobin is the name given to reduced hemoglobin, that is, when it has lost oxygen and has a darker color (venous blood). If hemoglobin is more oxygenated than normal it is called methemoglobin and has a red-brown hue. This is due to the intake of some medications or a congenital disease (methemoglobinemia).

As we have seen, deoxygenated blood is not blue. The blue tone that we see in our veins is due to an optical effect resulting from the interaction between the blood and the tissue that lines the veins.
BLUE BLOOD
Some animals, on the other hand, do have blue blood: decapod crustaceans, some spiders and scorpions, horsehoe crabs, cephalopods and other molluscs. When dealing with invertebrates, we must specify that instead of blood its internal liquid is called hemolymph, but in this post we will not distinguish hemolymph from blood for better understanding.

The pigment responsible for the blue color of blood in these animals is hemocyanin. Its structure is quite different from that of hemoglobin, and instead of iron, it has a copper (I) atom at its center. When hemocyanin is oxygenated, it is blue, but when it is deoxygenated it is colorless.

GREEN BLOOD
There are some animals with green blood, such as some annellids (worms), some leeches and some marine worms. Its respiratory pigment, called chlorocruorine, gives its blood a light greenish color when it is deoxygenated, and a little darker when it is oxygenated. Structurally, it is very similar to hemoglobin, since it also has an iron atom at its center. Unlike hemoglobin, it is not found in any cell, but floats in the blood plasma.


In the case of vertebrates with green blood (like some New Guinea lizards), the color is due to biliverdin, which results from the degradation of hemoglobin. Biliverdin is toxic, but these lizards are able to withstand high levels in their body. In the rest of vertebrates, if biliverdin levels are high because the liver can not degrade it to bilirubin, they cause jaundice, a disease that gives a yellowish color to the skin and corneas of the eyes. But in species of lizards like Prasinohaema prehensicauda, the high presence of biliverdin could protect them against malaria, according to some research.

YELLOW BLOOD
Tunicates (fixed ascidians) are a type of animals with yellow/yellow-green blood. The pigment responsible for this color is hemovanabine, a vanadium-containing protein, although it not transport oxygen, so its function remains unknown. Similarly, the yellowish, yellow-green and even orange color of the blood (hemolymph) of some insects is not due to the presence of a respiratory pigment, but to other dissolved substances that do not carry oxygen.

PURPLE BLOOD
Some marine invertebrates have violet blood (hemolymph), such as priapulids, sipunculides, brachiopods and some annelids.

The responsible respiratory pigment is hemeritrin, which turns violet-rosacea when it is oxygenated. In its deoxygenated form it is colorless. Like the rest of the respiratory pigments we have seen, hemeritrin is less efficient than hemoglobin when transporting oxygen.

TRANSPARENT BLOOD
Finally, there is a family of fish called crocodile icefish whose blood is transparent. Actually, these are the only vertebrates that have lost hemoglobin. Similarly, erythrocytes are usually absent or dysfunctional. This strange anatomy is because they live in very oxygenated waters and their metabolism is very slow. In order for oxygen to reach all cells, it dissolves in the blood plasma, which distributes it throughout the body.

CONCLUSION
To conclude, we have seen that in animals that require a respiratory pigment to deliver oxygen to all tissues, the color of blood (or hemolymph) will depend on the type of pigment that is present. In contrast, other animals that do not require respiratory pigments, have transparent blood or their color is due to other dissolved substances that have nothing to do with breathing.

Cover photo: John Kalekos