¿Cómo consiguen algunos insectos, arañas o lagartos caminar por paredes lisas e incluso boca abajo y no caerse? ¿Por qué, de ser real, Spiderman no podría engancharse en las paredes como lo hacen estos animales?
Científicos de diferentes áreas todavía buscan comprender los mecanismos que usan algunos animales para caminar sobre este tipo de superficies sin resbalarse o precipitarse. A continuación, te explicamos qué sabe la comunidad científica sobre este fenómeno.
Animales que caminan por la pared: un reto a la gravedad
La competencia por el espacio y los recursos (nicho ecológico) ha dado lugar a numerosas e increíbles adaptaciones a lo largo de la evolución, como la miniaturización.
Cuando una superficie es demasiado lisa, de manera que las uñas, las garras o las fuerzas de fricción resultan insuficientes para desplazarse sobre ella sin caerse, entran en juegos mecanismos de adhesión dinámica: aquellos que permiten al animal desplazarse sobre superficies verticales lisas o boca abajo enganchándose y desenganchándose rápidamente. La aparición de estructuras adhesivas dinámicas ha permitido a diversos animales explotar nuevos ambientes, pudiendo desplazarse para cazar o permanecer inmóviles el tiempo necesario para huir de sus depredadores allí donde la mayoría no podría estar estable más que unos pocos segundos.

El desarrollo de estructuras adhesivas dinámicas en las extremidades es típico de insectos y de arañas, de algunos reptiles como los geckos y ciertas lagartijas, y de anfibios como las ranas arborícolas. Puntualmente, también se ha observado en pequeños mamíferos como murciélagos y pósums, unos marsupiales arborícolas procedentes de Australia y de ciertas regiones del sudeste asiático.
El hecho de que grupos tan diferentes de animales presenten una adaptación similar se explica por un proceso de convergencia evolutiva: ante un mismo problema (competencia por el espacio y los recursos, elevada presión de depredación, etc.), la evolución tiende a soluciones iguales o similares (estructuras adhesivas para acceder a otros espacios).
Los límites de la adaptación (o por qué Spiderman no podría caminar por las paredes)
Estudiar el mecanismo mediante el cual algunos animales caminan sobre superficies verticales lisas o invertidas es clave para el desarrollo industrial de nuevas y más potentes sustancias adhesivas. No es de extrañar, por lo tanto, que haya muchos estudios al respecto.
¿Podrá el ser humano escalar paredes como lo hace Spiderman algún día? Labonte et al. (2016) nos explica por qué Spiderman como tal no podría existir. O, al menos, cómo debería ser realmente para poder adherirse a las paredes como una araña.

Sin entrar en las estrategias propias de cada organismo (de las cuales hablaremos después), el principio básico por el cual insectos, arañas o geckos pueden caminar sobre superficies verticales lisas o boca abajo es su relación superficie/volumen: a menor tamaño del animal, mayor es la superficie de su cuerpo respecto a su volumen y menor la cantidad de superficie adhesiva necesaria para poder desplazarse sin caerse debido al peso. Así pues, los geckos serían los animales conocidos con el tamaño más grande (relación superficie/volumen más pequeña) capaces de caminar sobre superficies verticales lisas o boca abajo sin sufrir modificaciones anatómicas que harían inviable su desarrollo.
¿Y qué significa “sin sufrir modificaciones anatómicas”? Los mismos autores explican que a mayor tamaño del animal, mayor es la superficie adhesiva necesaria para desplazarse sin desprenderse. El crecimiento de la superficie adhesiva con respecto al tamaño del animal sigue un patrón de alometría positiva extrema: por un pequeño incremento del tamaño del animal, se produce un aumento significativamente mayor de la superficie adhesiva. Según este estudio, la superficie adherente respecto a la superficie total puede ser hasta 200 veces mayor en geckos que en ácaros.

Sin embargo, la misma alometría se rige por una serie de constricciones (limitaciones) anatómicas. Así, para que existiera un animal de mayor tamaño que un gecko capaz de caminar sobre una superficie vertical lisa o invertida, éste debería desarrollar, por ejemplo, unas extremidades enormes con una superficie adherente igualmente grande. Si bien pudiera tener sentido desde un punto de vista físico, las constricciones anatómicas hacen inviable la existencia de animales con estas características.
Ahora ya podemos responder la pregunta “¿Por qué Spiderman no podría adherirse a las paredes?”. Según este estudio, para que un ser humano pudiera caminar por las paredes como una araña su cuerpo debería estar recubierto al menos de un 40% de estructuras adhesivas (un 80% si contamos únicamente su parte frontal); o eso, o tener brazos o piernas absurdamente grandes e imposibles desde un punto de vista anatómico.
Gran diversidad de estrategias
La adhesión dinámica debe ser suficientemente fuerte para que el animal no caiga al estar quieto, pero suficientemente débil para poder desengancharse sin problemas al dar un paso.
Para conseguirlo, existen diferentes estrategias.

1) Adhesión húmeda
Interviene una sustancia líquida.
Insectos
Los insectos presentan dos sistemas:
Patas con almohadillas lisas: lo encontramos, por ejemplo, en hormigas, abejas, cucarachas y saltamontes. El último segmento de sus patas (pretarso), las uñas o las tíbias presentan una o varias almohadillas extremadamente blandas y deformables (como los arolios en el pretarso). A pequeña escala, ninguna superficie es totalmente lisa, por lo que estas almohadillas se deforman hasta ocupar todos sus espacios disponibles.

Patas con almohadillas peludas: lo encontramos en escarabajos y moscas, entre otros. Las almohadillas de estos insectos están densamente cubiertas de pequeñas estructuras similares a pelos, las setas, gracias a las cuales el contacto con la superficie aumenta.

En ambos casos, interviene un líquido con una fase hidrofóbica y otra hidrofílica. Estudios con hormigas han demostrado que las terminaciones de sus patas secretan una fina capa de líquido que incrementa el contacto entre el pretarso y la superficie sobre la que caminan, rellenando los huecos restantes y actuando como un adhesivo bajo los principios de capilaridad (tensión superficial) y viscosidad.
Si queréis conocer más a fondo este mecanismo, ¡no os perdáis este increíble vídeo sobre las hormigas!:
Ranas arborícolas
Las almohadillas de los dedos de las ranas arborícolas están compuestas de células epiteliales columnares separadas entre sí. Entre ellas, numerosas glándulas vierten una sustancia mucosa a los espacios existentes. La separación de las células permite, por una parte, que las almohadillas se deformen para adaptarse al terreno y, por otra, que la mucosidad circule entre ellas y asegure la adhesión. Además, en ambientes húmedos (muchas de estas ranas viven en selvas), estos espacios facilitan la eliminación del exceso de agua que las haría resbalar.

En el siguiente vídeo, puedes apreciar con más detalle las patas de una de las ranas arborícolas más conocidas:
Las ranas arborícolas presentan un sistema similar al de almohadillas lisas de los insectos. De hecho, a muchos aumentos las microestructuras adhesivas en grillos y ranas es prácticamente idéntica. Esto llevó a Barnes (2007) a considerar la adhesión húmeda como una de las más exitosas.

Pósums
Los estudios más detallados se han realizado sobre el pósum pigmeo acróbata (Acrobates pygmaeus), un pequeño marsupial del tamaño de un ratón capaz de escalar superficies de vidrio usando las grandes almohadillas de sus patas. Estas almohadillas están compuestas de múltiples capas de células epiteliales escamosas separadas por surcos que facilitan su deformación y por los que circula el sudor, que es el líquido que usan para adherirse.


2) Adhesión seca
No intervienen líquidos.
Arañas y geckos
Tanto arañas como geckos se rigen por el mismo principio de adhesión: las fuerzas de Van de Waals. A diferencia de insectos, ranas y pósums, no segregan líquidos adhesivos.
Las fuerzas de Van der Waals resultan de la interacción entre moléculas o átomos sin que exista un enlace químico entre ellos, y su energía depende de la distancia. Estas interacciones aparecen entre los “pelos” o setas de las palmas de los geckos (las cuales están surcadas por pliegues, las lamelas) y las setas de las patas de las arañas (que están cubiertas de muchas pilosidades formando las escópulas), y la superficie sobre la que caminan.


Estudios recientes, sin embargo, sugieren que la adhesión en los geckos no se debería principalmente a estas fuerzas, sino a las interacciones electrostáticas (diferente polaridad entre las setas y la superficie), tras comprobar que su capacidad adhesiva menguaba sobre materiales menos energéticos, como el teflón.
Sea como sea, la habilidad de los geckos para trepar es impresionante. Sino, mira este vídeo del gran David Attenborough:
Succión
Murciélagos
Los murciélagos de ventosas (familia Thyropteridae), originarios de Centroamérica y el norte de Sudamérica, presentan unas ventosas en forma de disco en sus pulgares y en la planta de las patas traseras que les permiten desplazarse sobre superficies lisas. En el interior de estos discos, la presión se reduce y el murciélago queda adherido por succión. De hecho, un solo disco puede soportar el peso de todo el animal.

Después de conocer todas estas estrategias, ¿creéis que Spiderman está a la altura?
Imagen de portada de autor desconocido. Fuente: link.