Arxiu de la categoria: DIVERSIDAD VEGETAL

Piedras vivas: plantas que parecen rocas

¡ATENCIÓN! ESTE ARTÍCULO ESTÁ DESACTUALIZADO.

LEE LA VERSIÓN MÁS RECIENTE AQUÍ

Si dieras un paseo por ciertos desiertos, te podrías encontrar con unas piedras muy especiales: “piedras” vivas. Lógicamente, rocas y piedras son elementos inertes, así que un vistazo desde más cerca te descubriría que en realidad, se trata de plantas que han adoptado aspecto de piedra. ¿Quieres saber por qué?

PIEDRAS VIVAS: PLANTAS QUE PARECEN ROCAS

Bajo el nombre popular de piedras vivas o plantas piedra, encontramos distintos géneros de plantas suculentas. Como ya sabrás, las plantas suculentas o plantas crasas son todas aquellas que tienen una gran capacidad de almacenaje de agua. Algunas de sus estructuras, habitualmente las hojas o tallo, presentan un aspecto carnoso debido a esta especialización para almacenar agua. De esta manera, estas reservas les permiten sobrevivir en ambientes muy áridos o a períodos de escasez de agua. Un ejemplo muy conocido de suculentas con hojas carnosas es el Aloe vera, y en el caso de tallos suculentos, los cactus.

Planta de Aloe vera, con una hoja cortada en primer plano donde se ve su parte suculenta. Foto: Indianmart

Bajo el nombre de plantas piedra encontramos distintas especies de distintas familias. Las más conocidas son las que pertenecen al género Lithops, originarias de África, ya que se cultivan como plantas ornamentales. Otras plantas que parecen piedras son la especie Dioscorea elephantipes (pie de elefante) y Fredolia aretioides, también africanas. En los Andes encontramos a Azorella compacta. Veamos con más detalle estas cuatro piedras vivas.

Lithops camufladas entre guijarros. Foto: Xocolatl

LITHOPS SP.

Dentro del género Lithops encontramos diversas especies, todas con aspecto de pequeñas piedras o guijarros.

Como hemos visto, para sobrevivir en ambientes áridos las plantas pueden acumular agua en su interior. Además, reducen la superficie de contacto de sus hojas con el aire, para minimizar la pérdida de agua por transpiración. El caso más extremo lo encontramos en los cactus, con hojas diminutas y muy duras: las púas.

cactus puas punxes tija suculenta tallo suculento
Las púas de los cactus son hojas modificadas. La zona verde corresponde al tallo carnoso. Foto: freestock

En el caso de las Lithops (del griego: “lithos” -piedra- y “ops” -forma), solo tienen en el exterior un par de hojas suculentas de 2 a 5 centímetros, con aspecto de pequeñas piedras, ya que además tienen unas pequeñas manchas blancas en su superficie. Este aspecto de piedra también contribuye a que pasen desapercibidas por sus depredadores. Esta estrategia (confundirse con el entorno) se conoce como cripsis.

Varias plantas Lithops en una maceta en distintos estadíos de crecimiento. Se observan las dos hojas de cada planta y las “manchas” en su parte superior. Foto: yellowcloud

En realidad, estas manchas son zonas translúcidas, sin clorofila, para que la luz pueda penetrar hacia el resto de la planta, que es plana y permanece bajo tierra. Entre las dos hojas maduras, encontramos un tejido por donde se da el crecimiento del par de hojas nuevas. Una vez las dos hojas nuevas han emergido del centro de la planta, las dos viejas se marchitan y mueren.

lithops hoja disección
Corte longitudinal de una Lithops. Se observa el tejido central por donde crecerán las nuevas hojas, el tejido translúcido suculento, el tejido verde fotosintético y el tejido translúcido por donde entra la luz (epidermis superior). Foto: C T Johansson
REPRODUCCIÓN DE LAS LITHOPS

Las Lithops se reproducen de manera asexual (esquejes) y sexual (semillas). A pesar de ello, la reproducción por esquejes solo es posible si la planta se ha dividido de manera natural, por lo que si la cortamos y plantamos antes que se haya dividido, no se desarrollará como una nueva planta. Es por ello que principalmente la reproducción es mediante semillas, que produce una flor muy vistosa que emerge entre las dos hojas de la planta. Observa este time-lapse de 7 días de la floración de esta Lithops:

Su curioso aspecto, belleza en época de floración y fácil mantenimiento, han hecho de las Lithops una planta decorativa en casas y jardines. Si tienes una y quieres saber si le estás dando los cuidados adecuados, en esta página encontrarás consejos para su mantenimiento y reproducción.

Si todavía quieres saber más sobre Lithops y otros géneros de  plantas piedra, te recomendamos este vídeo:

PIE DE ELEFANTE

Dioscorea elephantipes, conocida como pie de elefante, caparazón de tortuga o pan de Hottentot, es una planta trepadora de hoja caduca. Su tallo carnoso está parcialmente enterrado, lleno de fisuras y cubierto por una dura corteza. Esto le da un aspecto rocoso, similar a la piel de un elefante o al caparazón de una tortuga, como su nombre popular sugiere. Además, esta planta acumula en sus reservas grandes cantidades de almidón, por lo que también se la conoce como pan de Hottentot.

Tallo tuberoso de Dioscorea elephantipes en verano. Se observan los brotes secos en su centro. Foto: Hectonichus

En invierno, aparecen brotes verdes con flores amarillas, que crecerán hasta morir en verano, época de máxima aridez (recordemos que es de hoja caduca). En este momento la planta entra en un estado de latencia o adormecimiento y no volverá a necesitar apenas agua hasta la aparición de los siguientes brotes.

Pie de elefante en verano. Se observan brotes con hojas en la parte superior. Foto: Natalie Tapson

A diferencia de las Lithops, el pie de elefante puede alcanzar un metro de altura y tres de circunferencia, aunque su crecimiento es muy lento. Pero igual que las Lithops, su forma tiende a la esfera. Esto es debido a que la esfera es la forma geométrica que encierra más volumen ofreciendo menor superficie al exterior. Con esto se consigue que la planta pueda crecer minimizando la superficie de contacto con el aire, reduciendo así la pérdida de agua por transpiración.

Si piensas en la cantidad de formas aproximadamente esféricas que encontramos en los seres vivos (huevos, semillas, frutos, animales, etc.), posiblemente se deba a esta razón: máximo volumen (de reservas nutritivas, de volumen corporal) utilizando una mínima superficie (menos transpiración, menos pérdida de calor, menos superficie que ofrecer a los depredadores…). Si quieres profundizar en el tema (y otras formas) se trata de una idea del desaparecido Jorge Wagensberg, que trata en su libro La rebelión de las formas e inspira una exposición permanente en el CosmoCaixa de Barcelona.

FREDOLIA ARETIOIDES

Fredolia aretioides pasando desapercibida en el suelo sahariano. Foto: Rafael Medina

Fredolia aretioides, que vive en el norte del Sáhara, utiliza la misma estrategia que la planta pie de elefante: una forma prácticamente esférica para evitar al máximo la perdida de agua. A diferencia de la anterior no tiene una corteza dura, y a diferencia de Lithops, tiene más de dos hojas. La planta consta de multitud de tallos y hojas endurecidos y de crecimiento compacto. Estas hojas son de un color verde-grisáceo, lo que le da un aspecto más pétreo, pasando totalmente desapercibida entre las rocas del desierto.

Fredolia aetioides de cerca, donde se observan la multitud de hojas minúsculas formando una esfera compacta. Foto: Rafael Medina

AZORELLA COMPACTA

Azorella compacta, llareta o yareta, es la única planta piedra de las que tratamos aquí que no vive en en las zonas árida de África. Se distribuye por Sudamérica, concretamente en los Andes, de 3.200 metros a 4.800 metros por encima del nivel del mar. Está perfectamente adaptada a la gran insolación que recibe el suelo a esta altitud, que además, en la Puna andina es negro o gris debido a su origen volcánico. Esto significa que a ras de suelo la temperatura del aire es un grado o dos superior a la temperatura ambiente.

Yareta en los Andes. Foto: Pedro Szekely

A la yareta, a pesar de ser de otra familia y crecer en un ambiente distinto que Fredolia, la evolución la ha dotado de la misma estrategia para evitar la pérdida de agua: forma redondeada, tallos compactos y hojas pequeñas y endurecidas. Igual que las anteriores especies que hemos visto, también se reproduce por semillas y sus flores son amarillo-verdosas.

CONCLUSIÓN

Para finalizar, podemos concluir que aunque de orígenes distintos, la evolución ha llevado a todas estas plantas a soluciones parecidas a la escasez de agua, a soportar elevadas insolaciones y a evitar perder temperatura durante la noche: dotándolas de formas prácticamente esféricas para reducir su relación entre la superficie y volumen. Además, esta adaptación se complementa con la reducción del número o tamaño de las hojas y la acumulación de agua y sustancias nutritivas en su interior.

Foto de portada: ellenm1 (Flickr)

Las islas como laboratorio de la evolución

Las islas son laboratorios naturales donde estudiar la evolución en vivo. Ya sean de origen volcánico o continental están aisladas del continente por el mar y esto provoca que muchos de los seres vivos que viven en islas presenten adaptaciones espectaculares, a veces originándose especies gigantes o enanas en comparación con sus congéneres continentales. En este artículo, describimos cuáles son los mecanismos evolutivos que explican este fenómeno y ponemos algunos ejemplos sorprendentes.

El origen de las islas puede ser volcánico, implicando la aparición de tierras vírgenes las cuales que pueden ser colonizadas por unos pocos individuos y producirse nuevas adaptaciones a las nuevas condiciones, o bien continental, implicando la separación del continente por procesos tectónicos, con lo que la fauna y flora antes conectada, queda aislada y acaba diferenciándose con el paso de las generaciones.

hawai_steve-juverston_flickr
Aspecto de un cono volcánico en Hawaii. Fuente: Steve Juverston, vía Flickr.

MECANISMOS EVOLUTIVOS QUE ACTÚAN EN ISLAS

La generación de nuevas especies provocada por la aparición de una barrera geográfica, como puede ser la aparición de una cordillera, cambios en el nivel del mar o la creación de nuevas islas por movimientos tectónicos, se denomina especiación alopátrica y es el principal proceso que actúa en islas. Puede ser de dos tipos:

  1. Especiación vicariante: cuando dos poblaciones de la misma especie son separadas en nuestro caso por separación de un pedazo de tierra del continente. Un ejemplo de este caso es la isla de Madagascar, que cuando se separó del continente africano dejó la biota de la isla desconectada de la del continente por el mar.
  1. Especiación peripátrica: cuando una pequeña población de una especie se separa de la población original por la aparición de una barrera geográfica. Es el caso de la colonización de una tierra virgen como son las islas oceánicas. En este caso, los individuos que colonizan el nuevo ambiente pueden no representar el acervo genético de la especie ancestral y con el paso del tiempo y el aislamiento reproductivo, originarse una especie nueva en lo que se denomina efecto fundador.

El gran naturalista británico y creador de la teoría de la evolución, Charles Darwin, se inspiró en el archipiélago de origen volcánico de las islas Galápagos para desarrollar su gran teoría, paradigma de la ciencia actual.

Las islas oceánicas se forman por explosión de volcanes submarinos o movimientos de la dorsal oceánica. Debido a la actividad volcánica, se forman conjuntos de archipiélagos, donde cada isla tiene su propia historia, con un clima, relieve y geología diferenciados. Esto crea un escenario perfecto para observar cómo funciona la evolución, ya que cada población que llega a una nueva isla se ve afectada por presiones ecológicas diferentes y quizás nunca más entrará en contacto con las poblaciones de otras islas, formándose especies únicas, endémicas de cada isla.

Muchos naturalistas y científicos han estudiado la evolución en vivo en archipiélagos de estas características, como las islas de Hawái, Seychelles, Islas Mascareñas, archipiélago de Juan Fernández o nuestras Islas Canarias. Una de las últimas islas aparecidas en el océano Atlántico es la isla de Suerty que se formó en 1963, 30 km al sur de Islandia y desde entonces la llegada de vida hay sido documentada y estudiada para comprender una poco más los mecanismos ecológicos y evolutivos que actúan.

surtsey_eruption_1963_wikimedia
Isla de Suerty en erupción, en el Sud de Islándia. Fuente: Wikimedia.

ADAPTACIONES EN ISLAS: GIGANTISMO Y LEÑOSIDAD

Muchas veces, las islas oceánicas, al ser vírgenes, no tienen depredadores y esto desencadena la aparición de adaptaciones curiosas. Uno de los procesos más sorprendentes es el gigantismo, en animales o adquisición de condición leñosa, en plantas.

La adquisición de leño en islas por parte de plantas herbáceas en el continente ha sido bastante documentado en varias familias y archipiélagos de todo el mundo. La causa de este fenómeno sería la ausencia de herbívoros y competidores en islas, que permite un desarrollo mayor en altura en la búsqueda de luz.

Por ejemplo, en Hawái encontramos la alianza de las espadas plateadas. Comprende 28 especies en tres géneros (Argyroxiphium, Dubautia y Wilkesia), todos miembros leñosos de la familia de los girasoles o Asteraceae. Sus parientes más cercanos son hierbas perennes de Norte América.

hawai
Aspecto de una espada plateada del género Argyroxiphium (izquierda) y sus parientes más cercanos en el continente (derecha), del género Raillardella. Fuente: Wikimedia.

En las Islas Canarias encontramos muchos ejemplos de este fenómeno. El género Echium de la familia de las borrajas o Boraginaceae, contiene unas 60 especies, de las cuales 27 se encuentran en diferentes archipiélagos de origen volcánico de la Macaronesia (Canarias, Madeira y Cabo Verde). Casi todos los miembros de este género que encontramos en la Macaronesia son arbustos, que forman una inflorescencia que puede llegar hasta los 3 m de altura y son el símbolo del Parque Natural del Teide (los conocidos tajinastes), mientras que sus parientes más cercanos, euroasiáticos, son hierbas, como por ejemplo la lengua de vaca (Echium vulgare).

echium
Aspecto de un tajinaste rojo (izquierda) en Tenerife y su pariente continental (Echium vulgare) a la derecha. Fuente: Wikimedia.

También en la Macaronesia, encontramos otro ejemplo dentro de la familia de las Euphorbiaceae o lechetreznas. Es el caso de las especies Euphorbia mellifera, endémica de Canarias y Madeira y E. stygiana, endémica de Azores. Se trata de árboles en peligro de extinción o críticamente amenazados, según la IUCN, que pueden llegar a medir hasta 15 m de altura y que forman parte de la vegetación de laurisilva, el bosque subtropical húmedo típico macaronésico. Sus ancestros más cercanos son plantas herbáceas del Mediterráneo.

euphorbia
Euphorbia mellifera en Maderia y uno de sus parientes más cercano herbáceo del Mediterráneo (derecha, E. palustris). Fuente: izquierda Laia Barres González y derecha Wikimedia.

Dentro del reino de los animales, también encontramos adaptaciones peculiares en islas. Los animales herbívoros que habitan islas no suelen tener grandes depredadores ni competidores y esto facilita que aparezcan especies de mayor tamaño que en el continente, donde la presencia de grandes carnívoros evitaría la aparición de este tipo de características por la incompatibilidad con esconderse o huir de la presa.

Uno de los ejemplos más famosos de gigantismo insular es el caso de las tortugas gigantes de las Galápagos (complejo Chelonoidis nigra), que engloba 10 especies diferentes, muchas endémicas de una única isla del archipiélago. Son las tortugas más grandes y longevas del mundo. Pueden llegar a los 2 m de largo y los 450 kg de peso y pueden vivir más de 100 años.

galapagos_geochelone_nigra_porteri_wikipedia
Tortuga gigante de las Galápagos. Fuente: Wikipedia.

Entre los reptiles, está el caso de los lagartos gigantes del género Gallotia de las Islas Canarias. Son varias especies endémicas de cada una de las islas: G. auaritae de La Palma, que se creía extinta hasta el descubrimiento de varios individuos en 2007, G. bravoana de La Gomera, G. intermedia de Tenerife, G. simonyi de El Hierro y G. stehlini de Gran Canaria, entre otros. Entre los lagartos gigantes de Canarias está el extinto Gallotia goliath, que podía llegar hasta 1 m de largo y del que actualmente se piensa que se incluye dentro de la circunscripción de G. simony.

gran-canaria-gallotia-stehlini_flickr_el-coleccionista-de-instantes-fotografia-video
Gallotia stehlini de Gran Canaria. Fuente: El coleccionista de instantes Fotografía & Vídeo vía Flickr.

Otro ejemplo lo encontramos en la isla de Flores, en Indonesia, donde existe una especie de rata gigante (Papagomys armandvillei) que llega a doblar en tamaño a la rata común. Curiosamente, en esta isla se encontraron también fósiles de un homínido que experimentó el proceso contrario, ya que se trataba de primates enanos en comparación con las medidas actuales del ser humano. Se trata del Homo floresiensis, que sólo hacía 1 m de altura y pesaba 25 kg. Se extinguió hace unos 50000 años y convivió con el Homo sapiens.

giant-rat_pinterest
Rata gigante (Papagomys armandvillei) de la isla de Flores. Fuente: Wikimedia.

El enanismo es otro de los procesos evolutivos que se pueden dar en islas. Provocado por la ausencia de recursos en algunas islas, en comparación al continente de donde provienen las poblaciones originales.

Desgraciadamente, las islas, por albergar una biota tan peculiar y exclusiva, son también testigos de muchos casos de sobreexplotación y extinción de especies. La biología de la conservación en islas nos ayuda a entender y conservar este patrimonio natural tan rico y único.

Laia-castellà

REFERENCIAS

Barahona, F.; Evans, S. E.; Mateo, J.A.; García-Márquez, M. & López-Jurado, L.F. 2000. Endemism, gigantism and extinction in island lizards: the genus Gallotia on the Canary Islands. Journal of Zoology 250: 373-388.

Böhle, U.R., Hilger, H.H. & Martin, W.F. 2001. Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae). Proceedings of the National Academy of Sciences 93: 11740-11745.

Carlquist, S.J. 1974. Island biology. New York: Columbia University Press.

 Foster, J.B. 1964. The evolution of mammals on islands. Nature 202: 234–235.

Whittaker, R.J. & Fernández-Palacios, J.M. 2007. Island biogeography: ecology, evolution, and conservation, 2nd edn. Oxford University Press, Oxford.

Las epífitas, las plantas que no necesitan suelo

Frecuentemente se dice que las plantas epífitas viven del aire y realmente lo parece, ya que son plantas que casi no necesitan de suelo para desarrollarse; aprovechan troncos para crecer y trepar en busca de la fuente de energía más buscada en los bosques tropicales: el sol. En este artículo describimos las adaptaciones de las epífitas y los grupos más comunes y espectaculares de estas plantas increíbles.

Adaptaciones de las epífitas

Las plantas epífitas son aquellas que viven sobre otra planta sin parasitarla, sin afectar negativamente ninguno de sus órganos o funciones. Las epífitas aprovechan la estructura de otras plantas como suporte físico, para crecer hacia el dosel de los bosques sombreados, aprovechando los troncos y ramas de árboles más viejos para llegar a una altura mayor y captar la luz del sol. Las epífitas nunca tocan el suelo, ¡están adaptadas a vivir del aire!

cactaceae-bromeliaceae-epifites-min
Diversas especies de Catctaceae, Bromelaceae y helechos epífitos creciendo a lo largo de un tronco del bosque tropical húmedo en Brasil. Fuente: Barres Fotonatura.

Son plantas que presentan adaptaciones sorprendentes a este hábito de vida, como:

  • La capacidad de captar agua y nutrientes del aire, la lluvia y de la pequeña cantidad de suelo o restos orgánicos que puedan quedarse presos al tronco de los árboles donde enraízan.
  • Las raíces que desarrollan no tienen la función de captar nutrientes sino la de sujetarse.
  • Frecuentemente, desarrollan estructuras para acumular la humedad.

Aunque las epífitas dependen de su huésped para conseguir sus nutrientes y no tienen el objetivo de parasitarlo, a veces crecen tanto que acaban sobrecarganlo y matando su suporte. Este es el caso de algunos Ficus (Moraceae), dichos “estranguladores”, que desarrollan sus raíces aéreas alrededor de otros troncos hasta no dejarlo crecer más.

375px-strangler_fig_inside-min
Estructura hueca que dejan las raíces del Ficus estrangulador una vez muerto su huésped. Fuente: Wikipedia.com.

Gracias a la contribución de las epífitas podemos decir que el bosque tropical húmedo está organizado en un gradiente vertical a lo largo de los troncos de los árboles, donde encontramos la diversidad de organismos organizada según la distancia al suelo. Las epífitas son responsables en gran parte de la biodiversidad extremamente rica que hace que los bosques húmedos tropicales sean uno de los ecosistemas más complejos de la Tierra. Además de proporcionar diferentes estratos de vegetación en altura, las epífitas proporcionan refugio y nutrientes a varias especies de insectos y anfibios, que aprovechan el agua acumulada en sus hojas o el cobijo que generan en medio del tronco para hacer el nido.

Las plantas epífitas se encuentran mayoritariamente en bosques tropicales húmedos, donde se han registrado árboles con docenas de epífitas encima. En climas temperados o hasta en desiertos, también encontramos especies epífitas tolerantes a la sequía.

Diversidad de epífitas

Alrededor de 25.000 especies tienen actualmente esta forma de vida. Las epífitas más conocidas y comunes son las familias Bromeliaceae, Orchidaceae y el grupo de los helechos. El epifitismo ha aparecido varias veces a lo largo de la evolución y encontramos ejemplos en otras familias de espermatófitas (plantas con tronco y semilla) tropicales como son las Ericaceae, Gesneriaceae, Melastomataceae, Moraceae y Piperaceae y en plantas sin semilla (líquenes, musgos y hepáticas) en climas temperados.

Orquídeas

La familia de las orquídeas es donde encontramos más especies de epifitas, con más de 20 géneros tropicales exclusivamente epífitos, de entre los que destacan por el número de especies los géneros Bulbophyllum (1800) y Dendrobium (1200). El género de orquídeas epifitas Phalaenopsis (60 especies) se cultiva alrededor del mundo por su belleza. De hecho, muchas plantas usadas en jardinería de interior son epifitas por sus pocos requerimientos en nutrientes y agua.

imagen3-min
Varias orquídeas del género Epidendrum. Fuente: Barres Fotonatura.

Pero de entre las orquídeas, queríamos destacar otra conocida por motivos bien diferentes: la Vainilla (Vanilla planifolia), originaria de México y América central, donde se consumía mezclada con cacao. Se importó a la Isla de Reunión y Madagascar (actualmente, primeros productores mundiales) por los españoles cuando descubrieron su aroma. Los cultivos de vainilla imitan su forma natural de crecer, sobre los árboles, y no plantan la vainilla en el suelo, sino sobre troncos.

vainilla-cultiu-pixabay-com-min
Cultivo de Vainilla. Fuente: pixabay.com.

La parte que se consume de la vainilla es el fruto aún inmaduro, que pasa por un proceso de curación.

Las orquídeas tienen uno de los sistemas de polinización más complejos de todo el mundo vegetal, con varios casos de coevolución monoespecífica ligada a insectos o colibríes. La vainilla no deja de ser un ejemplo, ya que es polinizada por abejas y colibríes nativos de México, así que la polinización en las áreas de cultivo no se da de forma natural y se debe hacer a mano. Normalmente mujeres y niños todavía practican esta técnica artesanal polinizando cada una de las flores de vainilla para obtener su fruto tan preciado. De hecho, el peso, es el cultivo más caro del mundo y ¡no es para menos!

vainilla-flor_wikipedia-min
Flor de Vanilla planifolia. Fuente: Wikipedia.com.

Bromelias

Las Bromeliáceas o claveles del aire incluyen más de 3000 especies neotropicales, la mayoría de ellas de forma epífita. Los géneros más abundantes y ricos en especies son Tillandsia (450), Pitcairnia (250), Vriesia (200), Aechmea (150) y Puya (150). Las hojas de las bromelias crecen en roseta y tienen una forma imbrincada, característica que facilita la acumulación de agua dentro de esta estructura. El cultivo de bromelias se ha llegado a prohibir en Brasil (donde son nativas un 43% de especies de esta familia) por desconocimiento, ya que se pensaba que esta agua favorecía la reproducción del mosquito Aedes aegypti, transmisor de los virus de la Zika, chikungunya y dengue. Cuando en realidad las bromelias tienen compuestos secundarios que precisamente evitan la proliferación de huevos y larvas de este mosquito, a la vez que el agua que queda presa en el interior de las hojas crea un microhábitat que acumula nutrientes que alimentan otros insectos, anfibios y pájaros nativos que ayudan a combatirlo. Sus flores tienen colores muy vivos y son acompañadas por brácteas también bien vistosas para atraer la atención de los polinizadores, principalmente colibríes y murciélagos. Muchas bromelias se usan mucho como plantas ornamentales, especialmente del género Tillandsia y Guzmania.

bromelia-aigua-otavio-nogueiraccommons-min
Agua acumulada en el interior de una bromelia. Fuente: Otávio Nogueira, Creative Commons.

Epífitas de climas temperados

De entre los helechos epifitos, uno de los más conocidos es el cuerno de ciervo (Platycerium bifurcatum), muy usada como planta ornamental. El cuerno de ciervo es nativo de Australia pero se encuentra en todas las áreas húmedas tropicales para su uso en horticultura. Desarrolla dos formas de hoja: la primera tiene forma de riñón y no produce esporas, su función es adherirse al tronco. Estas hojas con el tiempo adquieren una coloración marrón y forman una base desde donde crecen los otros tipos de hojas, que son fértiles y por tanto producen esporas. Son largas y bifurcadas y pueden crecer hasta 90 cm de largo. Las esporas de este helecho son producidas en el ápice de las hojas fértiles, que adquieren una apariencia aterciopelada.

platycerium-bifurcatum-min
Apariencia de los dos tipos de hojas del cuerno de ciervo. Fuente: Barres Fotonatura.

En bosques templados, las epifitas más comunes son líquenes. De entre los líquenes, destacamos el género Usnea o barba de capuchino. Es un género de líquenes cosmopolita que crece sobre coníferas y árboles caducifolios. Estos líquenes de coloración grisácea, crecen en forma de cortinas que cuelgan de los árboles. Curiosamente, hay una especie de bromelia epífita que recuerda mucho a las Usnea por esta particular forma de crecer. Su nombre es musgo español (Tillandsia usneoides) pero no es ni un musgo ni un liquen, sino una bromelia también de hábito epífito, de hojas muy pequeñas que van creciendo de forma encadenada hacia el suelo. Tampoco se encuentra en España, sino que vive en el continente americano.

imagen2-min
Crecimiento en forma de barbas o cortinas del líquen Usnea articulata (izquierda) y la Bromelia Tillandsa usneoides (derecha). Fuente: Barres Fotonatura y Wikipedia.com.

Las plantas epifitas todavía son poco conocidas porque las técnicas de escalada sobre todo en medio del bosque húmedo tropical, hace poco tiempo que se han desarrollado y su estudio es más bien reciente comparado por ejemplo con las plantas carnívoras o parásitas. ¡Muchas aún están por descubrir!

REFERENCIAS

Benzing, D.H. 1990. Vascular Epiphytes: General Biology and Related Biota. Cambridge: Cambridge University Press.

Smith N., Mori S. A., Henderson, A., Stevenson D. W. & Heald, S. V. 2004. Flowering Plants of the Neotropics. New Jersey, USA: The New York Botanical Garden, Princeton university press.

http://www.kew.org/science-conservation/plants-fungi/vanilla-planifolia-vanilla

https://www.anbg.gov.au/gnp/interns-2004/platycerium-bifurcatum.html

Laia-castellà

El gran viaje del coco

Cocos nucifera L., el cocotero, es una de las palmeras más emblemáticas de los países tropicales: fotografiada por turistas en playas bucólicas; base de la gastronomía y cultura de muchos países y fuente de inspiración de muchos artistas, es todavía un enigma para los científicos. ¿De dónde viene el coco? La respuesta a esta cuestión ha visto una poco más de luz gracias a un estudio filogeográfico, una disciplina que integra la genética de poblaciones con la biogeografía. En este post, revelaremos ésta y otras preguntas sobre esta palmera icónica.

CARACTERÍSTICAS DEL COCOTERO

El coco pertenece a las Arecáceas, la familia de plantas monocotiledóneas de porte arbóreo conocida como palmeras. Si, ¡habéis leído bien! Todas las palmeras son más cercanas a las gramíneas (cereales) que a los árboles caducifolios. De hecho, su tronco no es un tronco verdadero ya que no tiene tejidos que permitan su crecimiento en diámetro y por lo tanto tampoco el desarrollo de ramas. Si os fijáis bien, el tronco de cualquier tipo de palmera siempre tiene el mismo grosor, sólo crece en vertical. Este falso tronco se llama estípite y se forma por la sobreposición de la base de las hojas. Las marcas que se pueden observar en el estípite son debidas a los pecíolos de las hojas antiguas que cayeron. Si alguna vez podéis observar un estípite cortado, podréis ver que no presenta la típica estructura en anillos de crecimiento, sino que se trata de una masa de fibra. De hecho, esta estructura es óptima para sobrevivir a los vientos huracanados de los países tropicales ya que es resistente y a la vez flexible, lo que facilita la elasticidad necesaria para no romperse con las sacudidas del viento tropical y a su vez mantenerse firme.

Public Domain Pictures_estípit
Detalle del estípite de una palmera (Fuente: Public Domain Pictures).

La función del estípite es soportar el peso de las hojas, flores y frutos; que crecen encima. Las hojas de las Arecáceas son pinnatipartidas. Tienen flores en inflorescencias que crecen en panícula y frutos normalmente en drupa, como el dátil o el coco.

En el Mediterráneo sólo existen dos especies de palmeras autóctonas. Una se encuentra en la Península Ibérica y su límite norte de distribución está en las costas del Garraf. Se trata del palmito (Chamaerops humilis). La otra palmera propiamente mediterránea es endémica del sud de Grecia, Turquía y Creta, la palmera de Creta (Phoenix theophrastii).

Wikimedia_margalló
Palmito (Chamaerops humilis) en las costas del Garraf (Fuente: Wikimedia).

USOS DEL COCOTERO

La familia de Arecáceas tiene aproximadamente 2.600 especies clasificadas en unos 202 géneros. El cocotero es monotípico, porque es la única especie del género Cocos. Se encuentra en 89 países tropicales y se considera el árbol de la vida ya que proporciona recursos como:

  • Alimento: el coco es un fruto altamente nutritivo, rico en grasas (es la fruta más calórica que existe), sales minerales (destaca su alto contenido en potasio) y fibra. Del endosperma seco (la “pulpa” blanca o copra, que en realidad es la semilla) también se extrae la leche y aceite de coco, usados para cocinar, en la industria cosmética e incluso como biofuel. La savia azucarada presente en las inflorescencias también se consume como vino después de un proceso de fermentación alcohólica.
Wikipedia cocos
Coco secándose para hacer copra (Fuente: Peter Davis / AusAID).

 

  • Agua potable: el coco verde contiene agua potable y dulce con bastantes sales minerales. Se consume en muchos países tropicales como bebida isotónica.
  • Material para la construcción: la fibra del mesocarpio del fruto es una fibra muy usada para fabricar cuerdas, alfombras, sustrato para plantar, etc. El endocarpio, la capa que recubre la pulpa, se utiliza como recipiente para comer y beber, decorar o como instrumento musical. Las hojas también se utilizan para elaborar artesanía (alfombras, juguetes, cestos…), para recubrir tejados y como combustible. La madera se utiliza de forma tradicional para construir casas.
estructura coco cast
Esquema de las partes del coco.

 

  • Elemento religioso: el coco forma parte de diferentes manifestaciones espirituales para los hindús y algunas comunidades filipinas.

DISPERSIÓN OCEÁNICA

El coco está adaptado a la dispersión hidrocora, es decir, por agua. Es de los pocos frutos que se conoce adaptado a la dispersión por océanos. El agua que contiene le permite flotar y facilita su dispersión a largas distancias. Además, el fruto es resistente a la salinidad y no se pudre. Cuando llega a las playas, puede germinar habiendo pasado 110 días (o 4000 km) navegando. De todas formas, su distribución pantropical no se debe sólo a su adaptación a recorrer largas distancias por el mar sino que también está relacionada con su cultivo. Las migraciones humanas en el sudeste asiático no habrían sido posibles sin el cultivo del coco y a la inversa, el coco no se habría dispersado de forma tan extensiva si no hubiera sido por su valor.

Es probable que la gran variedad de usos del coco haya condicionado su historia migratoria. Existen varias hipótesis sobre su origen. Ya De Candolle, en el 1886,  propuso que el coco era americano, basándose en que todos los otros miembros de la tribu Cocoseae (unas 200 especies repartidas en 20 géneros), exceptuando la palmera aceitera africana (Elaeis guineensis, de dónde se extrae el aceite de palma), son nativos americanos. Otras hipótesis (Beccari, 1963) afirman que tiene un origen asiático ya que la variación morfológica en esta región es mayor, los nombres populares y usos son más diversos en este continente y además existe un cangrejo ermitaño (Brigus latro) que sólo puede vivir en simbiosis con el cocotero, el cual sólo se encuentra en Asia. Así pues, desde Asia y con la ayuda de los humanos, los cocoteros habrían migrado dirección este hacia el océano Pacífico y dirección oeste hacia el océano Índico.

Coconut_distribution-1024x636
Distribución del cocotero (Fuente: Gunn et al., 2011).

ORIGEN DEL COCOTERO

Estudios recientes han hecho algunos descubrimientos usando el DNA como fuente de información. A pesar de la gran variedad de cultivares y el alto grado de manipulación humana, existe una estructura bastante marcada en dos grupos genéticos; uno en el océano Índico (que incluye las poblaciones de India y África), y otro en el Pacífico (que incluye las poblaciones del sudeste asiático, el Caribe y América del Sud). Todas las poblaciones actuales de cocotero provienen de alguno de estos dos grupos, demostrándose su origen asiático.  Por ejemplo, las poblaciones caribeñas y brasileñas provienen del grupo índico y las poblaciones americanas de la costa del Pacífico provienen del sudeste asiático.

Gun et al image
Mapa con los grupos genéticos del cocotero descubiertos por Gunn et al. (2011).

Por lo tanto, parece que el cocotero es nativo tanto de las costas del Pacífico como de las del Índico y su cultivo surgió de manera independiente en las dos regiones.

REFERENCIAS

  • Beccari, O. 1963. The origin and dispersal of Cocos nucifera. Principes 7: 57–69.
  • de Candolle, A. 1886. Origin of cultivated plants. New York: Hafner. 468 p.
  • Cook, O.F. 1911. History of the Coconut Palm in America. American Journal of Sciences 31(183): 221-226.
  • Gunn, B.F. 2004. The phylogeny of the Cocoeae (Arecaceae) with emphasis on Cocos nucifera. Annals of the Missouri Botanical Garden 91: 505–522.
  • Gunn, B.F., Baudouin, L. & Olsen, K. M. 2011. Independent Origins of Cultivated Coconut (Cocos nucifera L.) in the Old World Tropics. PLoS ONE 6(6): e21143.
  • Meerow, A.W., Noblick, L., Salas-Leiva, Dayana E., Sanchez, V., Francisco-Ortega, J., Jestrow, B. & Nakamura, K. 2015. Phylogeny and historical biogeography of the cocosoid palms (Arecaceae, Arecoideae, Cocoseae) inferred from sequences of six WRKY gene family loci. Cladistics 31: 1096-0031.
  • Scientific American: Coconuts: not indigenous, but quite at home nevertheless

Laia-castellà

Las selvas marinas: las praderas de Posidonia

Las praderas de Posidonia y otras fanerógamas marinas constituyen uno de los ecosistemas marinos más importantes de la Tierra. Muchos se atreven a catalogarlas como las selvas del mar, por su elevada biodiversidad. ¡Es lo que vamos a ver este artículo, centrándonos especialmente en las praderas de Posidonia oceanica!

¿QUÉ SON LAS FANERÓGAMAS MARINAS?

Las fanerógamas marinas son plantas superiores que colonizaron los ambientes costeros marinos, estando presentes en todos los océanos y mares, excepto el Antártico. Se han encontrado unas 66 especies.

Todas tienen un patrón parecido: un rizoma subterráneo horizontal (un tallo grueso enterrado), a partir del cual nacen las raíces y unas ramificaciones verticales de las que salen las hojas.

A lo largo de la evolución, han ido adquiriendo las adaptaciones necesarias para vivir en un medio con una elevada concentración de sales. Tienen la capacidad de realizar la polinización bajo el agua mediante flores poco vistosas, además de reproducirse asexualmente.

Como ya hemos comentado, aquí nos centraremos en las praderas de Posidonia oceanica, una especie endémica del mar Mediterráneo. Tiene la estructura típica antes comentada, pero entre sus particularidades están unas hojas de 0,5 cm de ancho por un metro de largo, agrupadas en haces de 4-8 hojas.

pradera posidonia oceanica
Pradera de Posidonia oceanica (Foto: Manu Sanfélix).

En un único metro cuadrado, pueden haber 10.000 hojas. Ésto hace que las partículas que caen al fondo queden atrapadas y se forme lo que se conoce como “mata”, un sustrato muy compactado  que va elevándose lentamente (10-18 cm/siglo) y que actua como barrera contra el oleaje, lo que favorece la formación de las playas. ¿Quieres saber por qué nos estamos quedando sin playas?

¿Sabías que en la isla de Formentera (Islas Baleares, España) han encontrado un ejemplar de Posidonia con más de 100.000 años de edad?

LA BIODIVERSIDAD EN LAS PRADERAS DE POSIDONIA

Las praderas de Posidonia y otras fanerógamas marinas son ecosistemas con una elevada biodiversidad. Además de los organismos que viven de forma permanente, otras van a reproducirse, dejar sus puestas o refugiarse. Sin ir más lejos, se han llegado a describir hasta 1.000 especies diferentes en ellas.

A pesar de la elevada biodiversidad asociada, sólo unas pocas especies son capaces de alimentarse de la planta en cuestión. Algunos ejemplos son las salpas (Sarpa salpa), la tortuga verde (Chelonia mydas), algunos erizos como Paracentrotus lividus … todos ellos con bacterias simbiontes en el aparato digestivo para digerirla.

sarpa salpa
Salpa (Sarpa Salpa) (Foto: Jordi Regàs, CIB)

Hay muchas algas y animales que viven pegados a las hojas o en los rizomas, los llamados epífetos. Algunos ejemplos son el hidrozoo Aglaophenia harpago y el briozoo Lichenopora radiata. Pero sin duda, el animal epífeto de la Posidonia más característico es, sin duda alguna, Electra posidoniae. Este briozoo forma unas tiras blanquecinas más o menos estrechas encima de las hojas de la planta.

Aglaophenia harpago
Hidrozoo Aglaophenia harpago sobre Posidonia oceanica (Foto: Peter Jonas).
Lichenopora radiata
Briozoo Lichenopora radiata (Foto: Javier Murcia).
Electra_posidoniae
Briozoo Electra posidoniae (Foto: Jordi Regàs, CIB).

Lógicamente, también hay fauna que se desplaza por encima de las hojas. Se trata de animales pequeños que se alimentan de los epífetos, como son los crustáceos, los gasterópodos (caracoles y nudibranquios); gusanos tipo poliqueto, nematodo o platelminto y equinodermos. Son ejemplos el nudibranquio Diaphorodoris papillata y el crustáceo Idotea hectica.

Nudibranquio Diaphorodoris papillata (Foto: CIB).
Nudibranquio Diaphorodoris papillata (Foto: CIB).
Crustáceo Idotea hectica (Foto: David Luquet).
Crustáceo Idotea hectica (Foto: David Luquet).

Uno de los animales más característicos de las praderas de Posidonia oceanica es la nacra (Pinna nobilis), el molusco más grande del Mediterráneo, que puede llegar a medir un metro y vive con parte del cuerpo enterrado en la arena.

nacra pinna nobilis
Nacra (Pinna nobilis) (Foto: Maite Vázquez)

Entre los equinodermos, se considera que la estrella de mar Asterina pancerii es la única ligada estrictamente a las praderas, aunque los erizos de mar de la especie Paracentrotus lividus puede llegar a ser muy abundantes.

Asterina pancerii estrella de mar
Estrella de mar Asterina pancerii (Foto: Jordi Regàs, CIB).
paracentrotus lividus
Erizo de mar Paracentrotus lividus (Foto: Jordi Regàs, CIB).

Otros animales que se pasean libremente por la pradera son los peces. El serrano o vaca serrana (Serranus scriba) es de los más comunes; pero el más singular es el pez ventosa (Opeatogenys gracilis), de color verde para camuflarse con las hojas. Otros que también se camuflan la mar de bien son los del género Syngnathus, como S. typhle y S. acus.

vaca serrana serranus scriba
Vaca serrana (Serranus scriba) (Foto: Jordi Regàs, CIB).
Opeatogenys gracilis pez ventosa
Pez ventosa (Opeatogenys gracilis) (Foto: Manuel Campillo).
syngnathus typhle
Pez Syngnathus typhle (Foto: Sea Horse Project).

LA POSIDONIA TIENE UNA ALTA IMPORTANCIA ECOLÓGICA

Como hemos visto, las praderas de Posidonia son zonas con una elevada biodiversidad de especies animales y vegetales. Así pues, es el hogar de muchas especies en diferentes fases de su ciclo vital.

Pero su importancia va mucho más allá. Debido a su forma de crecimiento mediante rizomas subterráneos, la Posidonia retiene la arena y, siglo tras siglo, va formando una barrera natural que sirve de protección para la costa, lo que permite la formación y da estabilidad a playas, dunas y el bosque litoral.

Finalmente, se produce una gran cantidad de materia orgánica que se dispersa gracias a las corrientes y oleaje hacia otros ecosistemas.

Si quieres saber todos los valores asociados a la Posidonia, puedes seguir leyendo en el Altas de las praderas marinas de España del 2015.

REFERENCIAS

  • Ballesteros, E & Llobet, T (2015). Fauna i flora de la mar Mediterrpania. Ed. Brau
  • Departament de Medi Ambient, Generalitat de Catalunya (2002). Biodiversidad y medio marino.  Mediterrània viva. Editorial Anthias SL.
  • Minguell, J (2008). Flora i fauna del Mediterrani.
  • Ruiz, JM; Guillén, JE; Ramos Segura, A & Otero MM (Eds) (2015). Altas de las praderas marinas de España. IEO/IEL/UICN. Murcia-Alicante-Málaga. 681 pp.
  • Tríptico: Las praderas de Posidonia en peligro. Parc Natural del Montgrí, les Illes Medes i el Baix Ter.
  • Foto de pordada: G. Pergent (INPN).

Difusió-castellà

Los biomas del Brasil más desconocidos

Brasil es uno de los países más ricos en biodiversidad del mundo. Dentro del Brasil, la selva amazónica, conocida como el pulmón del mundo, es frecuentemente reconocida como la región con más diversidad de seres vivos del mundo. ¿Es así realmente? Brasil esconde muchos más biomas tan ricos como la selva húmeda tropical, mucho más desconocidos y con un alto grado de explotación que amenaza su conservación. En este post explicaremos las características de los seis biomas del Brasil y haremos un repaso de los diferentes cultivos de plantas alóctonas que se introdujeron en el país desde tiempos históricos y que afectaron el equilibrio natural, desde el azúcar y el café hasta la soja.

¿QUE ES UN BIOMA?

En este post hablaremos de los diferentes biomas del Brasil. Pero, ¿que es un bioma? Un bioma es un conjunto de ecosistemas con una historia común, que comparten un clima similar y, por lo tanto, se caracterizan por la presencia de animales y plantas similares. El bioma es un concepto que engloba todos los seres vivos de una comunidad, pero en la práctica se define por la fisionomía o apariencia general de la vegetación. Es una unidad de clasificación biológica que sirve para clasificar grandes regiones geográficas del mundo. A nivel global, se reconocen diez biomas en el mundo: desierto polar, tundra, taiga, bosque temperado caducifolio, laurisilva, selva tropical, estepa, sabana, desierto y mediterráneo.

BIOLOGÍA DE BRASIL

Brasil es reconocido por ser el país con la mayor diversidad, seguido de China, Indonesia, México y África del Sud.

Según recientes publicaciones científicas, Brasil es el país con la flora más rica del mundo, con 46100 especies de plantas, hongos y algas descritos, de las cuales casi la mitad (43%) son ednémicas. Este número aumenta cada año ya que mucha de la biodiversidad de Brasil todavía está por descubrir. De hecho, se calcula que 20.000 especies todavía no se han descrito. Los botánicos describen cerca de 250 especies nuevas de plantas cada año en Brasil. Así que si eres taxónomo y quieres contribuir, ¡en Brasil te están esperando!

Otro dato sorprendente, es que de las aproximadamente 8900 especies con semilla que existen en el Brasil, el 57% son endémicas.

BIOMAS DE BRASIL

Actualmente se consideran seis tipos de biomas en el Brasil: amazonas, mata atlántica, cerrado, caatinga, pampa y pantanal. Esta classificación poco ha cambiado desde la primera tentativa de classificar la vegetación brasileña en dominios florísticos elaborada por Martius en 1824, quien dió nombre de ninfas griegas a los cinco dominios que detectó. Escogió las Nayades, las ninfas de los lagos, rios y fuentes para denominar la amazonia. Para el cerrado consideró las Oreades, ninfas de las montañas, compañeras de la Diosa de la caza, Diana. Denominó la mata atlántica bajo el nombre de Dryades, las ninfas protectoras de los robles y los árboles en general. Consideró la pampa y los bosques de araucárias bajo el dominio de las Napeias, las ninfas de los valles y prados y finalmente las Hamadryades, ninfas que protegen cadauna un árbol en concreto, se usaron para designar la caatinga.

Brasil es de los pocos paises del mundo que incluye dos de sus biomas como hotspot para la conservación de la biodiversidad: el cerrado y la mata atlántica.

La cattinga es el único bioma exclusivo del Brasil, aunque encontramos otros tipos de sabanas parecidas al cerrado en Sud América y la mata atlántica, fuera del Brasil, solo se encuentra en el nord este de Argentina y este de Paraguai.

mapa
Mapa con la distribución de los seis biomas brasileños.

1. AMAZONIA

La región irrigada por el caudal del río Amazonas es la formación forestal más grande del planeta y el bioma con más biodiversidad de Brasil. Ocupa casi el 50% del territorio y está gravemente amenazado debido a su desforestación causada por las industrias madereras y el cultivo de soja. Actualmente se calcula que el 16% de su totalidad ha desaparecido bajo las presiones antrópicas.

amazon
Vista área del bioma amazónico (Fuente: Commons Wikimedia).

El origen de esta gran diversidad sigue siendo un misterio. Recientes estudios científicos explican que probablemente el levantamiento de los Andes, que comenzó hace al menos 34 millones de años originó esta riqueza. La cordillera de los Andes comenzó a formarse por el hundimiento de la placa tectónica Americana bajo la placa oceánica del Pacífico. Este proceso geológico cambió el régimen de vientos de la zona, modificando el patrón de lluvias en el lado oriental de los Andes, afectando hasta el sentido y dirección del río Amazonas, que anteriormente desembocaba en el océano Pacífico pero debido a este levantamiento se redirigió hacia el Atlántico.

Estos fenómenos geológicos y climáticos originaron la formación de una gran área de humedales en la parte oriental de los Andes, originando la aparición de muchas especies nuevas.

La Amazonia se caracteriza por ser un bosque tropical húmedo cerrado, de suelo arenoso y  pobre en nutrientes, con una estratificación en altura. El sotobosque es prácticamente inexistente y los organismos se distribuyen a diferentes niveles de las copas de los árboles. Encontramos famílias de dispersión pantropical como Fabaceae, Rubiaceae o Orchidaceae u otras de origen amazónico; como las Lecythidaceae (que tiene como uno de sus representantes más famosos el productor de la nuez de Pará, Bertholletia excelsa) o las Vochysiaceae.

cadtanha pará
Bertholletia excelsa, árbol productor de la nuez del Brasil, típico de la Amazonia (Fuente: Flickr y Commons Wikimedia).

 2. MATA ATLÁNTICA

Se trata del bosque tropical que abarca la región litoral del país y, por lo tanto, su principal condicionante son los vientos húmedos que llegan del mar y los relieves abruptos. Se caracteriza por estar compuesta por una gran variedad de ecosistemas, que van desde bosques semi-caducifolis estacionales a campos abiertos de montaña, pasando por los bosques de araucarias en el Sud del país ya que tiene una elevada variedad de altitudes, latitudes y, por lo tanto, climas.

araucaria
Bosque de araucarias, una ecoregión dentro del dominio de la mata atlántica del sud del Brasil (Font: Wikipedia).

Aunque no es un bioma tan conocido como la selva amazónica, es el bioma con la diversidad más grande de angiospermas, pteridofitos y hongos del país; con un nivel de endemismos muy elevado (50% de sus especies son exclusivas) y se encuentra en un nivel de conservación mucho más comprometido. De hecho, hasta la llegada de los europeos, fue el bosque tropical más grande de todo el planeta. Hoy en día sólo queda el 10% de su extensión originaria debido a la presión antrópica. Uno de los primeros motivos de la explotación de este bioma fue el pau-brasil (Caesalpinia echinata), árbol de madera noble y resina valorada por su tintura roja que dio nombre al país, pero después lo siguieron otros como el cultivo de caña de azúcar, café o la extracción de oro.

pau brasil
Detalles de la morfologia del pau-brasil (Caesalpinia echinata), árbol que da nombre a Brasil (Fuente: Flickr).

Pero no fue hasta el s. XX que la degradación de este medio se agravó, teniendo en cuenta que las grandes capitales económicas y históricas del país como Sao Paulo, Rio de Janeiro y Salvador están dentro de su dominio.

Aunque se debe ser optimista. El bioma Mata Atlántica es la región con más unidades de conservación de América del Sud.

Las famílias más frecuentes en la mata atlántica son orquidáceas, bromeliáceas y fabáceas.

mata atl
Fisionomia típica de la Mata Atlántica (Fuente: Commons Wikimedia).

3. CERRADO

Es el segundo tipo de bioma más extenso en el continente Sud Americano y ocupa el 22% de Brasil.

Se considera la sabana más rica del mundo en número de espécies. Contiene un elevado nivel de endemismos y por eso se considera como uno de los hotspots mundiales en términos de biodiversidad. Contiene 11.627 especies de plantas (de las cuales el 40% son endémicas) y unas 200 especies de animales, de las cuales 137 se encuentran amenazadas.

El bioma cerrado se encuentra en áreas del interior de Brasil con dos estaciones bien marcadas (lluvias o seca). Engloba diferentes tipos de hábitats como son el campo sujo, campo limpo o el cerradão. Está compuesta por árboles pequeños, de raíces profundas y hojas protegidas de tricomas con sotobosque compuesto por ciperáceas y gramíneas. Los suelos del cerrado son arenosos y pobres en nutrientes, presentando colores rojizos por su alto contenido en hierro.

cerrado
Fisionomia típica del cerrado (Fuente: pixabay).

Los géneros Vochysia y Qualea (Vochysiaceae) dominan el paisaje de sabana del cerrado. También se encuentran muchos representantes de las asteráceas, orquidáceas y fabáceas.

Es el segundo bioma que más se ha degradado en las últimas décadas en Brasil. La causa de esta destrucción es el desarrollo de la industria agropecuaria: aproximadamente el 40% de soja de Brasil (Brasil es el primer productor de soja del mundo) y el 70% de carne de vaca y se  producen en dominios del cerrado. La mitad del bioma cerrado se ha destruido en sólo los últimos 50 años. Aunque tiene este riesgo, sólo el 8% de su área se encuentra protegida legalmente.

soja
Monocultivo de soja dentro del dominio del cerrado en el estado de Tocantins (Foto: barres fotonatura).

4. CAATINGA

Es el único bioma exclusivo de Brasil y ocupa el 11% del territorio del país. Su nombre proviene de uno de los idiomas originarios de Brasil, el tupí-guaraní y significa bosque blanco. Es el bioma más poco conocido e infravalorado por su aridez.

El clima de la caatinga es semi-árido y los suelos son pedregosos. La vegetación es de tipo sabana estépica y se caracteriza por presentar una gran adaptación a la aridez (vegetación xerófita) y frecuentemente es espinosa. Los árboles de la caatinga pierden las hojas durante la época seca, dejando un paisaje lleno de troncos blanquecinos.

caatinga
Fisionomia típica de la caatinga (Fuente: Commons Wikimedia).

Las familias predominantes de este paisaje tan árido son las Cactaceae (Cereus, Pilosocereus o Melocactus), Bromeliaceae y Euphorbiaceae, pero también encontramos bastantes representantes de les Asteraceae, Fabaceae y Poaceae. Una de las especies originarias y representativas de la caatinga es el juazeiro (Ziziphus joazeiro, Rhamnaceae).

melocactus
Melocactus sp. (Cactaceae), un género muy común de caatinga (Foto: barres fotonatura).

Su estado de conservación también es crítico. Cerca del 80% de la caatinga ya está antropizado. El principal motivo de esta degradación es la industria agroalimentária y minera.

5. PAMPA

La Pampa es un bioma que ocupa un único estado en el país, Rio Grande do Sul y abarca el 2% del territorio brasileño. La pampa se encuentra también muy bien representada en Uruguay y  el norte de Argentina. Forma paisajes muy diversos que van desde planícies, montañas o afloramientos rocosos, pero lo más típico son los campos graminosos con montes y árboles aislados próximos a los cursos de agua.

pampa
Paisaje típico de la pampa (Fuente: Flickr).

Se han catalogado unas 1.900 especies de plantas con flor, de las cuales 266 son de la familia de las gramínias (Poaceae) y 141 de las Cyperaceae. También sobresalen los representantes de las Compuestas (Asteraceae) y las leguminosas (Fabaceae). En las áreas de afloramientos rocosos son mayoritarias las Cactaceae y Bromeliaceae.

Por lo que hace a la fauna, encontramos hasta 300 especies de aves y 100 de mamíferos, siendo emblemáticos el nyandú, las vicuñas (camélidos sud americanos) o las Cavia, roedores cercanos a las capibaras.

El área de la pampa tiene un patrimonio cultural muy característico, compartido con los habitantes de la pampa de Argentina y Uruguay, desarrollada por los gauchos.

Las actividades económicas más desarrolladas de la región son la agricultura y la ganadería, que llegaron con la colonización ibérica, desplazando gran parte de la vegetación autóctona. Según estimaciones de pérdida de hábitat, en 2008 sólo quedaba un 36% de la vegetación nativa. Sólo un 3% de la pampa se encuentra protegida bajo algún tipo de unidad de conservación.

6. PANTANAL

Se trata de una selva estépica inundada que ocupa la plana aluvial del río Paraguay y sus afluentes. Es, por lo tanto, una gran planície húmeda, que se inunda durante las épocas de lluvia, de noviembre a abril. Estas inundaciones favorecen la alta biodiversidad. Ocupa sólo el 1,75% del territorio brasileño y es por tanto el bioma menos extenso del país.

pantanal
Victoria regia (Nymphaeaceae) en el pantanal del estado de Mato Grosso (Fuente: Flickr).

Cuando se producen las inundaciones, aflora una gran cantidad de materia orgánica, ya que el agua transporta todos los restos de vegetación y animales en descomposición favoreciendo la fertilización del suelo.

Son típicos del pantanal los campos de gramíneas (Poaceae). En les zonas que no llegan a inundar-se encontramos vegetación arbustiva i hasta árboles aislados. Se han catalogado unas 2.000 especies de plantas diferentes, siendo algunas de las más representativas las palmeras (Arecaceae) o macrófitas acuáticas (Lentibularaceae, Nymphaeaceae, Pontederiaceae).

Contiene una alta diversidad de peces (263 especies), anfibios (41 especies), réptiles (113 especies), aves (650 especies) y mamíferos (132 especies), siendo el guacamayo azul, el caimán negro o el jaguar las especies más emblemáticas.

Después de la Amazonia, es el segundo bioma de Brasil más preservado ya que se considera que el 80% de su extensión conserva su vegetación nativa. De todas formas, la actividad humana también ha dejado un gran impacto, sobre todo las actividades agropecuarias. La pesca y la ganadería bovina son las actividades económicas más desarrolladas en el pantanal. También el establecimiento de plantas hidroeléctricas amenaza el equilibrio ecológico de este ambiente, ya que si se rompe el régimen de inundaciones de la región, toda la vida se verá afectada.

REFERENCIAS

Laia-castellà

Fotosíntesis y vida vegetal

En este artículo hablaremos de la fotosíntesis y de las primeras formas de vida vegetal. En la sistemática actual, el término de planta se ajusta a plantas fundamentalmente del medio terrestre, mientras que el término vegetal es un término antiguo de connotación aristotélica que alude a organismos con funciones fotosintéticas. Pero, como en todo, hay excepciones.

El término planta se acuñó hace muchísimos años. Pero, previamente, fue Aristóteles quién diferenció a los seres vivos en tres grandes grupos:

  • Vegetales (alma vegetativa): realizan la nutrición y reproducción.
  • Animales (alma sensitiva): nutrición, reproducción, percepción, movimiento y deseo.
  • Ser humano: añade a la lista anterior la capacidad de razonar.
Aristotle_Dominiopublico
Aristóteles (Dominio público)

Esta manera simplista de percibir el mundo vivo ha perdurado durante mucho tiempo, y ha ido variando con los estudios de diferentes autores como Linneo o Whittaker, entre otros.

Una clasificación muy actual es la propuesta en 2012, The Revised Classification of Eukaryotes. J. Eukariot. Microbiol. 59 (5): 429-493; nos revela un verdadero árbol de la vida.

image description
Sina ;. Adl, et al. (2012) The revised classification of Eukaryotes.  J Eukaryot Microbiol.; 59 (5): 429-493

¿QUÉ ES LA FOTOSÍNTESIS? ¿ES UN PROCESO ÚNICO?

La fotosíntesis es un proceso metabólico que permite usar la energía lumínica para transformar compuestos simples e inorgánicos en complejos orgánicos. Para hacer esto necesitan una serie de pigmentos fotosintéticos que capten estos rayos de luz y que mediante una serie de reacciones químicas permitan realizar procesos internos que den lugar a los compuestos orgánicos.

Esta opción nutritiva ha  sido desarrollada por muchos organismos en múltiples grupos y ramas del árbol de la vida de los eucariotas. Y entre ellos encontramos a los Archaeplastida, el linaje de organismos que ha dado pie a las plantas terrestres.

Las plantas terrestres (Embryophyta) son fácilmente definibles, pero ¿y las algas? Por lo general, se dice que son organismos eucariotas que viven fundamentalmente en el medio acuático y que tienen una organización relativamente simple (coloniales simples o con órganos muy simples), pero esto no es siempre verdad. Por este motivo, todos los grupos de Archaeplastida que quedan fuera del concepto de plantas terrestres (un pequeño grupo dentro de Archaeplastida) son denominados “algas”.

También hay procariotas fotosintéticos del dominio Eubacteria, y es en estos donde la fotosíntesis presenta una gran variabilidad. Mientras que en los eucariotas es única: la fotosíntesis oxigénica.

El dominio eubacteria es muy amplio, y en sus ramificaciones hay hasta 5 grandes grupos de organismos fotosintéticos: Chloroflexi, Firmicutes, Chlorobi, Proteobacteria y Cianobacterias. Estas últimas son las únicas eubacterias que realizan una fotosíntesis oxigénica; con liberación de oxígeno de las moléculas de agua y usando como donador de electrones el hidrogeno del agua. En el resto, tienen lugar una fotosíntesis anoxigénica: el donador de electrones es el azufre o el sulfuro de hidrógeno, pero jamás liberan O2 dado que raras veces interviene el agua en el proceso; es por esto que son conocidas como bacterias rojas o lilas del azufre.

La fotosíntesis es, probablemente, más antigua que la vida misma. La oxigénica, que está circunscrita a este grupo de bacterias, las cianobacterias, probablemente es posterior, pero fue crucial para el desarrollo de vida en nuestro planeta, dado que transformó la atmosfera en una mucho más oxigenada y gracias a ello la vida en la Tierra pudo evolucionar.

SONY DSC
Amazonas, el pulmón de la Tierra (Autor: Christian Cruzado; Flickr)

¿QUÉ PIGMENTOS SE USAN?

Las cianobacterias comparten pigmentos con las plantas terrestres y el resto de eucariotas fotosintéticos. Estos pigmentos son fundamentalmente clorofilas a y b (las universales), siendo los c y d solo presentes en algunos grupos. Además hay dos pigmentos que también son universales: los carotenos, que actúan como antenas que transmiten la energía a las clorofilas o protegen el centro de reacción contra la autooxidación, y las ficobiliproteínas (ficocianina, ficoeritrina, etc.), que aparecen tanto en cianobacterias como en otros grupos de eucariotas fotosintéticos y se encargan de capturar la energía lumínica.

¿Por qué hay esta variabilidad de pigmentos accesorios? Porque cada pigmento tienen un espectro de absorción diferente, y el tener diferentes moléculas permite recoger mucho mejor el espectro de la luz solar; es decir, la captación de energía es mucho más eficiente.

El resto de bacterias fotosintéticos anoxigénicos no tienen clorofilas y, en su lugar, tienen moléculas específicas de procariotas, las bacterioclorofilas.

Pigment_spectra.png
Espectro de absorción de diferentes pigmentos (Fuente: York University)

¿Dónde se localizan los pigmentos?

En organismos con fotosíntesis oxigénica, las cianobacterias y eucariotas fotosintéticos, los pigmentos están en estructuras complejas. En las cianobacterias, en el citoplasma periférico hay una serie de sacos aplanados concéntricos denominados tilacoides, los cuales solo están rodeados por una membrana. En el lumen del tilacoide es donde se encuentran los pigmentos. En los eucariotas, en cambio, encontramos los cloroplastos: orgánulos intracelulares propios de los eucariotas fotosintéticos donde se realiza la fotosíntesis con mínimo 2 membranas, aunque pueden ser más, y numerosos tilacoides dispuestos de diferentes maneras según los organismos. Ambos grupos, por lo tanto, realizan fotosíntesis oxigénica y presentan tilacoides; la diferencia es que en los eucariotas, los tilacoides se encuentran en el interior de los cloroplastos.

Plagiomnium_affine_laminazellen
Células vegetales en las que son visibles los cloroplastos (Autor: Kristian Peters – Fabelfroh)

En cambio, en organismos con fotosíntesis anoxigénica hay distintas opciones. Las bacterias púrpuras contienen los pigmentos en cromatóforos, una especie de vesículas en el centro o periferia de la célula. En cambio, en las bacterias verdes (Chlorobi y Chloroflexi) se encuentran vesículas aplanadas en la periferia de la célula sobre la membrana plasmática donde están las bacterioclorofilas. En Heliobacterium, el pigmento está adosado a la cara interna de la membrana plasmática. Generalmente no son estructuras complejas, y suelen tener membranas simples.

ORIGEN DE LOS ORGANISMOS FOTOSINTÉTICOS

La evidencia fósil de los primeros organismos fotosintéticos son los estromatolitos (3,2 Ga). Son unas estructuras formadas por láminas finas superpuestas de organismos junto con sus depósitos de carbonato cálcico. Estas formaciones aparecen en zonas someras, de mares cálidos y bien iluminados. Aunque muchas tienen forma de columna, se observan desviaciones porque se orientan hacia la luz del Sol. En su momento, tuvieron una importancia capital en la construcción de formaciones arrecíficas y, también, en los cambios de composición de la atmósfera.  Actualmente hay algunos que aún se encuentran vivos.

1301321830_947d538a4d_o.jpg
Estromatolitos (Autor:Alessandro, Flickr)

REFERENCIAS

  • Apuntes obtenidos en diversas asignatura durante la realización del Grado de Biología Ambiental (Universidad Autónoma de Barcelona) y el Máster de Biodiversidad (Universidad de Barcelona).
  • Font Quer, P. (1953): Diccionario de Botánica. Editorial Labor, Barcelona.
  • Izco, J., Barreno, E., Brugués, M., Costa, M., Devesa, J. A., Fernández, F., Gallardo, T., Llimona, X., Parada, C., Talavera, S. & Valdés, B. (2004) Botánica 2.ªEdición. McGraw-Hill, pp. 906.
  • Willis, K.J. & McElwain, J.C. (2014) The Evolution of Plants (second edition). Oxford University Press, 424 pp.

Difusió-castellà

La flor de las margaritas: ¿tienen o no tienen?

De entre todos los tipos de flores que existen una de las más complejas y evolucionadas es la flor de la familia de las margaritas (Compuestas o Asteraceae), llamada capítulo. En este artículo deshojaremos las margaritas para entender cómo funciona este órgano tan especial.

¿QUE SON LAS COMPUESTAS O ASTERACEAE?

Las Asteraceae es la familia de angiospermas actual más numerosa y una de las más cosmopolita. Existen alrededor de 25.000 especies distribuidas en 1.100 géneros, lo que representa un 10% de todas las especies de plantas que existen actualmente y se encuentran distribuidas por todo el mundo excepto la Antártida.

Muchas asteráceas se usan de manera cotidiana en nuestra alimentación como por ejemplo la lechuga (Lactuca sativa), la endibia o escarola (Cichorium endivia), la alcachofa (Cynara scolymus) o el girasol (Helianthus annus). También muchas especies son usadas en la medicina tradicional como la manzanilla (Chamomilla recutita), la equinácea (Echinaceae purpurea), el diente de león (Taraxacum officinale), o el árnica (Arnica montana). También son frecuentes los usos de las asteráceas en jardinería, como las margaritas (por ejemplo Bellis perennis, pero otras especies también se llaman así), el crisantemo (Leucanthemum sp.), las caléndulas (Calendula sp.) o las dalias (Dahlia sp.).

img 1 compositae
Diversidad de asteráceas con usos: a. Dahlia sp., b. Gira-sol (Helianthus annus), c. Arnica montana, d. Echinacea purpurea.

 EL CAPÍTULO

La flor de las asteráceas o capítulo no es una flor típica ya que está formada por varias flores que se agrupan con apariencia de una sola estructura para atraer la atención de los polinizadores. Este conjunto de flores que imita una flor simple se denomina inflorescencia. La gran mayoría de asteráceas presentan más de un capítulo y la forma de organizarse en las ramas también tiene una estructura concreta como por ejemplo racimos o corimbos de capítulos. Esta estructura de segundo grado se denomina sinflorescencia.

Normalmente el capítulo está formado por dos tipos de flores: las flores del radio o lígulas y las flores del disco o flósculos. Todas ellas son pentámeras (presentan cinco pétalos, aunque soldados).

img 2 compositae
Lígula (A), flósculo (B) y esquema de la disposición de las flores en un capítulo típico de una Compositae con los dos tipos de flores (C), extraído de Greenish (1920).

Las flores del radio o lígulas suelen ser flores femeninas, de dos carpelos soldados en un ovario ínfero, y presentan una corola asimétrica o lígula, que es lo que recuerda al pétalo de la flor típica y lo que “deshojaríamos” de la margarita.

Las flores del disco o flósculos suelen ser hermafroditas y tienen una corola tubular actinomorfa (simétrica) menos vistosa. Son las flores del centro del capítulo que forman pequeños botones.

Los capítulos que acabamos de describir son los más habituales y característicos de las asteráceas y se denominan heterógamos. Los capítulos heterógamos pueden ser radiados, como la típica margarita o disciformes, cuando sólo tienen flósculos, pero los más externos tienen unos filamentos que recuerdan las lígulas, como es el caso de las Centaurea (Centaurea sp.).

img 3 compositae
Capítulo heterógamo disciforme de una Centaurea (Centaurea deusta) de Croácia.

Los capítulos homógamos sólo presentan un único tipo de flores, siempre hermafroditas. Los capítulos homógamos discoides sólo tienen flósculos, no tienen ningún flor con lígula, como los cardos.

img 4 compositae
Capítulo homógam discoide del cardo  (Cynara cardunculus).

Los capítulos homógamos ligulados sólo presentan lígulas, no tienen ninguna flor del disco, como la achicoria (Cichorium intybus).

img 5 compositae
Capítulo homógamo ligulado de la achicoria (Cichorium intybus).

 ADAPTACIONES DEL CAPÍTULO

Una de las adaptaciones más sorprendentes de los capítulos es que las flores que lo forman tienen una maduración diferenciada en el tiempo para evitar la autopolinización. Las flores maduran de forma centrípeta, de fuera hacia dentro, por eso el disco presenta a veces una coloración más oscura cuanto más en el interior.

img 6 compositae
Capítulo de Pericallis echinata, endemismo canario en el que se puede observar los diferentes grados de maduración de las flores del disco.

Otra adaptación del capítulo, que no es exclusiva de esta familia pero es un carácter diagnóstico es la presentación secundaria del polen. Es un mecanismo por el cual el polen, cuando es maduro, se presenta a los polinizadores en una estructura diferente a las anteras. En el caso de las asteráceas es el estigma del pistilo. El proceso se produce gracias a una adaptación especial de las anteras que se encuentran soldadas (estambres singenésicos) formando un tubo alrededor del estilo. Así, cuando el estilo madura, se alarga a través de este tubo y los granos de polen se pegan al estigma y quedan a disposición de los polinizadores cuando éste se presenta en el exterior. Esto sólo se puede producir porque las flores son proterandras, es decir, los estambres maduran antes que el estilo.

img 7 compositae
Esquema que ilustra el mecanismo de la presentación secundária del polen en el estigma de las Asteraceae. Extraído de Funk et al., 2009.

Esta estructura básica tiene muchas variaciones y encontramos capítulos sorprendentemente diferentes.

Aunque la mayoría de especies de asteráceas son monoicas (presentan flores hermafroditas en el mismo individuo), encontramos géneros dioicos, como Baccharis, un género de las zonas tropicales de Sur América, que presenta individuos exclusivamente con flores femeninas e individuos exclusivamente con flores masculinas.

img 8 compositae
Pie femenino (izquierda) y masculino (derecha) de Baccharis sp., género dioico del continente americano.

Muy raramente, los capítulos sólo tienen una única flor, como es el caso de Echinops, en el que las flores solitarias se agrupan en capítulos esféricos de segundo grado.

img 9 compositae
Flores solitárias agrupadas en un capítulo de segundo grado en Echinops ritro.

Existen otros casos de agrupamientos de capítulos en capítulos de segundo grado (sincefália), por ejemplo en la edelweiss o flor de nieve (Leontopodium alpinum). El capítulo de la flor de nieve es especialmente llamativo ya que aunque es discoide, presenta unas brácteas densamente tomentosas (con muchos tricomas), lo que les confiere una coloración blanca, adaptación adquirida para reflejar las altas radiaciones de la alta montaña donde vive y al mismo tiempo actúan como falsos pétalos.

img 10 compositae
Capítulos agregados de edelweiss (Leontopodium alpinum).

En pocas ocasiones, los capítulos se presentan de forma solitaria en el ápice de los tallos y no forman sinflorescencias, como en el caso del girasol (Helianthus annus) o el género Wunderlichia, uno de los más pequeños de la familia, endémico del Brasil, con aspecto de árbol tomentoso fantasmagórico, ya que pierde sus hojas al florecer.

img 11 compositae
Capítulo solitario de Wunderlichia mirabilis en el Brasil.

La polinización de los capítulos normalmente se produce por insectos, sobre todo mariposas, que se sienten atraídas por la coloración de los pétalos y por la recompensa azucarada en forma de néctar.

Una vez las flores han sido fertilizadas por un polinizador se forma la cipsela o fruto de las compuestas. Son muy fáciles de reconocer porque muy a menudo presentan una serie de apéndices en forma de pelo, escamas o espinas llamados papus o vilano, que facilitan su dispersión por el viento.

img 12 compositae
Diversidad de aquenios y papus característicos de las Asteraceae (extraído de Funk et al., 2005).

 Ahora ya podremos entender porque podemos ” deshojar ” una margarita estirando cada uno de los pétalos que forman las flores liguladas de su capítulo o porque cuando soplamos los vilanos del diente de león salen tantas semillas de una sola flor.

REFERENCIAS

  • Font Quer P (1953). Diccionario de Botánica. Ed. Labor.
  • Funk VA, Bayer RJ, Keeley S, Chan R, Watson L, Emeinholzer B, Schilling E, Panero JL., Baldwin BG, Garcia-Jacas N, Susanna A & Jansen RK (2005). Everywhere but antarctica: using a supertree to understand the diversity and distribution of the Compositae. Biologiske skrifter 55: 343-374.
  • Funk VA, Susanna A, Stuessy TF & Bayer RJ (2009). Systematics, evolution, and biogeography of Compositae. International association for plant taxonomy, Vienna, Austria.
  • Kadereit JW & Jeffrey C. (2007). The families and genera of vascular plants, vol. 8, Flowering Plants. Eudicots. Asterales. Springer, Berlin.

Laia-castellà

 

Plantas carnívoras

El carnivorismo es un tipo de nutrición que normalmente se asocia a los animales, al mundo de los heterótrofos. Pero se ha visto que hay plantas que también son capaces de alimentarse de otros organismos. Éstas son las denominadas plantas carnívoras y sus estrategias para capturar a las presas son bien diferentes y curiosas.

¿QUÉ ES UNA PLANTA CARNÍVORA?

Una planta carnívora es aquella planta que aun siendo autótrofa obtiene un suplemento nutritivo gracias a que se alimenta de animales, sobretodo insectos.

Para que una planta sea carnívora debe cumplir tres requisitos básicos:

  • Tiene que atraer a la presa para capturar y matarla. Para llamar su atención normalmente presentan coloración rojiza y secretan néctar. Y para capturar a las presas disponen de trampas, adaptaciones morfológicas y anatómicas que permiten retener y matarla.
  • También deben ser capaces de digerir y absorber los nutrientes liberados por la presa que han capturado.
  • Y finalmente tiene que extraer un beneficio significativo de todo el proceso.
Dionaea muscipula
Venus atrapamoscas (Dionaea muscipula) (Autor: Jason).

¿DÓNDE VIVEN?

Las carnívoras resultan poco competitivas en ambientes normales y además suelen presentar un sistema radicular pequeño, por ello requieren de esta especialización que les permite crecer más rápidamente. Generalmente se encuentran en lugares con poca mineralización, pero alta concentración de materia orgánica y zonas soleadas y de humedad elevada, ya que todas las carnívoras realizan la fotosíntesis.

Normalmente también son plantas calcífugas, es decir, no están bien adaptadas a suelos alcalinos y prefieren ambientes ácidos dónde la fuente de calcio es la presa. También tienden a vivir en ambientes reductores, por lo tanto aparecen en suelos con poco oxígeno y cargados de agua. Algunas incluso son acuáticas y viven flotando o sumergidas pero cerca de la superficie.

TIPO DE TRAMPAS Y EJEMPLOS

El sistema de captura es bastante diverso, pero se puede clasificar según si hay movimiento o no. Consideramos activas aquellas que tienen movimiento mecánico o por succión. En segundo lugar están las semiactivas; éstas tienen movimiento y disponen de pelos adhesivos. Y finalmente hay las pasivas, es decir, que capturan sin movimiento gracias a pelos adhesivos o estructuras de caída como los cartuchos o las urnas. A continuación veremos las estrategias a través de algunos ejemplos.

TRAMPAS ACTIVAS

Venus atrapamoscas

En el caso de esta planta las trampas son mecánicas y están formadas por dos valvas unidas a un eje central. Estas valvas son el resultado de la transformación de las hojas, las cuales ya no son fotosintéticas. En consecuencia el tallo es el encargado de actuar como peciolo y de hacer la fotosíntesis; por ello se encuentra engrosado, aumentando su superficie facilita el proceso. Por otro lado, las valvas constan de glándulas de néctar que atraen a la presa y además están rodeadas en su perímetro por dientes que ayudan al cierre, ya que quedan superpuestas para encajar perfectamente y evitar que el animal escape.

Pero, ¿qué acciona el cierre? los encargados son una serie de pelos disparadores que se encuentran en el interior de la valva. Cuando la presa se sitúa sobre la trampa y mueve dos veces el mismo pelo o dos de distintos en menos de 20s las valvas se cierran inmediatamente.

A continuación podemos ver un vídeo dónde se explica este proceso. El vídeo es originario de un reportaje emitido en La 2 de TVE (Canal de Youtube: Luis Estévez):

Utricularia, la succionadora

Esta planta conocida como col de vejigas (Utricularia) vive sumergida cerca de la superficie y consta de vejigas o utrículos que actúan como trampas. Las vejigas se caracterizan por tener en la entrada unos pelos sensitivos que activan el mecanismo de succión de la presa hacía el interior, ya que en consecuencia la vejiga genera una presión interna muy fuerte. De este modo succionan agua y arrastran al animal hacía la trampa. En el momento que entra agua en la vejiga, ésta puede llegar a aumentar un 40% su volumen. La presión interna es tan grande que cuando el animal es capturado se escucha la succión.

En el siguiente vídeo podemos ver en acción a la col de vejigas. El vídeo es originario de un reportaje emitido en La 2 de TVE (Canal de Youtube: Schoolbox):

TRAMPAS SEMIACTIVAS

Cuando te coja ya no podrás escapar

La presencia de pelos adhesivos no es exclusiva de plantas carnívoras, muchas plantas los utilizan como una defensa o para evitar pérdidas de agua. Pero algunas carnívoras, como el rocío del Sol (Drosera), los usan para capturar animales.

Los pelos adhesivos o glándulas que presenta Drosera en sus hojas están formados por un  pie y una célula apical que libera mucilago. Esta substancia atrae a las presas por su olor y gusto. Cuando la presa se sitúa en las hojas, las gotas de mucilago se van uniendo entre ellas hasta formar una masa viscosa que acaba lubricando toda la presa haciendo imposible que pueda escapar. Debemos remarcar que las glándulas tienen cierta movilidad y se desplazan para ponerse en contacto con el animal. Además, esto provoca el cierre de la hoja, facilitando la posterior digestión.

El siguiente vídeo muestra el funcionamiento de este mecanismo (Canal de Youtube: TheShopofHorrors):

TRAMPAS PASIVAS

¡Cuidado que te enganchas! 

El caso de Drosophyllum es muy similar al de Drosera, pero esta vez los pelos adhesivos no tienen movilidad y en consecuencia la hoja tampoco. El insecto queda atrapado simplemente porque se engancha y no se puede liberar.

Drosophyllum
Insectos atrapados por los pelos adhesivos de Drosophyllum (Autor: incidencematrix).

¡Vigila que caes!

Finalmente vemos las trampas pasivas de caída, los cucuruchos y las urnas. Éstos a veces presentan una tapa inmóvil que no forma parte del mecanismo de captura, pero que protege del exceso de agua, evitando que se llene. Los cucurucho y urnas pueden estar formados por la propia hoja o bien ser una estructura adicional originada por el nervio foliar. Éste baja hasta la altura del suelo y después forma la trampa.

Nepenthes
Urna de Nepenthes (Autor: Nico Nelson).

Las presas se sienten atraídas hacia estos engaños debido a las glándulas de néctar situadas en el interior. ¡Una vez dentro salir se vuelve complicado! Las paredes de estas trampas pueden ser viscosas, presentar pelos orientados hacia abajo que dificultan la salida o bien tener tacas translucidas que hacen pensar al animal que hay una salida, pero que en realidad no lo es y entonces el animal cae rendido al fondo intentando escapar. Otras además liberan sustancias que aturden a la presa impidiendo la huida.

Heliamphora
Cucuruchos de Heliamphora (Autor: Brian Gratwicke).

Debe decirse que los animales grandes que suelen caer en estas trampas es porque están enfermos o porque su desarrollo no les permite distinguir la trampa, aunque las hay que llegan a medir hasta 20cm de largo.

FALSAS CARNÍVORAS

Hay algunas plantas que parece que en un futuro podrían llegar a ser carnívoras, pero que no lo son porque no tienen un mecanismo especializado, es decir, no cumplen uno o más requisitos necesarios.

Es el caso de Dipsacus fullonum. Esta especie consta de unas hojas que almacenan agua alrededor del tallo. Esto evita que los insectos no voladores puedan subir y al mismo tiempo actúa como una trampa potencial de caída. De tal modo que algunos insectos pueden morir ahogados en el agua. Por lo tanto, en un futuro podría ser carnívora, ya que podría capturar los insectos y a partir de esa agua absorber los nutrientes.

Dipsacus fullonum
Acumulación de agua con insectos muertos en las hojas de  Dipsacus fullonum (Autor: Wendell Smith).

Difusió-castellà

REFERENCIAS

Las Reinas del Jardin; flores con corona

Si creías que las coronas eran solo para los reyes y las reinas, estabas bien equivocado. En este articulo podrás ver que algunas flores, como los narcisos, también son portadoras de coronas ¡y son muy dignas de ello! Además no todas llevan la misma, sino que hay de muy distintas, de todos los tamaños y colores. Y son estas estructuras tan peculiares las que han ocasionado que muchas de estas plantas sean cultivadas para los jardines. 

INTRODUCCIÓN

En primer lugar, tenemos que presentar las amarilidóideas (Subfamilia Amaryllidoideae, Fam. Amaryllidaceae) porque es donde encontraremos a estas flores reales portadoras de corona.

Los miembros de esta subfamilia son plantas herbáceas perennes o bienales con bulbos o raramente con rizoma (tallos subterráneos habitualmente alargados y de crecimiento horizontal, similares a raíces y que normalmente almacenan sustancias de reserva). Estas acostumbran a presentar hojas alargadas y estrechas, que envuelven una parte del tallo, con los nervios paralelos, sin pelos, caducas, planas y con el margen entero, liso.

Narcís
Foto de un narciso (Narcissus) como ejemplo de un miembro de Amaryllidoideae.

SUS FLORES

Ahora que ya nos hacemos una idea de como son las plantas, tenemos que conocer las características de las flores. Es decir, como son:

  • Hermafroditas: contienen órganos reproductores tanto masculinos como femeninos.
  • Bracteadas: cada flor consta de una hoja especializada que la acompaña y que se origina en su axila.
  • Pueden crecer solitarias o en conjunto.
  • Sin diferenciación entre sépalos y pétalos. Por lo tanto, en este caso no se diferencia entre corola y cáliz, sino que se trata de un perianto formado por dos verticilos de tépalos petaloides. En cada verticilo encontramos 3 tépalos y en total 6 por flor. Estos pueden estar libres o unidos entre ellos. Cuando esto último ocurre pueden formar coronas, tal y como se explica en el siguiente apartado.
característiques florals
Partes de la flor: 1. tépalo petaloide ; 2. corona; 3. bráctea floral (Modificación foto de Miguel Ángel García).

DIVERSIDAD DE CORONAS

El grupo Amaryllidaceae se compone de 59 géneros diferentes. Pero no todos son dignos de llevar corona. Y, a continuación, podrás ver cuales si que lo son y donde aparecen.

PARACOROLAS

En Europa, región mediterránea y al oeste de Asia encontramos unas de las flores con corona más conocidas. Se trata del narciso (Narcissus), una de las plantas más utilizada en jardinería y seguramente la reina del jardín más habitual. Este género consta de una corona larga con forma de copa o embudo. Su origen es petaloide, es decir, parte de los tépalos se fusiona para dar lugar a esta estructura. A este tipo de corona se la denomina paracorola.

Narcissus
Narcissus (Autor: Blondinrikard Fröberg).

CORONAS ESTAMINALES

Por otro lado, dentro del mismo territorio encontramos el género Pancratium. Pero este luce una corona totalmente diferente; en este caso el origen es estaminal, es decir, las bases de los estambres se ha ensanchado y fusionado entre ellas para formar el embudo.

Pancratium illyricum
Pancratium illyricum (Autor: Tigerente).

Desde el centro al este de Asia y en Australia aparecen los géneros Calostemma y Proiphys, los cuales llevan corona estaminal (como en el caso anterior).

Calostemma_luteum
Calostemma luteum (Autor: Melburnian).
Proiphys_amboinensis
Proiphys amboinensis (Autor: Tauʻolunga).

ALTRES CORONES

Además, dentro de la misma distribución que los dos ejemplos anteriores, aparece Lycoris. Pero, este luce una corona más pequeña, ya que esta formada solo por la unión de la base de los 6 tépalos que dan lugar a un pequeño tubo.

Lycoris_aurea
Lycoris aurea (Public Domain).

Finalmente en América es donde encontramos una gran variedad de géneros y de coronas bien diversas, formadas de diferentes maneras; algunas como en los casos anteriores. Los miembros de este territorio son: Clinanthus, Pamianthe, Paramongaia, Hieronymiella, Placea, Hymenocallis, Ismene, Leptochiton, Eucrosia, Mathieua, Phaedranassa, Rauhia y Stenomesson

Pamianthe peruviana
Pamianthe peruviana (Autor: Col Ford and Natasha de Vere).
Placea amoena
Placea amoena (Autor: Dick Culbert).
Phaedranassa tunguraguae
Phaedranassa tunguraguae (Autor: Michael Wolf).
Ismene amancaes
Ismene amancaes (Autor: Mayta).
Hymenocallis caribaea
Hymenocallis caribaea (Autor:Tatters ❀).
Eucrosia bicolor
Eucrosia bicolor (Autor: Raffi Kojian – http://www.gardenology.org).
Clinanthus_variegatus
Clinanthus variegatus (Autor: Melburnian)

Ahora que ya conoces las diferentes coronas reales, ¿cual seria la reina de tu jardín?  

Difusió-castellà

REFERENCIAS

  • Aguilella & F. Puche. 2004. Diccionari de botànica. Col·leció Educació. Material. Universitat de València: pp. 500.
  • Bolòs, J. Vigo, R. M. Masalles & J. M. Ninot. 2005. Flora manual dels Països catalans. 3ed. Pòrtic Natura, Barcelona: pp. 1310.
  • Guía de Consultas Diversidad Vegetal. FACENA (UNNE).Monocotiledoneas- Asparagales: Amaryllidaceae.
  • W. Byng. 2014. The Flowering Plants Handbook: A practical guide to famílies and genera of the world. Plant Gateway Ltd., Hertford, UK.
  • Apuntes de Fanerógamas, Grado de Biología Ambiental, UAB.
  • Guía de Consultas Diversidad Vegetal. FACENA (UNNE).Monocotiledoneas- Asparagales: Amaryllidaceae.