Totes les entrades de Irene Lobato Vila

The importance of biological collections

Biological collections are cornerstones for the study of biodiversity and an almost endless source of scientific information. Many are those within the social networks who demand scientists to stop using ‘classical’ biological collections as they are seen as primitive tools that promote animals and plants extinctions.

We explain you why this statement is incorrect, which types of collections do exist and which are their most relevant functions.

The importance of biological collections

It is more than probably that the first thing it comes to mind when you hear someone talking about biological collections are hundreds of animals or plants dried, pinned and placed inside boxes by a fanatical collector. Yes, this type of collections exists. However, and without demonizing them (since these collectors can be very useful for science), this is not the type of collections we want to talk about and, of course, not the only one that exists.

Biological collections are systematized repositories (well identified, classified and ordered) of a combination of any biological material. Most of these repositories are deposited in natural history or science museums, but also in universities, research centers or even totally or partially in private collections.

ICM’s (Institute of Marine Sciences) Biological Reference Collections, in Barcelona. Picture by Alícia Duró on ICM’s web.
Some drawers of the Australian National Insect Collection. Picture by the Australian National Insect Collection.

Types of collections

Even though the concept of biological collection is something quite new, the collection and classification of biological material started some centuries ago with the first animals and plants collected by zoologists and botanists.

Nowadays, the term of biological collection has acquired a broader meaning:

  • Cryogenic collections

Storage of living biological material in frozen state under the assumption that it will retain its viability and normal functioning when being thawed after a long period of time. Cryogenic collections are typically used to store cells, tissues and genetic material. And even though science fiction has given us many fantastic ideas, the truth is that this method is very rarely used for preserving entire organisms.

  • ‘Classical’ biological collections

They essentially include collections of zoological museums (entire specimens or some of their parts) and herbaria (plants), among others. Some of these collections go back over more than two centuries, so ‘classical’ biological collections are considered the oldest within all types of collections. And also, one of the most valuable.

Collection of inquiline cynipids or gall wasps . Source: Irene Lobato Vila.

Most of these collections are deposited in museums or research centers and, excepting some particular cases, able to be required and examined by the scientific community as it pleases. A lot of private collectors collaborate with these institutions by transfering their specimens, which is quite common among insect collectors.

Drawers from the National Museum of Natural History, Washington D.C., Smithsonian Institution, containing thousands of insect specimens. Source: Irene Lobato Vila.

It is worthwhile remembering that transferring is subjected to an exhaustive revision and done only under contract, so institutions do not accept specimens obtained directly by the collector from illegal methods (e. g., poaching or wild animal trading).

  • Collections of biological information online

Repositories of biological information online. This type of collections has gained a lot of importance during the last years since it allows to share biological information of interest to science and technology immediately around the world. The most consulted online databases are those containing molecular data (proteins, DNA, RNA, etc.), which are necessary for phylogenetic studies and to make ‘trees of life’. Some of these databases are:

Other types of very consulted webs are the online databases of museum collections (which are of very importance to preserve massive amounts of data deposited in this institutions; remember the case of the Brazil National Museum fire) and webs of citizen science projects and collaborations, where either experts and amateurs provide information of their observations (like Biodiversidad Virtual).

Biological collections can be also classified according to their function: scientific collections (research), commercial collections (cell cultures for medicine, pharmacy, etc.) and ‘state’ collections (those created and managed for the sake of the state, like botanical garden, in order to preserve the biodiversity of a region and to promote its study and outreach).

The term of biological collections also embraces the biobanks, that is, collections exclusively containing human samples for biomedical studies. However, we will not go farer with this term.

Why are classical biological collections so necessary?

Biological collections and, especially, classical biological collections, are essential for biodiversity conservation. And no, they are not a direct cause of species extinction: the number of collected specimens is derisory compared with those lost as a consequence of pollution and habitats loss, and collections are carried out following several rules, always making sure to not disturb populations and their habitats.

Although it is true that pictures and biodiversity webs are a very useful tool for the study of worldwide biodiversity, unfortunately they are just a completement of physical collections.

So, why are these classical and physical collections so important?

  • They are a very valuable source of genetic material that can be obtained from stored samples and used in molecular studies. Thanks to these studies, we can approach to the origins and relationships of living beings (phylogeny), know their genetical diversity and the speciation mechanisms that lay behind species differentiation, or even to improve strategies to conserve them (e. g., in reintroduction and conservations plans).
  • They are a perpetual reference for future scientists. One of the basic pillars of zoological and botanical collections are the type specimens or type series: those organisms that a scientist originally used to describe a species. Types must be correctly labelled and stored because they are the most valuable specimens within a collection. The type or types should be able to be examined and studied by all scientists and used by them as a reference for new species descriptions or for comparative studies, since original descriptions can sometimes be insufficient to characterize the species.
Paratype insect (specimen from the type series) properly labelled and deposited in the entomological collection of the National Museum of Natural History of the Smithsonian Institution, in Washington D.C. Source: Irene Lobato Vila.
  • Regarding the previous point, classical collections allow to study the inter and intraspecific morphology (external and internal), which is sometimes impossible to assess only with pictures.
  • Classical collections contain specimens collected from different periods of time and habitats, including extinct species (both from a long time ago and recently due to the impact of human activity) and organisms from endangered ecosystems.  As habitat destruction continues to accelerate, we will never have access to many species and the genetic, biochemical, and environmental information they contain unless they are represented in museum collections. The information these samples provide is essential to investigate how to slow or mitigate the negative pressure on still extant species and ecosystems.
  • They provide us past and present information about geographic distribution of different organisms, since each of them is usually stored together with data about its locality and biology. This kind of information is very useful both for ecological and evolutive studies, as well as for resource management, conservation planning and monitoring, and studies of global change.
  • They are an important tool for teaching purposes and popular science, since people get directly in touch with samples. Pictures and books are undoubtfully essential for outreaching, but insufficient when they are not complemented with direct observations. Both visits to museums and field trips are basic tools for a complete environmental education.
At the end of the course each year,  thousands of students visit the collections of the National Museum of Natural History in Washington D.C. Some of them may even visit the scientific collections. Source: Irene Lobato Vila.

.        .        .

Do you still think biological collections are unnecessary after reading this post? You can leave your comments!


La importancia de las colecciones biológicas

Las colecciones biológicas son una pieza clave en el estudio de la biodiversidad de nuestro planeta y una fuente casi inagotable de información científica. En las redes sociales, muchas son las voces partidarias de la eliminación de las colecciones biológicas “clásicas” por ser consideradas herramientas obsoletas y causa directa de la extinción de especies. 

Te explicamos por qué esta afirmación es incorrecta, qué tipos de colecciones existen y cuáles son sus principales funciones.

La importancia de las colecciones biológicas

Es natural que al oír hablar de “colecciones biológicas” lo primero que os venga a la mente a muchos de vosotros sean las típicas cajas de animales y plantas fijados y pinchados a manos de fanáticos del coleccionismo de especies. Sí, es cierto que existen este tipo de colecciones. Pero, y sin querer demonizarlas (pues muchas pueden llegar a ser muy útiles para la ciencia), no son el tipo de colecciones a las que nos referimos y, ni mucho menos, las únicas que existen.

Las colecciones biológicas son repositorios sistematizados (bien identificados, clasificados y ordenados) de algún tipo de material biológico. La mayoría de estos repositorios se encuentran depositados en museos de ciencia, pero también en universidades, centros de investigación e, incluso, total o parcialmente en colecciones privadas.

Colección Biológica de Referencia del ICM (Instituto de Ciencias del Mar) del CSIC, en Barcelona. Imagen de Alícia Duró en la web del ICM.
Parte de la colección biológica de la Australian National Insect Collection. Imagen de la Australian National Insect Collection.

Tipos de colecciones

Si bien el concepto de colección biológica es bastante reciente, el almacenamiento y clasificación de material biológico se remonta varios siglos atrás con las primeras recolectas de plantas y animales a manos de zoólogos y botánicos.

Actualmente, el concepto de colección biológica es mucho más amplio:

  • Colecciones criogénicas

Material biológico vivo almacenado a bajas temperaturas bajo la suposición de que éste conservará su viabilidad y funcionalidad a largo plazo tras ser descongelado. Las colecciones criogénicas suelen emplearse para almacenar células, tejidos y material genético. Aunque la ciencia ficción nos ha dado muchas ideas, la criogenización raras veces se usa para almacenar organismos multicelulares completos.

  • Colecciones “clásicas”

Formadas, a grandes rasgos, por las colecciones de muestras zoológicas (animales enteros o sus partes) y los herbarios (plantas), entre otros. Algunas de estas colecciones ya han superado los 200 años de antigüedad, por lo que se las considera el tipo más antiguo de colecciones y uno de los más importantes.

Colección de cinípidos o avispas de las agallas inquilinos. Fuente: Irene Lobato Vila.

La mayoría se encuentra depositada en museos o centros de investigación y, salvo raras excepciones, al alcance de la comunidad científica para su consulta y estudio. Muchos colectores privados colaboran con estas entidades cediendo sus especímenes, algo bastante habitual entre los coleccionistas de insectos.

Armarios del National Museum of Natural History de Washington D.C., Smithsonian Institution, donde se encuentran depositados miles de ejemplares fijados de insectos. Fuente: Irene Lobato Vila.

No está de más aclarar que la cesión de colecciones está sujeta a una minuciosa revisión y a un contrato entre las partes, por lo que no deberían aceptarse especímenes obtenidos intencionadamente por el colector de la caza furtiva o el tráfico ilegal de especies.

  • Bases de datos en línea

Repositorios de información biológica en Internet. Este tipo de “colecciones” ha cobrado mucha importancia en los últimos años al permitir compartir información biológica de interés para la ciencia y la tecnología de forma inmediata en todo el mundo. Las más consultadas son las bases de datos moleculares (proteínas, ADN, ARN, etc.) para la elaboración de filogenias y los famosos “árboles de la vida”, como, por ejemplo:

Otras webs muy consultadas son las bases de datos online de las colecciones depositadas en museos, también de suma importancia (si no, recordad el reciente caso del incendio del Museo Nacional de Brasil…), y las webs de participación ciudadana en las que tanto expertos como aficionados aportan datos de sus observaciones, como Biodiversidad Virtual.

Las colecciones biológicas también pueden clasificarse en base a su función: colecciones científicas (investigación), colecciones comerciales (cultivos celulares para medicina, farmacia, etc.) y colecciones de “estado” (las que se crean y mantienen por el bien del estado, como los jardines botánicos, con el fin de conservar la biodiversidad de una región y promover su estudio y divulgación).

El concepto de colección biológica también engloba los biobancos, o colecciones de muestras biológicas de origen exclusivamente humano usadas en estudios biomédicos. Sin embargo, no entraremos en más detalle.

¿Por qué son tan necesarias las colecciones biológicas clásicas?

Más allá de supuestamente calmar las ansias de coleccionismo que algunos atribuyen a los científicos y que dañan seriamente su imagen, las colecciones biológicas, y especialmente las colecciones “clásicas”, son esenciales para la conservación de la biodiversidad. Y no, no causan la extinción de especies: el número de organismos recolectados es irrisorio comparado con las pérdidas causadas por la contaminación o la destrucción del hábitat y las capturas se realizan cumpliendo una serie de normativas, siempre respetando las poblaciones y sus hábitats.

Aunque es cierto que las fotografías y las webs de biodiversidad son una herramienta útil para el estudio de las especies de nuestro planeta, desgraciadamente no dejan de ser un complemento de las colecciones físicas clásicas.

Así pues, ¿por qué son tan importantes estas colecciones?

  • Son una fuente muy valiosa de material genético que puede ser extraído de las muestras o especímenes almacenados y usarse en estudios moleculares. Gracias a estos estudios, podemos comprender un poco mejor los orígenes y las relaciones entre los seres vivos (filogenia), conocer su diversidad genética y los mecanismos de especiación, o perfeccionar estrategias para conservarlos. Por ejemplo, en los planes de reintroducción de especies se deben estudiar las poblaciones genéticas para asegurar que los organismos reintroducidos puedan estabilizarse y establecer poblaciones viables en el tiempo.
  • Son un referente perpetuo para futuros científicos. Uno de los pilares básicos de las colecciones zoológicas y botánicas son los especímenes tipo o series típicas: aquellos organismos que el descubridor de una especie usó para describirla. Los especímenes tipo deben estar cuidadosamente almacenados y etiquetados, pues son los más valiosos dentro de las colecciones. Éstos deben poder ser consultados por la comunidad científica y usados como referente para la descripción de nuevas especies o para estudios comparativos, pues no siempre las descripciones son suficientes.
Insecto paratipo (especímen de la serie típica) debidamente etiquetado depositado en el National Museum of Natural History de Washington D.C., Smithsonian Institution. Fuente: Irene Lobato Vila.
  • En relación al punto anterior, las colecciones clásicas permiten estudiar la morfología (externa e interna) y la variabilidad dentro de y entre especies, cosa que muchas veces resulta imposible mediante fotografías.
  • Contienen organismos de diferentes épocas y hábitats. Esto incluye especies extintas (tanto desde hace mucho tiempo como recientemente debido a la actividad humana) o representantes de ecosistemas actualmente en peligro. Ante la actual destrucción de hábitats, no tendríamos acceso a numerosas especies ni a la información genética y bioquímica que tanto éstas como sus ecosistemas contienen si parte de ellas no estuviera depositada en colecciones biológicas. Esta información es esencial para investigar cómo frenar o mitigar los efectos negativos sobre especies aún existentes.
  • Nos dan información pasada y presente sobre la distribución geográfica de los organismos, pues cada uno se almacena junto con datos de localidad y biología. Esta información es esencial no sólo para estudios de ecología y evolución, sino también para la gestión de recursos, los planes de conservación y los estudios sobre el cambio climático.
  • Son una herramienta de divulgación muy potente, pues se experimenta directamente con las muestras. Las fotografías o los libros son importantes, pero insuficientes si no se complementan con observaciones directas. Tanto las visitas a museos como las salidas al campo son básicas para una educación ambiental completa.
A final de curso, miles de alumnos de todas las edades visitan las instalaciones y colecciones del National Museum of Natural History en Washington D.C. Algunos, incluso, podrán acceder a las colecciones científicas. Fuente: Irene Lobato Vila.

.        .        .

Si pensabais que las colecciones eran innecesarias, ¿seguís pensándolo tras leer este artículo? ¡Podéis dejar vuestros comentarios!

La importància de les col·leccions biològiques

Les col·leccions biològiques són una peça clau en l’estudi de la biodiversitat del nostre planeta i una font gairebé inesgotable d’informació científica. A les xarxes socials, moltes són les veus partidàries de l’eliminació de les col·leccions biològiques “clàssiques” per ser considerades eines obsoletes i causa directa de l’extinció d’espècies.

T’expliquem per què aquesta afirmació és incorrecta, quins tipus de col·leccions existeixen i quines són les seves principals funcions.

La importància de les col·leccions biològiques

És normal que, en sentir a parlar de “col·leccions biològiques”, el primer que us vingui al cap a molts de vosaltres siguin les típiques caixes d’animals i plantes fixats i punxats a mans de fanàtics del col·leccionisme d’espècies. Sí, és cert que existeix aquest tipus de col·leccions. Però, i sense voler demonitzar-les (atès que moltes poden arribar a ser molt útils per a la ciència), no són el tipus de col·leccions a les quals ens referim i, ni molt menys, les úniques que existeixen.

Les col·leccions biològiques són repositoris sistematitzats (ben identificats, classificats i ordenats) d’algun tipus de material biològic. La majoria d’aquests repositoris es troben dipositats en museus de ciència, però també en universitats, centres de recerca i, fins i tot, total o parcialment en col·leccions privades.

Col·lecció Biològica de Referència del ICM (Institut de Ciències del Mar) del CSIC, a Barcelona. Imatge d’Alícia Duró al web del ICM.
Part de la col·lecció biològica de la Australian National Insect Collection. Imatge de la Australian National Insect Collection.

Tipus de col·leccions

Si bé el concepte de col·lecció biològica és força recent, l’emmagatzematge i classificació de material biològic es remunta diversos segles enrere amb les primeres col·lectes de plantes i animals a mans de zoòlegs i botànics.

Actualment, el concepte de col·lecció biològica és molt més ampli:

  • Col·leccions criogèniques

Material biològic viu emmagatzemat a baixes temperatures sota el supòsit que aquest conservarà la seva viabilitat i funcionalitat a llarg termini un cop es descongeli. Les col·leccions criogèniques solen emprar-se per emmagatzemar cèl·lules, teixits i material genètic. Tot i que la ciència ficció ens ha donat moltes idees, la criogenització rares vegades s’usa per emmagatzemar organismes multicel·lulars complets.

  • Col·leccions “clàssiques”

Formades, a grans trets, per les col·leccions de mostres zoològiques (animals sencers o les seves parts) i els herbaris (plantes), entre altres. Algunes d’aquestes col·leccions ja han superat els 200 anys d’antiguitat, essent considerades el tipus més antic de col·leccions i un dels més importants.

Col·lecció de cinípids o vespes de les gales inquilines. Font: Irene Lobato Vila.

La majoria es troba dipositada en museus o centres d’investigació i, llevat de rares excepcions, a l’abast de la comunitat científica per a la seva consulta i estudi. Molts col·lectors privats col·laboren amb aquestes entitats cedint els seus espècimens, cosa bastant habitual entre els col·leccionistes d’insectes.

Armaris del National Museum of Natural History a Washington D.C., Smithsonian Institution, on es troben dipositats milers d’exemplars d’insectes. Font: Irene Lobato Vila.

No està de més aclarir que la cessió de col·leccions està subjecta a una minuciosa revisió i a un contracte entre les parts, per la qual cosa no s’haurien d’acceptar espècimens obtinguts intencionadament pel col·lector de la caça furtiva o el tràfic il·legal d’espècies.

  • Bases de dades en linia

Repositoris d’informació biològica a Internet. Aquest tipus de “col·leccions” ha assolit una gran importància en els darrers anys en permetre compartir informació biològica d’interès per a la ciència i la tecnologia de forma immediata arreu del món. Les més consultades són les bases de dades moleculars (proteïnes, ADN, ARN, etc.) per a l’elaboració de filogènies i els famosos “arbres de la vida”, com, per exemple:

Altres webs molt consultades són les bases de dades en línia de les col·leccions dipositades en museus, també molt importants (si no, recordeu el cas recent de l’incendi del Museu Nacional del Brasil…), i les webs de participació ciutadana en què tant experts com aficionats aporten dades de les seves observacions, com Biodiversitat Virtual.

Les col·leccions biològiques també poden classificar-se segons la seva funció: col·leccions científiques (recerca), col·leccions comercials (cultius cel·lulars per a medicina, farmàcia, etc.) i col·leccions d'”estat” (les que es creen i mantenen pel bé de l’estat, com els jardins botànics, amb la finalitat de conservar la biodiversitat d’una regió i promoure’n l’estudi i divulgació).

El concepte de col·lecció biològica també engloba els biobancs, o col·leccions de mostres biològiques d’origen exclusivament humà emprades en estudis biomèdics. Tanmateix, no entrarem en més detall.

Per què són tan necessàries les col·leccions biològiques clàssiques?

Més enllà de suposadament calmar les ànsies de col·leccionisme que alguns atribueixen als científics i que malmeten seriosament la seva imatge, les col·leccions biològiques, i especialment les col·leccions “clàssiques”, són essencials per a la conservació de la biodiversitat. I no, no causen l’extinció d’espècies: el nombre d’organismes recol·lectats és irrisori comparat amb les pèrdues causades per la contaminació o la destrucció de l’hàbitat, i les captures es realitzen complint una sèrie de normatives, sempre respectant les poblacions i els seus hàbitats.

Tot i que és cert que les fotografies i les webs de biodiversitat són una eina útil per a l’estudi de les espècies del nostre planeta, desgraciadament no deixen de ser un complement de les col·leccions físiques clàssiques.

Així doncs, per què són tan importants aquestes col·leccions?

  • Són una font molt valuosa de material genètic que pot ser extret de les mostres o espècimens emmagatzemats i emprar-se en estudis moleculars. Gràcies a aquests estudis, podem comprendre una mica millor els orígens i les relacions entre els éssers vius (filogènia), conèixer la seva diversitat genètica i els mecanismes d’especiació, o bé perfeccionar estratègies per conservar-los. Per ex., en els plans de reintroducció d’espècies s’han d’estudiar les poblacions genètiques per assegurar-se que els organismes reintroduïts puguin estabilitzar-se i establir poblacions viables en el temps.
  • Són un referent perpetu per a futurs científics. Uns dels pilars bàsics de les col·leccions zoològiques i botàniques són els espècimens tipus o sèries típiques: aquells organismes que el descobridor d’una espècie va fer servir per descriure-la. Els espècimens tipus han d’estar degudament emmagatzemats i etiquetats, ja que són els més valuosos dins de les col·leccions. Aquests han de poder ser consultats per la comunitat científica i fer-se servir com a referent per a la descripció de noves espècies o en estudis comparatius, ja que les descripcions no sempre són suficients.
Insecte paratipus (espècimen de la sèrie típica) degudament etiquetat dipositat en el National Museum of Natural History a Washington D.C., Smithsonian Institution. Font: Irene Lobato Vila.
  • En relació al punt anterior, les col·leccions clàssiques permeten estudiar la morfologia (externa i interna) i la variabilitat dintre de i entre espècies, cosa que moltes vegades resulta impossible mitjançant fotografies.
  • Contenen organismes de diferents èpoques i hàbitats. Això inclou espècies extingides (tant des de fa molt de temps com recentment a causa de l’activitat humana) o representants d’ecosistemes actualment en perill. Davant l’actual destrucció d’hàbitats, no tindríem accés a nombroses espècies ni a la informació genètica i bioquímica que tant aquestes com els seus ecosistemes contenen si part d’elles no estigués dipositada en col·leccions biològiques. Aquesta informació és essencial per a investigar com frenar o mitigar els efectes negatius sobre espècies encara existents.
  • Ens donen informació passada i present sobre la distribució geogràfica dels organismes, ja que cadascun s’emmagatzema juntament amb dades de localitat i biologia. Aquesta informació és essencial no només per a estudis d’ecologia i evolució, sinó també per a la gestió de recursos, els plans de conservació i els estudis sobre el canvi climàtic.
  • Són una eina de divulgació molt potent, ja que permet experimentar directament amb les mostres. Les fotografies o els llibres són importants, però insuficients si no es complementen amb observacions directes. Tant les visites a museus com les sortides al camp són bàsiques per a una educació ambiental completa.
A final de curs, milers d’alumnes de totes les edats visiten les instal·lacions i les col·leccions del National Museum of Natural History a Washington D.C. Alguns, fins i tot, podran accedir a les col·leccions científiques. Font: Irene Lobato Vila.

.        .        .

Si crèieu que les col·leccions eren innecessàries, seguiu pensant-ho després de llegir aquest article? Podeu deixar els vostres comentaris!

Animals walking on walls: challenging gravity

How do insects, spiders or lizards for walking on smooth vertical surfaces or upside down? Why would not be possible for Spiderman to stick on walls the way some animals do?

Scientist from several areas are still in search of the exact mechanisms that allow some animals to walk on smooth surfaces without falling or sliding. Here we bring you the latest discoveries about this topic.

Animals walking on walls: challenging gravity

Competition for space and resources (ecological niche) has led to a lot of amazing adaptations throughout the evolution of life on Earth, like miniaturization.

When nails, claws or friction forces are insufficient to climb up vertical smooth surfaces, dynamic adhesion mechanisms come into play. Dynamic adhesion mechanisms are defined as those that allow some animals to climb steep or overhanging smooth surfaces, or even to walk upside down (e.g. on ceilings), by attaching and detaching easily from them. The rising of adhesive structures like adhesive pads as an evolutionary novelty has allowed some animals to take advantage of unexplored habitats and resources, foraging and hiding from predators where others could not.

Gecko stuck on a glass surface. Picture by Shutterstock/Papa Bravo.

Adhesive pads are found in insects and spiders, some reptiles like geckos and lizards, and some amphibians like tree frogs. More rarely they can be also found in small mammals, like bats and possums, arboreal marsupials native to Australia and some regions from the Southeast Asia.

The appearance of adhesive pads among these very different groups of animals is the result of a convergent evolution process: evolution gives room to equal or very similar solutions (adhesive pads) to face the same problem (competence for space and resources, high predation pressure, etc.).

Adaptation limits (or why Spiderman could not climb up walls)

Studying the underlying processes of the climbing ability of these animals is a key point in the development of stronger adhesive substances. So, a lot of research regarding this topic has been carried out to date.

Will humans be able to climb up walls like Spiderman some day? Labonte et al. (2016) explain us why Spiderman could not be real. Or, at least, how he should be to be able to stick on walls and do whatever a spider can.

Will humans be able to climb up walls like Spiderman some day? For now, we will have to settle for this sculpture. Public domain image.

Apart from the specific mechanisms of each organism (of which we will talk in depth later), the main principle that leads the ability for walking on vertical smooth surfaces is the surface/volume ratio: the smaller the animal, the larger is the total surface of the body with respect its volume and smaller is the amount of adhesive surface needed to avoid falling due to the body weight. According to this, geckos are the bigger known animals (i.e. those with the smallest surface/volume ratio) able to walk on vertical smooth surfaces or upside down without undergoing deep anatomical modifications.

And what does ‘without undergoing deep anatomical modifications’ mean? The same authors say that the larger the animal, the bigger is the adhesive pad surface needed for walking without falling to the ground. The growth of the adhesive pad surface with respect the size of the animal shows an extreme positive allometry pattern: by a small increase of the animal size, a bigger increase of the adhesive pad surface takes place. According to this study, a 200-fold increase of relative pad area from mites to geckos has been observed.

Picture by David Labonte

However, allometry is led by anatomical constraints. Therefore, if there was an animal larger than a gecko able to climb up smooth surfaces, it should have, for example, extremely large paws covered by an extremely large sticky surface. While this would be possible from a physical point of view, anatomical constraints would prevent the existence of animals with such traits.

Now we are in condition to answer the question ‘Why Spiderman could not stick to walls?’. According to Labonte et al., to support a human’s body weight, an unrealistic 40% of the body surface would have to be covered with adhesive pads (80% if we only consider the front of the body) or ridiculously large arms and legs should be developed. Both solutions are unfeasible from an anatomical point of view.

Great diversity of strategies

Dynamic adhesion must be strong enough to avoid falling as well as weak enough to enable the animal to move.

A great diversity of dynamic adhesion strategies has been studied. Let’s see some of the most well-known:

Diversity of adhesive pads. Picture by David Labonte.

1) Wet adhesion

A liquid substance comes into play.


Insects develop two main mechanisms of wet adhesion:

Smooth adhesive pads: this mechanism is found in ants, bees, cockroaches and grasshoppers, for example. The last segment of their legs (pretarsus), their claws or their tibiae present one or several soft and extremely deformable pads (like the arolia located in the pretarsus). No surface is completely smooth at microscale, so these pads conform to the shape of surface irregularities thanks to their softness.

Cockroach tarsus. Adapted picture from the original by Clemente & Federle, 2008.

Hairy adhesive pads: these structures are found in beetles and flies, among others. These pads are covered by a dense layer of hair-like structures, the setae, which increase the surface of the leg in contact with the surface.

Chrysomelidae beetle paw. Picture by Stanislav Gorb et al.

A thin layer of fluid consisting of a hydrophilic and a hydrophobic phase located between the pad and substrate comes into play in both strategies. Studies carried out with ants show that the ends of their legs secrete a thin layer of liquid that increases the contact between the pretarsus and the surface, filling the remaining gaps and acting as an adhesive under both capillarity (surface tension) and viscosity principles.

Want to learn more about this mechanism in insects? Then do not miss the following video about ants!

Tree frogs

Arboreal or tree frog smooth toe pads are made of columnar epithelial cells separated from each other at their apices. Mucous glands open between them and secrete a mucous substance that fill the intercellular spaces. Having the cells separated enable the pad to conform to the shape of the surface and channels that surround each epithelial cell allow to spread mucus over the pad surface to guarantee the adhesion. These channels also allow to remove surplus water under wet conditions that could make frogs to slide (most tree frogs live in rainforests).

Red-eyed tree frog (Agalychnis callidryas), distributed from Southern Mexico to Northeastern Colombia. Public domain image.

In the next video, you can see in detail the legs of one of the most popular tree frogs:

Smooth toe pads of tree frogs are similar to those found in insects. In fact, crickets have a hexagonal microstructure reminiscent of the toe pads of tree frogs. This led Barnes (2007) to consider the wet adhesion mechanism as one of the most successful adhesion strategies.

Different species of tree frogs (a, b, c) and their respective epithelia (d, e, f). Figure g corresponds to the surface of a cricket’s smooth toe pad. Picture by Barnes (2007).


The most detailed studies on possums have been carried out about the feathertail glider (Acrobates pygmaeus), a mouse-sized marsupial capable to climb up sheets of glass using their large toe pads. These pads are conformed by multiple layers of squamous epithelium with alternated ridges and grooves that allow them to conform to the shape of the surface and that are filled with sweat, the liquid this small mammal use to adhere to surfaces.

Acrobates pygmaeus. Picture by Roland Seitre.
Frontal toe pads of Acrobates pygmaeus. Picture by Simon Hinkley and Ken Walker.

2) Dry adhesion

Liquid substances do not come into play.

Spiders and geckos

The adhesion of both spiders and geckos depends on the same principle: the Van der Waals forces. Unlike insects, tree frogs and possums, these organisms do not secrete sticky substances.

Van der Waals forces are distance-dependent interactions between atoms or molecules that are not a result of any chemical electronic bond. These interactions show up between setae from footpads of geckos (which are covered by folds, the lamellae) and setae from spider paws (which are covered with dense tufts of hair, the scopulae), and the surface they walk on.

Spider paw covered with setae. Picture by Michael Pankratz.
Diversity of footpads of geckos. Picture by Kellar Autumn.

However, recent studies suggest dry adhesion in geckos is not mainly lead by Van der Waals forces, but by electrostatic interactions (different polarity between setae and surface), after confirming that their sticking capacity decreased when trying to climb a sheet of low energetic material, like teflon.

Anyway, the ability of geckos to climb is impressive. Check this video of the great David Attenborough:

3) Suction


Disk-winged bats (family Thyropteridae), native to Central America and northern South America, have disk-shaped suction pads located at the base of their thumbs and on the sole of their feet that allow them to climb smooth surfaces. Inside these disks, the internal pressure is reduced, and the bat stick to the surface by suction. In fact, a single disk can support the weight of the bat’s body.

Thyropteridae bat. Picture by Christian Ziegler/ Minden Pictures.

Now that you know about all these animals’ ability for climbing smooth walls, do you still think Spiderman is up to the task?

Main picture by unknown author. Source: link.

Animales que caminan por la pared: un reto a la gravedad

¿Cómo consiguen algunos insectos, arañas o lagartos caminar por paredes lisas e incluso boca abajo y no caerse? ¿Por qué, de ser real, Spiderman no podría engancharse en las paredes como lo hacen estos animales?

Científicos de diferentes áreas todavía buscan comprender los mecanismos que usan algunos animales para caminar sobre este tipo de superficies sin resbalarse o precipitarse. A continuación, te explicamos qué sabe la comunidad científica sobre este fenómeno.

Animales que caminan por la pared: un reto a la gravedad

La competencia por el espacio y los recursos (nicho ecológico) ha dado lugar a numerosas e increíbles adaptaciones a lo largo de la evolución, como la miniaturización.

Cuando una superficie es demasiado lisa, de manera que las uñas, las garras o las fuerzas de fricción resultan insuficientes para desplazarse sobre ella sin caerse, entran en juegos mecanismos de adhesión dinámica: aquellos que permiten al animal desplazarse sobre superficies verticales lisas o boca abajo enganchándose y desenganchándose rápidamente. La aparición de estructuras adhesivas dinámicas ha permitido a diversos animales explotar nuevos ambientes, pudiendo desplazarse para cazar o permanecer inmóviles el tiempo necesario para huir de sus depredadores allí donde la mayoría no podría estar estable más que unos pocos segundos.

Gecko sobre una superficie lisa. Imagen de Shutterstock/Papa Bravo.

El desarrollo de estructuras adhesivas dinámicas en las extremidades es típico de insectos y de arañas, de algunos reptiles como los geckos y ciertas lagartijas, y de anfibios como las ranas arborícolas. Puntualmente, también se ha observado en pequeños mamíferos como murciélagos y pósums, unos marsupiales arborícolas procedentes de Australia y de ciertas regiones del sudeste asiático.

El hecho de que grupos tan diferentes de animales presenten una adaptación similar se explica por un proceso de convergencia evolutiva: ante un mismo problema (competencia por el espacio y los recursos, elevada presión de depredación, etc.), la evolución tiende a soluciones iguales o similares (estructuras adhesivas para acceder a otros espacios).

Los límites de la adaptación (o por qué Spiderman no podría caminar por las paredes)

Estudiar el mecanismo mediante el cual algunos animales caminan sobre superficies verticales lisas o invertidas es clave para el desarrollo industrial de nuevas y más potentes sustancias adhesivas. No es de extrañar, por lo tanto, que haya muchos estudios al respecto.

¿Podrá el ser humano escalar paredes como lo hace Spiderman algún día? Labonte et al. (2016) nos explica por qué Spiderman como tal no podría existir. O, al menos, cómo debería ser realmente para poder adherirse a las paredes como una araña.

¿Podrá el ser humano trepar como Spiderman algún día? De momento, nos conformamos con esta escultura. Imagen de dominio público.

Sin entrar en las estrategias propias de cada organismo (de las cuales hablaremos después), el principio básico por el cual insectos, arañas o geckos pueden caminar sobre superficies verticales lisas o boca abajo es su relación superficie/volumen: a menor tamaño del animal, mayor es la superficie de su cuerpo respecto a su volumen y menor la cantidad de superficie adhesiva necesaria para poder desplazarse sin caerse debido al peso. Así pues, los geckos serían los animales conocidos con el tamaño más grande (relación superficie/volumen más pequeña) capaces de caminar sobre superficies verticales lisas o boca abajo sin sufrir modificaciones anatómicas que harían inviable su desarrollo.

¿Y qué significa “sin sufrir modificaciones anatómicas”? Los mismos autores explican que a mayor tamaño del animal, mayor es la superficie adhesiva necesaria para desplazarse sin desprenderse. El crecimiento de la superficie adhesiva con respecto al tamaño del animal sigue un patrón de alometría positiva extrema: por un pequeño incremento del tamaño del animal, se produce un aumento significativamente mayor de la superficie adhesiva. Según este estudio, la superficie adherente respecto a la superficie total puede ser hasta 200 veces mayor en geckos que en ácaros.

Imagen de David Labonte

Sin embargo, la misma alometría se rige por una serie de constricciones (limitaciones) anatómicas. Así, para que existiera un animal de mayor tamaño que un gecko capaz de caminar sobre una superficie vertical lisa o invertida, éste debería desarrollar, por ejemplo, unas extremidades enormes con una superficie adherente igualmente grande. Si bien pudiera tener sentido desde un punto de vista físico, las constricciones anatómicas hacen inviable la existencia de animales con estas características.

Ahora ya podemos responder la pregunta “¿Por qué Spiderman no podría adherirse a las paredes?”. Según este estudio, para que un ser humano pudiera caminar por las paredes como una araña su cuerpo debería estar recubierto al menos de un 40% de estructuras adhesivas (un 80% si contamos únicamente su parte frontal); o eso, o tener brazos o piernas absurdamente grandes e imposibles desde un punto de vista anatómico.

Gran diversidad de estrategias

La adhesión dinámica debe ser suficientemente fuerte para que el animal no caiga al estar quieto, pero suficientemente débil para poder desengancharse sin problemas al dar un paso.

Para conseguirlo, existen diferentes estrategias.

Diversidad de estructuras adhesivas. Imagen de David Labonte.

1) Adhesión húmeda

Interviene una sustancia líquida.


Los insectos presentan dos sistemas:

Patas con almohadillas lisas: lo encontramos, por ejemplo, en hormigas, abejas, cucarachas y saltamontes. El último segmento de sus patas (pretarso), las uñas o las tíbias presentan una o varias almohadillas extremadamente blandas y deformables (como los arolios en el pretarso). A pequeña escala, ninguna superficie es totalmente lisa, por lo que estas almohadillas se deforman hasta ocupar todos sus espacios disponibles.

Tarso (parte final de las patas) de una cucaracha. Imagen adaptada a partir de la original de Clemente & Federle, 2008.

Patas con almohadillas peludas: lo encontramos en escarabajos y moscas, entre otros. Las almohadillas de estos insectos están densamente cubiertas de pequeñas estructuras similares a pelos, las setas, gracias a las cuales el contacto con la superficie aumenta.

Pie de un escarabajo de la familia Chrysomelidae. Imagen de Stanislav Gorb et al.

En ambos casos, interviene un líquido con una fase hidrofóbica y otra hidrofílica. Estudios con hormigas han demostrado que las terminaciones de sus patas secretan una fina capa de líquido que incrementa el contacto entre el pretarso y la superficie sobre la que caminan, rellenando los huecos restantes y actuando como un adhesivo bajo los principios de capilaridad (tensión superficial) y viscosidad.

Si queréis conocer más a fondo este mecanismo, ¡no os perdáis este increíble vídeo sobre las hormigas!:

Ranas arborícolas

Las almohadillas de los dedos de las ranas arborícolas están compuestas de células epiteliales columnares separadas entre sí. Entre ellas, numerosas glándulas vierten una sustancia mucosa a los espacios existentes. La separación de las células permite, por una parte, que las almohadillas se deformen para adaptarse al terreno y, por otra, que la mucosidad circule entre ellas y asegure la adhesión. Además, en ambientes húmedos (muchas de estas ranas viven en selvas), estos espacios facilitan la eliminación del exceso de agua que las haría resbalar.

Rana verde de ojos rojos (Agalychnis callidryas), procedente del sur de México al noroeste de Colombia. Fíjate en los extremos de sus dedos. Imagen de dominio público.

En el siguiente vídeo, puedes apreciar con más detalle las patas de una de las ranas arborícolas más conocidas:

Las ranas arborícolas presentan un sistema similar al de almohadillas lisas de los insectos. De hecho, a muchos aumentos las microestructuras adhesivas en grillos y ranas es prácticamente idéntica. Esto llevó a Barnes (2007) a considerar la adhesión húmeda como una de las más exitosas.

Distintas ranas (a, b, c) y sus respectivos epitelios (d, e, f). La figura g corresponde a la superficie de las almohadillas de un grillo. Imagen de Barnes (2007).


Los estudios más detallados se han realizado sobre el pósum pigmeo acróbata (Acrobates pygmaeus), un pequeño marsupial del tamaño de un ratón capaz de escalar superficies de vidrio usando las grandes almohadillas de sus patas. Estas almohadillas están compuestas de múltiples capas de células epiteliales escamosas separadas por surcos que facilitan su deformación y por los que circula el sudor, que es el líquido que usan para adherirse.

Acrobates pygmaeus. Imagen de Roland Seitre.
Palma de las patas frontales de Acrobates pygmaeus. Imagen de Simon Hinkley y Ken Walker.

2) Adhesión seca

No intervienen líquidos.

Arañas y geckos

Tanto arañas como geckos se rigen por el mismo principio de adhesión: las fuerzas de Van de Waals. A diferencia de insectos, ranas y pósums, no segregan líquidos adhesivos.

Las fuerzas de Van der Waals resultan de la interacción entre moléculas o átomos sin que exista un enlace químico entre ellos, y su energía depende de la distancia. Estas interacciones aparecen entre los “pelos” o setas de las palmas de los geckos (las cuales están surcadas por pliegues, las lamelas) y las setas de las patas de las arañas (que están cubiertas de muchas pilosidades formando las escópulas), y la superficie sobre la que caminan.

Pata de una araña cubierta de setas. Imagen de Michael Pankratz.
Diversidad de patas de geckos. Imagen de Kellar Autumn.

Estudios recientes, sin embargo, sugieren que la adhesión en los geckos no se debería principalmente a estas fuerzas, sino a las interacciones electrostáticas (diferente polaridad entre las setas y la superficie), tras comprobar que su capacidad adhesiva menguaba sobre materiales menos energéticos, como el teflón.

Sea como sea, la habilidad de los geckos para trepar es impresionante. Sino, mira este vídeo del gran David Attenborough:



Los murciélagos de ventosas (familia Thyropteridae), originarios de Centroamérica y el norte de Sudamérica, presentan unas ventosas en forma de disco en sus pulgares y en la planta de las patas traseras que les permiten desplazarse sobre superficies lisas. En el interior de estos discos, la presión se reduce y el murciélago queda adherido por succión. De hecho, un solo disco puede soportar el peso de todo el animal.

Murciélago de la familia Thyropteridae. Imagen de Christian Ziegler/ Minden Pictures.

Después de conocer todas estas estrategias, ¿creéis que Spiderman está a la altura?

Imagen de portada de autor desconocido. Fuente: link.

Animals que caminen per la paret: un repte a la gravetat

Com s’ho fan alguns insectes, aranyes o llangardaixos per caminar sobre parets llises o de cap per avall i no caure? ¿Per què, si fos real, l’Spiderman no podria enganxar-se a les parets com ho fan aquests animals?

Científics de diferents àrees encara busquen comprendre els mecanismes que fan servir alguns animals per caminar sobre aquest tipus de superfícies sense relliscar o precipitar-se. A continuació, t’expliquem què sap la comunitat científica sobre aquest fenomen.

Animals que caminen per la paret: un repte a la gravetat

La competència per l’espai i els recursos (nínxol ecològic) ha donat lloc a nombroses i increïbles adaptacions al llarg de l’evolució, com la miniaturització.

Quan una superfície és massa llisa, de manera que les ungles, les urpes o les forces de fricció resulten insuficients per a desplaçar-se sobre ella sense caure, entren en joc mecanismes d’adhesió dinàmica: aquells que permeten a l’animal desplaçar-se sobre superfícies verticals llises o de cap per avall enganxant-se i desenganxant-se ràpidament. L’aparició d’estructures adhesives dinàmiques ha permès a diversos animals explotar nous ambients, podent desplaçar-se per caçar o romandre immòbils el temps necessari per fugir dels seus depredadors allà on la majoria tan sols podria estar estable uns pocs segons.

Gecko sobre una superfície llisa. Imatge de Shutterstock/Papa Bravo.

El desenvolupament d’estructures adhesives dinàmiques en les extremitats és típic d’insectes i d’aranyes, d’alguns rèptils com els geckos i certes sargantanes, i d’amfibis com les granotes arborícoles. Puntualment, també s’ha observat en petits mamífers com ratpenats i pòssums, uns marsupials arborícoles procedents d’Austràlia i de certes regions del sud-est asiàtic.

El fet que grups tan diferents d’animals presentin una adaptació similar s’explica per un procés de convergència evolutiva: davant un mateix problema (competència per l’espai i els recursos, elevada pressió de depredació, etc.), l’evolució tendeix a solucions iguals o similars (estructures adhesives per accedir a altres espais).

Els límits de l’adaptació (o per què l’Spiderman no podria caminar per les parets)

Estudiar el mecanisme mitjançant el qual alguns animals caminen sobre superfícies verticals llises o invertides és clau per al desenvolupament industrial de noves i més potents substàncies adhesives. No és estrany, doncs, que hi hagi molts estudis al respecte.

Podrà l’ésser humà escalar parets com ho fa l’Spiderman algun dia? Labonte et al. (2016) ens explica per què l’Spiderman com a tal no podria existir. O, almenys, com hauria de ser realment per poder adherir-se a les parets com una aranya.

Podrà l’ésser humà escalar com l’Spiderman algun dia? De moment, ens conformem amb aquesta esculptura. Imatge de domini públic.

Sense entrar en les estratègies pròpies de cada organisme (de les quals parlarem després), el principi bàsic pel qual insectes, aranyes o geckos poden caminar sobre superfícies verticals llises o cap per avall és la seva relació superfície/volum: com més petit és l’animal, més gran és la superfície del seu cos respecte al seu volum i menor la quantitat de superfície adhesiva necessària per poder desplaçar-se sense caure a causa del pes. Així doncs, els geckos serien els animals coneguts amb la mida més gran (relació superfície/volum més petita) capaços de caminar sobre superfícies verticals llises o cap per avall sense patir modificacions anatòmiques que farien inviable el seu desenvolupament.

I què vol dir “sense patir modificacions anatòmiques”? Els mateixos autors expliquen que com més gran és l’animal, més gran és la superfície adhesiva necessària per desplaçar-se sense desprendre’s. El creixement de la superfície adhesiva respecte la mida de l’animal segueix un patró d’al·lometria positiva extrema: per un petit increment de la mida de l’animal, es produeix un augment significativament major de la superfície adhesiva. Segons aquest estudi, la superfície adherent respecte a la superfície total pot ser fins a 200 vegades més gran en geckos que en àcars.

Imatge de David Labonte

No obstant això, la mateixa al·lometria es regeix per una sèrie de constriccions (limitacions) anatòmiques. Així, per tal que existís un animal més gran que un gecko capaç de caminar sobre una superfície vertical llisa o invertida, aquest hauria de desenvolupar, per exemple, unes extremitats enormes amb una superfície adherent igualment gran. Si bé podria tenir sentit des d’un punt de vista físic, les constriccions anatòmiques fan inviable l’existència d’animals amb aquestes característiques.

Ara ja podem respondre la pregunta “Per què l’Spiderman no podria adherir-se a les parets?”. Segons aquest estudi, perquè un ésser humà pogués caminar per les parets com una aranya el seu cos hauria d’estar recobert almenys d’un 40% d’estructures adhesives (un 80% si comptem únicament la seva part frontal); o això, o tenir braços o cames absurdament grans i impossibles des d’un punt de vista anatòmic.

Gran diversitat d’estratègies

L’adhesió dinàmica ha de ser prou forta perquè l’animal no caigui estant quiet, però prou feble per poder desenganxar-sense problemes en fer un pas.

Per aconseguir-ho, hi ha diferents estratègies.

Diversitat d’estructures adhesivas. Imatge de David Labonte.

1) Adhesió humida

Hi intervè una substància líquida.


Els insectes presenten dos sistemes:

Potes amb coixinets llisos: el trobem, per exemple, en formigues, abelles, paneroles i saltamartins. L’últim segment de les seves potes (pretars), les ungles o les tíbies presenten un o diversos coixinets extremadament tous i deformables (com els arolis al pretars). A petita escala, cap superfície és totalment llisa, de manera que aquests coixinets es deformen fins a ocupar tots els seus espais disponibles.

Tars (part final de les potes dels insectes) d’una panerola. Imatge adaptada a partir de la original de Clemente & Federle, 2008.

Potes amb coixinets peluts: el trobem en escarabats i mosques, entre d’altres. Els coixinets d’aquests insectes estan densament coberts de petites estructures similars a pèls, les setes, gràcies a les quals el contacte amb la superfície augmenta.

Peu d’un escarabat de la família Chrysomelidae. Imatge de Stanislav Gorb et al.

En ambdós casos, intervé un líquid amb una fase hidrofòbica i una altra hidrofílica. Estudis amb formigues han demostrat que les terminacions de les seves potes secreten una fina capa de líquid que incrementa el contacte entre el pretars i la superfície sobre la que caminen, omplint els buits restants i actuant com un adhesiu sota els principis de capil·laritat (tensió superficial) i viscositat.

Si voleu conèixer més a fons aquest mecanisme, no us perdeu aquest increïble vídeo sobre les formigues!:

Granotes arborícoles

Els coixinets dels dits de les granotes arborícoles estan compostos de cèl·lules epitelials columnars separades entre si. Entre elles, nombroses glàndules hi aboquen una substància mucosa. La separació de les cèl·lules permet, d’una banda, que els coixinets es deformin per adaptar-se al terreny i, per altra, que la mucositat circuli entre elles i asseguri l’adhesió. A més a més, en ambients humits (moltes d’aquestes granotes viuen en selves), aquests espais faciliten l’eliminació de l’excés d’aigua que les faria relliscar.

Granota verda d’ulls vermells (Agalychnis callidryas). Fixa’t en els extrems dels dits. Imatge de domini públic.

En el següent vídeo, pots apreciar amb més detall les potes d’una de les granotes arborícoles més conegudes:

Les granotes arborícoles presenten un sistema similar al de coixinets llisos dels insectes. De fet, a molts augments les microestructures adhesives en grills i granotes són pràcticament idèntiques. Això va dur Barnes (2007) a considerar l’adhesió humida com una de les més exitoses.

Diferents granotes (a, b, c) i els seus respectius epitelis (d, e, f). La figura g correspon a la superfície dels coixinets d’un grill. Imatge de Barnes (2007).


Els estudis més detallats s’han realitzat sobre el pòssum pigmeu acròbata (Acrobates pygmaeus), un petit marsupial de la mida d’un ratolí capaç d’escalar superfícies de vidre fent servir els grans coixinets dels palmells de les seves potes. Aquests coixinets estan compostos de múltiples capes de cèl·lules epitelials esquamoses separades per solcs que en faciliten la deformació i pels quals hi circula la suor, que és el líquid que fan servir per adherir-se.

Acrobates pygmaeus. Imatge de Roland Seitre.
Palmell del primer parell de potes d’Acrobates pygmaeus. Imatge de Simon Hinkley i Ken Walker.

2) Adhesió seca

No intervenen líquids.

Aranyes i geckos

Tant les aranyes com els geckos es regeixen pel mateix principi d’adhesió: les forces de Van de Waals. A diferència d’insectes, granotes i pòssums, no segreguen líquids adhesius.

Les forces de Van der Waals resulten de la interacció entre molècules o àtoms sense que hi hagi un enllaç químic entre ells, i la seva energia depèn de la distància. Aquestes interaccions apareixen entre els “pèls” o setes dels palmells de les potes dels geckos (les quals estan solcades per plecs, les lamel·les) i les setes de les potes de les aranyes (que estan cobertes de moltes pilositats formant les escòpules), i la superfície sobre la qual caminen.

Pota d’una aranya plena de setes. Imatge de Michael Pankratz.
Diversitat de potes de geckos. Imatge de Kellar Autumn.

Estudis recents, però, suggereixen que les interaccions de Van der Waals no serien les grans determinants de l’adhesió en els geckos, sinó les interaccions electrostàtiques (diferent polaritat entre les setes i la superfície), després de comprovar que la seva capacitat adhesiva minvava sobre materials menys energètics, com el tefló.

Sigui com sigui, l’habilitat dels geckos per enfilar-se és impressionant. Si no, mira aquest vídeo del gran David Attenborough:

3) Succió


Els ratpenats de ventoses (família Thyropteridae), originaris de l’Amèrica Central i del Sud, presenten unes ventoses en forma de disc als seus polzes i al palmell del segon parell de potes que els permeten desplaçar-se sobre superfícies llises. A l’interior d’aquests discos, la pressió es redueix i el ratpenat queda adherit per succió. De fet, un sol disc pot suportar el pes de tot l’animal.

Ratpenat de la família Thyropteridae. Imatge de Christian Ziegler/ Minden Pictures.

Després de conèxier totes aquestes estratègies, creus que l’Spiderman n’està a l’alçada?

Imatge de portada d’autor desconegut. Font: link.

Insects are becoming smaller: miniaturization

According to different studies, multicellular organisms tend to become smaller and smaller through time. This phenomenon is called miniaturization and is considered one of the most significative evolutionary trends among insects. Miniaturization is a driving force for diversity and evolutionary novelties, even though it must deal with some limitations.

Learn more about this phenomenon and met some of the most extreme cases of miniaturization among insects through this post.

Why are animals becoming smaller?

For some years now, multiple studies suggest there is a widely extended trend to miniaturization among multicellular animals (i. e. organisms composed by more than one cell).

Miniaturization is a remarkable natural phenomenon headed to the evolution of extremely small bodies. This process has been observed in different non-related groups of animals:

  • Shrews (Soricomorpha: Soricidae), mammals.
  • Hummingbirds (Apodiformes: Trochilidae), birds.
  • Diverse groups of insects and arachnids.

To know more about giant insects, you can read Size matters (for insects)!

Diversification and speciation processes have given place to lots of new species through time, all of them constantly competing for limited space and food sources. This scenario turns even more drastic in tropical regions, where diversification rates are extremely high.

Learn about the ecological niche concept by reading “The living space of organisms“.

Facing the increasing demands of space and resources, evolution has given place to numerous curious phenomena such as miniaturization to solve these problems: by becoming smaller, organisms (either free-living or parasites) gain access to new ecological niches, get new food sources and avoid predation.

Despite many animals tend to miniaturization, this phenomenon is more frequently observed among arthropods, being one of their most remarkable evolutionary trends. Moreover, arthropods hold the record of the smallest multicellular organisms known to date, some of which are even smaller than an amoeba!

Guinness World Record of the smallest insects

The smallest arthropods are crustaceans belonging to the subclass Tantulocarida, which are ectoparasites of other groups of crustaceans, such as copepods or amphipodes. The species Tantulacus dieteri is still considered the smallest species of arthropods worldwide, which barely measures 85 micrometers (0,085 millimeters), thus being smaller than many unicellular life beings.

However, insects do not lag far behind.


Mymaridae (or fairyflies) are a family of wasps inside the superfamily Chalcidoidea from temperate and tropical regions. Adults, ranging from 0.5 to 1 millimeter, develop as parasites of other insects’ eggs (e. g. bugs, Heteroptera). For this reason, fairyflies are very valuable as biological control agents of some harmful pests. Also, they are amongst the smallest insects worldwide.

Currently, the one holding the record as the smallest known adult insect is the apterous (wingless) male of the species Dicopomorpha echmepterygis from Costa Rica, with a registered minimum size of 0.139 millimeters. They neither have eyes nor mouthparts, and their legs endings are deeply modified to get attached to the females (somewhat bigger and winged) time enough to fertilize them. They are even smaller than a paramecium, a unicellular organism!

You can read “Basic microbiology (I): invisible world” to know more about unicellular organisms.

Male of D. echmepterygis. Link.

Fairyflies also include the smallest winged insects worldwide: the species Kikiki huna from Hawaii, with and approximate size of 0.15 millimeters.


Like fairyflies, trichogrammatids are tiny wasps of the superfamily Chalcidoidea that parasite eggs of other insects, especially lepidopterans (butterflies and moths). Adults of almost all the species measure less than 1 millimeter and are distributed worldwide. Adult males of some species are wingless and mate with their own sisters within the host egg, dying shortly after without even leaving it.

The genus Megaphragma contains two of the smallest insects worldwide after fairyflies: Megaphragma caribea (0.17 millimeters) and Megaphragma mymaripenne (0.2 millimeters), from Hawaii.

A) M. mymaripenne; B) Paramecium caudatum. Link.

Trichogrammatids also have one of the smallest known nervous systems, and that of the species M. mymaripenne is one of the most reduced and specials worldwide, as it is composed by only 7400 neurons without nucleus. During the pupae stage, this insect develops neurons with functional nuclei which are able to synthetize enough proteins for the entire adulthood. Once adulthood is reached, neurons lose their nuclei and become smaller, thus saving space.


Ptiliidae is a cosmopolitan family of tiny beetles known for including the smallest non-parasitic insects worldwide: the genera Nanosella and Scydosella.

Ptiliidae eggs are very large in comparison with the adult female size, so they can develop a single egg at a time. Other species undergo parthenogenesis.

Learn some more about parthenogensis by reading “Immaculate Conception…in reptiles and insects“.

Currently, the smallest Ptiliidae species known and so the smallest non-parasitic (free living) insect worldwide is Scydosella musawasensis (0.3 millimeters), from Nicaragua and Colombia.

Scydosella musawasensis. Link (original picture: Polilov, A (2015) How small is the smallest? New record and remeasuring of Scydosella musawasensis Hall, 1999 (Coleoptera, Ptiliidae), the smallest known free-living insect).

Consequences of miniaturization

Miniaturization gives rise to many anatomical and physiological changes, generally aimed at the simplification of structures. According to Gorodkov (1984), the limit size of miniaturization is 1 millimeter; under this critical value, the body would suffer from deep simplifications that would hinder multicellular life.

While this simplification process takes places within some groups of invertebrates, insects have demonstrated that they can overcome this limit without too many signs of simplification (conserving a large number of cells and having a greater anatomical complexity than other organisms with a similar size) and also giving rise to evolutionary novelties (e. g. neurons without nucleus as M. mymaripenne).

However, getting so small usually entails some consequences:

  • Simplification or loss of certain physiological functions: loss of wings (and, consequently, flight capacity), legs (or extreme modifications), mouthparts, sensory organs.
  • Considerable changes in the effects associated with certain physical forces or environmental parameters: capillary forces, air viscosity or diffusion rate, all of them associated with the extreme reduction of circulatory and tracheal (or respiratory) systems. That is, being smaller alters the internal movements of gases and liquids.

So, does miniaturization have a limit?

The answer is yes, although insects seem to resist to it.

There are several hypotheses about the organ that limits miniaturization. Both the nervous and the reproductive systems, as well as the sensory organs, are very intolerant to miniaturization: they must be large enough to be functional, since their functions would be endangered by a limited size; and so, the multicellular life.

.             .            .

Multicellular life reduction seems to have no limits. Will we find an even smaller insect? Time will tell.

Main picture: link.