Arxiu de la categoria: CATALÀ

La misteriosa fauna de l’Ediacarà

Durant molt de temps, es considerà que l’origen dels metazous (animals pluricel·lulars) se situava al Cambrià (541-484 MA enrere) després que tingués lloc l’Explosió Cambriana. Tanmateix, alguns científics com Darwin ja sospitaven que aquest origen havia de ser molt més antic.

¿Existien metazous a l’antic i poc conegut supereó Precambrià? Et convidem a conèixer la fauna de l’Ediacarà, un trencaclosques paleontològic i una baula clau en l’evolució dels animals.

La misteriosa fauna de l’Ediacarà

Abans de començar a parlar de l’Ediacarà i de la seva misteriosa fauna, hem d’aclarir el context històric geològic que el delimita.

S’estima que la Terra es va formar fa, aproximadament, 4600 MA. El lapse comprès entre la formació del nostre planeta i el moment històric situat fa 542 MA rep el nom de supereó Precambrià, la primera i més llarga etapa de la història terrestre, així com la menys estudiada i compresa. Es considera que les primeres formes simples de vida van aparèixer fa 3800-3500 MA, no molts milions d’anys després de l’inici del Precambrià.

La finalització d’aquest supereó va donar lloc a l’eó Fanerozoic, el primer període geològic del qual, el Cambrià, ha estat tradicionalment conegut per marcar l’origen dels fílums de metazous (animals pluricel·lulars) que coneixem avui dia. De fet, tots els llinatges animals ja estarien representats poc després de l’inici d’aquest període; és a dir, va tenir lloc una diversificació de la vida, procés conegut com a radiació evolutiva, de gran magnitud i a escala global en un període de temps molt curt. Aquest esdeveniment va ser batejat amb el nom d’Explosió Cambriana.

Escala geològica: final del Precambrià i inici del Fanerozoic (concretament, l’era Paleozoica). Hi ha marcats l’Ediacarà i el Cambrià. Font: The Geological Society of America.

La idea del Cambrià com el bressol de la majoria de fílums animals es va deduir, com no podia ser d’una altra manera, de l’estudi dels registres fòssils i de la seva datació. Tanmateix, és cert que l’origen d’aquests fílums va tenir lloc íntegrament en aquest període? Alguns científics, inclòs el mateix Darwin, sospitaven que els primers llinatges de metazous podrien haver aparegut molt abans.

Fòssils del Precambrià

El Precambrià va ser una etapa convulsa a nivell geològic: moviments tectònics, vulcanisme… feien difícil la preservació de qualsevol resta biològica. D’altra banda, la successió de diverses grans glaciacions globals durant aquest supereó (‘Snowball Earth’), l’última de les quals fa aproximadament 650 MA, faria encara més difícil l’avanç de la vida.

No és estrany, doncs, que el Cambrià, un període geològicament i climàticament més estable, fos considerat l’origen dels metazous, ja que les contínues transformacions geològiques durant etapes prèvies feien suposadament impossible la preservació d’elements fòssils anteriors a l’Explosió Cambriana. És a dir, no hi havia “proves”.

Tanmateix, alguna cosa va passar. A les acaballes del segle XIX, un científic escocès descobrí el que més tard seria considerat el primer fòssil precambrià descobert: Aspidella terranovica, un fòssil en forma de disc d’afinitat incerta. Ara bé, en haver-se trobat en estrats geològics datats del Precambrià, es va considerar un artefacte.

Restes fòssils d’Aspidella (també conegut com Cyclomedusa, actualment un sinònim). La seva forma recordava a la de les meduses actuals. Font: Verisimilus (CC 3.0) a Wikipedia.

A aquest descobriment li van seguir d’altres igualment datats d’èpoques prèvies al Cambrià (jaciments a Namíbia i Austràlia), però la forta creença que els animals complexos tal com els coneixem van aparèixer durant el Cambrià o en temps posteriors eclipsava el veritable origen d’aquests fòssils. No va ser fins a mitjan segle XX i després del descobriment d’un segon fòssil icònic a Charnwood Forest (Anglaterra), Charnia masoni, que no es va prendre seriosament la idea d’un origen precambrià dels metazous, sent Charnia masoni el primer fòssil precambrià reconegut com a tal. Així, Aspidella terranovica, Charnia i la resta de jaciments fòssils precambrians quedarien, finalment, relacionats.

Holotipus de Charnia masoni. Tot i la seva aparença en forma de fulla de falguera, no es considera que sigui un organisme vegetal, doncs va ser descobert en jaciments que haurien estat submergits a molta profunditat, per sota de la zona fòtica apta per la supervivència d’organismes fotosintètics. Font: Smith609 (CC 2.5) a Wikipedia.

El període Ediacarà

A poc a poc, s’han anat trobant restes fòssils precambrianes a gairebé tot el planeta. La majoria d’aquestes se situa en estrats datats de fa 575-541 MA, marcant la fi del Precambrià i l’inici del Fanerozoic.

Actualment, es coneixen unes 40 localitats amb restes de la fauna d’aquest període. Destaquen especialment quatre d’elles per la magnitud del jaciment i el bon estat de conservació de les restes fòssils:

  • Sudest de Newfoundland (Canadà)
  • La Carena de Flinders (Sud d’Austràlia)
  • La regió del Mar Blanc (Rússia)
  • Namíbia

L’any 1960, es va proposar el terme “Ediacarà” per referir-se al període geològic del que dataven aquests fòssils en honor als turons Ediacara (Ediacara Hills) a la Carena de Flinders (Austràlia), on es troba un dels jaciments més importants d’aquest tipus de fòssils. Aquest nom va competir amb alguns altres fins que, el 2004, la Unió Internacional de Ciències Geològiques va formalitzar finalment l’Ediacarà com el període que s’inicià fa 635 MA (després de la glaciació Marinoana) i que va finalitzar fa 542 MA (amb l’aparició del primer icnofòssil complexe àmpliament estès).

Fauna de l’Ediacarà

Un cop acceptat el fet que, molt possiblement, l’origen del metazous va tenir lloc durant una hipotètica explosió de diversitat poc després de les darreres grans glaciacions del Precàmbric i just abans del Cambrià (explosió d’Avalon), van sorgir molts dubtes:

Com era aquesta fauna?

La majoria de fòssils de l’anomenada fauna de l’Ediacarà s’associen a organismes macroscòpics, de morfologia diversa (amb formes radials o circulars en la seva majoria) i de cos tou, sense estructures endurides que poguessin preservar-se amb el pas del temps. Això es dedueix per la forma i tipologia dels fòssils, ja que la majoria són rastres i marques que, es creu, deixaren aquests organismes.

Resta fòssil de Tribrachidium. En realitat, es tracta d’una impressió en negatiu, és a dir, el rastre que deixà l’organisme un cop va desaparèxier del substrat. Es creu que podria haver estat un organisme amb simetria triradial similar a un lofoforat actual.  Font: Aleksey Nagovitsyn (CC 3.0) a Wikipedia.

A més a més, es considera que la majoria eren sèssils, probablement aquàtics, amb estructures plomoses i, possiblement, filtradors. Així i tot, alguns investigadors consideren que alguns d’ells, encara que pocs, podrien haver estat de vida lliure i, fins i tot, bilaterals (és a dir, amb un eix anteroposterior definit dividint el cos en dues meitats simètriques), un dels plans corporals amb més èxit després de l’Explosió Cambriana.

Resta fòssil de Dickinsonia costata. La seva forma ens suggereix que hauria tingut simetria bilateral (amb un extrem que seria el “cap” i l’altre, “l’anus”), i es va associar durant molt de temps a algun tipus de cuc pla, alguns dels quals podien arribar a fer 1 metre de llarg. L’any 2018, es van identificar molècules de colesterol a les restes d’aquests fòssils que confirmaren que es tractava d’un animal. Font: Verisimilus (CC 3.0) a Wikipedia.

Amb quins grups actuals es relacionen?

El fet és que no se sap del cert. La majoria presenten formes que recorden a grups basals de metazous (com esponges o cnidaris) i altres, a anèl·lids i artròpodes. Ara bé, aquestes associacions són artificials, ja que actualment es desconeixen les relacions filogenètiques (és a dir, de parentiu) dels fòssils d’aquesta època amb els animals actuals. Fins i tot n’hi ha que no es poden relacionar amb res que coneguem, per la qual cosa es consideren part de llinatges extints abans del Cambrià.

Tanmateix, no tot està perdut. Les similituds entre alguns fòssils de l’Ediacarà i certs metazous actuals ens donen idees de com podrien haver evolucionat els animals i quin va ser realment el seu origen.

Per què no es troben fòssils d’aquesta fauna més enllà de l’Ediacarà?

En realitat, sí que se’n troben. Estudis posteriors al descobriment dels majors jaciments de fòssils ediacarans van rebel·lar que alguns organismes de la fauna associada a aquest període es trobaven en estrats del Cambrià juntament amb fòssils d’organismes resultants de l’Explosió Cambriana, de manera que hi hauria la possibilitat que haguessin donat lloc a alguns grups d’animals actuals. Tanmateix, sí és cert que es trobaven en una menor quantitat i moltes formes ja havien desaparegut aleshores.

Existeixen moltes hipòtesis sobre el perquè la majoria de la fauna ediacarana no hauria sobreviscut més enllà del Cambrià, per exemple:

  • Canvis en els nivells d’oxigen atmosfèric.
  • Competència amb la fauna cambriana, millor adaptada o amb formes corporals de més èxit.
  • Canvis en el nivell del mar.

Són realment aquests organismes l’origen dels metazous?

Tot i que aquesta ha estat la creença durant molts anys després del seu descobriment, la veritat és que s’han descobert altres metazous encara més antics.

Si us enrecordeu, la majoria de fòssils de l’Ediacarà s’associen a un període comprès fa 575-541 MA, amb algunes incursions en el Cambrià. Doncs bé, s’han trobat restes d’esponges (porífers) datades de fa més de 600 MA. L’últim descobriment, de fet, va ser el de l’esponja Otavia antiqua l’any 2012 a Namíbia, datada de fa 760 MA; és a dir, anterior a les grans glaciacions del Precambrià.

Imatge del fòssil animal més antinc conegut: Otavia antiqua. Font: National Geographic.

.            .           .

Creieu que ens queden per descobrit restes encara més antigues de metazous? Si coneixeu alguna informació que pugui ser interessant, no dubteu en deixar els vostres comentaris!

Imatge de portada de Ryan Somma, de l’Smithsonian National Museum of Natural History (CC 2.0).

Anuncis

El color de la sang: més enllà del vermell

Hi ha persones que recorden amb gran impacte la primera vegada que van veure la seva pròpia sang. Fins i tot d’adultes i en condicions controlades (per exemple, durant una extracció en un centre mèdic) la visió del fluid vermell no sempre els resulta agradable. De vegades d’un vermell més intens, de vegades més fosc, però sempre vermell… o no? Saps si hi ha animals amb sang blava, verda o potser… groga? Segueix llegint per descobrir-ho.

EL COLOR DE LA SANG: MÉS ENLLÀ DEL VERMELL

Estem habituats a que el color de la sang sigui vermell, ja que és el color de la nostra i el de molts vertebrats, com tots els mamífers. El color de la sang és deguda als pigments respiratoris, els encarregats de transportar l’oxigen a les cèl·lules de tot el cos i el diòxid de carboni als pulmons. Com recordaràs, el pigment respiratori humà és l’hemoglobina, que es troba en els glòbuls vermells o eritròcits.

Però altres animals tenen pigments respiratoris diferents a l’hemoglobina, que doten a la seva sang de colors tan variats com el verd, blau, groc i fins i tot morat.

glóbulos rojos, sangre, eritrocitos, hematíes
Glòbuls vermells humans (eritròcits o hematíes) vistos sota el microscopio electrònic. Imatge: John Kalekos

SANG DE COLOR VERMELL

Com s’ha comentat, el pigment respiratori dels mamífers i molts altres vertebrats és l’hemoglobina, una proteïna. En la seva estructura molecular, l’hemoglobina està formada per 4 subunitats (anomenades globines) unides a un grup hemo. El grup hemo presenta un àtom central de ferro (en forma de ferro II) que és el responsable final del color vermell.

sang color vermell hemoblogina molècula
Representació de l’estructura de l’hemoglobina. S’observen les globines unides al seu grup hemo corresponent, i una ampliació del grup hemo amb l’àtom de ferro (II) en el seu centre. Imatge: Buzzle

La tonalitat del vermell pot patir variacions, segons com d’oxigenada estigui l’hemoglobina. Quan està unida a l’oxigen (O2), es denomina oxihemoglobina i el seu color és d’un vermell clar intens (sang arterial). En canvi, la desoxihemoglobina és el nom que rep l’hemoglobina reduïda, és a dir, quan ha perdut l’oxigen i presenta una color més fosc (sang venosa). Si l’hemoglobina està més oxigenada del normal s’anomena metahemoglobina i té una tonalitat vermell-marró. Això és a causa de la ingesta d’alguns medicaments o d’una malaltia congènita (metahemoglobinèmia).

sangre venosa, sangre arterial, rojo intenso, rojo oscuro, color
Diferència de tonalitat entre la sang venosa (xeringues superiors) i sang arterial (xeringues inferiors). Foto: Wesalius

Com s’ha vist, la sang desoxigenada no és blava, sinó que aquesta tonalitat que observem en les nostres venes és causa d’un efecte òptic resultat de la interacció entre la sang i el teixit que recobreix les venes.

SANG DE COLOR BLAU

Alguns animals, en canvi, sí que tenen la sang blava. És el cas de crustacis decàpodes, algunes aranyes i escorpins, xifosurs, cefalòpodes i altres mol·luscs. En tractar-se d’invertebrats, hem de precisar que en lloc de sang el seu líquid intern es diu hemolimfa, però en aquest article no distingirem sang d’hemolimfa per a la seva millor comprensió.

cangrejo herradura sangre azul xfosuro
Vista ventral d’un xifosur ferit, en la que es pot observar su sangre azul. Foto: Dan Century

El pigment responsable del color blau de la sang en aquests animals és l’hemocianina. La seva estructura és força diferent de la de l’hemoglobina, i en lloc de ferro, en el seu centre té un àtom de coure I. Quan l’hemocianina està oxigenada, és blava, però quan està desoxigenada és incolora.

molécula hemocianina
Estructura química de l’hemocianina oxigenada. Imatge: Chemthulhu

SANG DE COLOR VERD

Existeixen alguns animals amb la sang de color verd, com alguns cucs anellats, algunes sangoneres i alguns cucs marins. El seu pigment respiratori, anomenat clorocruorina, els confereix a la seva sang un color verdós clar quan està desoxigenada, i una mica més fosc quan està oxigenada. Estructuralment és molt semblant a l’hemoglobina, ja que també posseeix un àtom de ferro en el seu centre. A diferència d’ella, no es troba en cap cèl·lula, sinó que sura en el plasma sanguini.

molécula clorocruorina
Estructura química de la clorocruorina. Imatge de dominio público

 

sangre color verde
Tub que conté sang verda d’un llangardaix de Nova Guinea. Foto: Christopher Austin

En el caso de vertebrats amb la sangre verda (com certs llangardaixos de Nova Guinea), el color es deu a la biliverdina, que resulta de la degradació de l’hemoglobina. La biliverdina és tòxica, però aquests llangardaixos són capaços de suportar alts nivells en el seu cos. En la resta de vertebrats, si els nivells de biliverdina són elevats perquè el fetge no la pot degradar a bilirubina, provoquen icterícia, malaltia que dota d’un color groguenc a la pell i còrnies dels ulls. Però en espècies de llangardaixos com Prasinohaema prehensicauda, l’elevada presència de biliverdina podria protegir-los contra la malaria, segons alguns estudis.

lagarto nueva guinea sangre verde
Espècie de llangardaix de Nova Guinea amb sang verda. Foto: Christopher Austin

SANG DE COLOR GROC

Els tunicats (ascidis fixes) són un tipus d’animals amb la sang de color groc/groc verdós. El pigment responsable d’aquest color és la hemovanabina, una proteïna que conté vanadi, encara que no transporta oxIgen, pel que la seva funció segueix sent desconeguda. De la mateixa manera, el color groguenc, groc verdós i fins i tot taronja de la sang (hemolimfa) d’alguns insectes tampoc es deu a la presència d’un pigment respiratori, sinó a altres substàncies dissoltes que no transporten oxigen.

tunicado
Tunicat (Didemnum molle) a Sulawesi, Indonèsia. Foto: Bernard Dupont

SANG DE COLOR VIOLETA

Alguns invertebrats marins tenen la sang (hemolimfa) violeta, com els priapúlids, sipuncúlids, braquiòpodes i alguns anèl·lids.

priapulida hemeritrina
Priapulus caudatus, un priapúlid. Foto: Shunkina Ksenia

El pigment respiratori responsable es l’hemeritrina, que es torna violeta-rosat quan està oxigenada. En la seva forma desoxigenada és incolora. Igual que la resta de pigments respiratoris que hem vist, l’hemeritrina és menys eficient que l’hemoglobina per transportar oxigen.

hemeritrina color sangre violeta
Estructura química de l’hemeritrina en la seva forma oxigenada. Igual que l’hemoglobina, l’elemento central es el ferro II.

SANG TRANSPARENT

Finalmente, existeix una familia de peixos anomenats peixos de gel , els quals tenen la sang transparent. En realitat, es tracta dels únics vertebrats que han perdut l’hemoglobina. De la mateixa manera, els eritròcits són generalment absents o disfuncionals. Aquesta estranya anatomia és pel fet que viuen en aigües molt oxigenades i el seu metabolisme és molt lent. Perquè l’oxigen arribi a totes les cèl·lules, es dissol en el plasma sanguini, que el reparteix per tot el cos.

pez de hielo draco sangre color transparente
Peix de gel (Chionodraco hamatus). Foto: Marrabbio2

CONCLUSIÓ

Per concloure, hem vist que en els animals que requereixen un pigment respiratori per fer arribar l’oxigen a tots els teixits, el color de sang (o hemolimfa) dependrà del tipus de pigment que estigui present. Per contra, altres animals que no necessiten pigments respiratoris, tenen la sang transparent o la seva coloració és deguda a altres substàncies dissoltes que no tenen a veure amb la respiració.

infografía colores de la sangre
Infografia-resum (en anglès) de la química dels principals pigments respiratoris sanguinis o hemolimfàtics (clic per ampliar). Imatge: Compound interest

 

Foto de portada: John Kalekos

La importància de les col·leccions biològiques

Les col·leccions biològiques són una peça clau en l’estudi de la biodiversitat del nostre planeta i una font gairebé inesgotable d’informació científica. A les xarxes socials, moltes són les veus partidàries de l’eliminació de les col·leccions biològiques “clàssiques” per ser considerades eines obsoletes i causa directa de l’extinció d’espècies.

T’expliquem per què aquesta afirmació és incorrecta, quins tipus de col·leccions existeixen i quines són les seves principals funcions.

La importància de les col·leccions biològiques

És normal que, en sentir a parlar de “col·leccions biològiques”, el primer que us vingui al cap a molts de vosaltres siguin les típiques caixes d’animals i plantes fixats i punxats a mans de fanàtics del col·leccionisme d’espècies. Sí, és cert que existeix aquest tipus de col·leccions. Però, i sense voler demonitzar-les (atès que moltes poden arribar a ser molt útils per a la ciència), no són el tipus de col·leccions a les quals ens referim i, ni molt menys, les úniques que existeixen.

Les col·leccions biològiques són repositoris sistematitzats (ben identificats, classificats i ordenats) d’algun tipus de material biològic. La majoria d’aquests repositoris es troben dipositats en museus de ciència, però també en universitats, centres de recerca i, fins i tot, total o parcialment en col·leccions privades.

Col·lecció Biològica de Referència del ICM (Institut de Ciències del Mar) del CSIC, a Barcelona. Imatge d’Alícia Duró al web del ICM.
Part de la col·lecció biològica de la Australian National Insect Collection. Imatge de la Australian National Insect Collection.

Tipus de col·leccions

Si bé el concepte de col·lecció biològica és força recent, l’emmagatzematge i classificació de material biològic es remunta diversos segles enrere amb les primeres col·lectes de plantes i animals a mans de zoòlegs i botànics.

Actualment, el concepte de col·lecció biològica és molt més ampli:

  • Col·leccions criogèniques

Material biològic viu emmagatzemat a baixes temperatures sota el supòsit que aquest conservarà la seva viabilitat i funcionalitat a llarg termini un cop es descongeli. Les col·leccions criogèniques solen emprar-se per emmagatzemar cèl·lules, teixits i material genètic. Tot i que la ciència ficció ens ha donat moltes idees, la criogenització rares vegades s’usa per emmagatzemar organismes multicel·lulars complets.

  • Col·leccions “clàssiques”

Formades, a grans trets, per les col·leccions de mostres zoològiques (animals sencers o les seves parts) i els herbaris (plantes), entre altres. Algunes d’aquestes col·leccions ja han superat els 200 anys d’antiguitat, essent considerades el tipus més antic de col·leccions i un dels més importants.

Col·lecció de cinípids o vespes de les gales inquilines. Font: Irene Lobato Vila.

La majoria es troba dipositada en museus o centres d’investigació i, llevat de rares excepcions, a l’abast de la comunitat científica per a la seva consulta i estudi. Molts col·lectors privats col·laboren amb aquestes entitats cedint els seus espècimens, cosa bastant habitual entre els col·leccionistes d’insectes.

Armaris del National Museum of Natural History a Washington D.C., Smithsonian Institution, on es troben dipositats milers d’exemplars d’insectes. Font: Irene Lobato Vila.

No està de més aclarir que la cessió de col·leccions està subjecta a una minuciosa revisió i a un contracte entre les parts, per la qual cosa no s’haurien d’acceptar espècimens obtinguts intencionadament pel col·lector de la caça furtiva o el tràfic il·legal d’espècies.

  • Bases de dades en linia

Repositoris d’informació biològica a Internet. Aquest tipus de “col·leccions” ha assolit una gran importància en els darrers anys en permetre compartir informació biològica d’interès per a la ciència i la tecnologia de forma immediata arreu del món. Les més consultades són les bases de dades moleculars (proteïnes, ADN, ARN, etc.) per a l’elaboració de filogènies i els famosos “arbres de la vida”, com, per exemple:

Altres webs molt consultades són les bases de dades en línia de les col·leccions dipositades en museus, també molt importants (si no, recordeu el cas recent de l’incendi del Museu Nacional del Brasil…), i les webs de participació ciutadana en què tant experts com aficionats aporten dades de les seves observacions, com Biodiversitat Virtual.

Les col·leccions biològiques també poden classificar-se segons la seva funció: col·leccions científiques (recerca), col·leccions comercials (cultius cel·lulars per a medicina, farmàcia, etc.) i col·leccions d'”estat” (les que es creen i mantenen pel bé de l’estat, com els jardins botànics, amb la finalitat de conservar la biodiversitat d’una regió i promoure’n l’estudi i divulgació).

El concepte de col·lecció biològica també engloba els biobancs, o col·leccions de mostres biològiques d’origen exclusivament humà emprades en estudis biomèdics. Tanmateix, no entrarem en més detall.

Per què són tan necessàries les col·leccions biològiques clàssiques?

Més enllà de suposadament calmar les ànsies de col·leccionisme que alguns atribueixen als científics i que malmeten seriosament la seva imatge, les col·leccions biològiques, i especialment les col·leccions “clàssiques”, són essencials per a la conservació de la biodiversitat. I no, no causen l’extinció d’espècies: el nombre d’organismes recol·lectats és irrisori comparat amb les pèrdues causades per la contaminació o la destrucció de l’hàbitat, i les captures es realitzen complint una sèrie de normatives, sempre respectant les poblacions i els seus hàbitats.

Tot i que és cert que les fotografies i les webs de biodiversitat són una eina útil per a l’estudi de les espècies del nostre planeta, desgraciadament no deixen de ser un complement de les col·leccions físiques clàssiques.

Així doncs, per què són tan importants aquestes col·leccions?

  • Són una font molt valuosa de material genètic que pot ser extret de les mostres o espècimens emmagatzemats i emprar-se en estudis moleculars. Gràcies a aquests estudis, podem comprendre una mica millor els orígens i les relacions entre els éssers vius (filogènia), conèixer la seva diversitat genètica i els mecanismes d’especiació, o bé perfeccionar estratègies per conservar-los. Per ex., en els plans de reintroducció d’espècies s’han d’estudiar les poblacions genètiques per assegurar-se que els organismes reintroduïts puguin estabilitzar-se i establir poblacions viables en el temps.
  • Són un referent perpetu per a futurs científics. Uns dels pilars bàsics de les col·leccions zoològiques i botàniques són els espècimens tipus o sèries típiques: aquells organismes que el descobridor d’una espècie va fer servir per descriure-la. Els espècimens tipus han d’estar degudament emmagatzemats i etiquetats, ja que són els més valuosos dins de les col·leccions. Aquests han de poder ser consultats per la comunitat científica i fer-se servir com a referent per a la descripció de noves espècies o en estudis comparatius, ja que les descripcions no sempre són suficients.
Insecte paratipus (espècimen de la sèrie típica) degudament etiquetat dipositat en el National Museum of Natural History a Washington D.C., Smithsonian Institution. Font: Irene Lobato Vila.
  • En relació al punt anterior, les col·leccions clàssiques permeten estudiar la morfologia (externa i interna) i la variabilitat dintre de i entre espècies, cosa que moltes vegades resulta impossible mitjançant fotografies.
  • Contenen organismes de diferents èpoques i hàbitats. Això inclou espècies extingides (tant des de fa molt de temps com recentment a causa de l’activitat humana) o representants d’ecosistemes actualment en perill. Davant l’actual destrucció d’hàbitats, no tindríem accés a nombroses espècies ni a la informació genètica i bioquímica que tant aquestes com els seus ecosistemes contenen si part d’elles no estigués dipositada en col·leccions biològiques. Aquesta informació és essencial per a investigar com frenar o mitigar els efectes negatius sobre espècies encara existents.
  • Ens donen informació passada i present sobre la distribució geogràfica dels organismes, ja que cadascun s’emmagatzema juntament amb dades de localitat i biologia. Aquesta informació és essencial no només per a estudis d’ecologia i evolució, sinó també per a la gestió de recursos, els plans de conservació i els estudis sobre el canvi climàtic.
  • Són una eina de divulgació molt potent, ja que permet experimentar directament amb les mostres. Les fotografies o els llibres són importants, però insuficients si no es complementen amb observacions directes. Tant les visites a museus com les sortides al camp són bàsiques per a una educació ambiental completa.
A final de curs, milers d’alumnes de totes les edats visiten les instal·lacions i les col·leccions del National Museum of Natural History a Washington D.C. Alguns, fins i tot, podran accedir a les col·leccions científiques. Font: Irene Lobato Vila.

.        .        .

Si crèieu que les col·leccions eren innecessàries, seguiu pensant-ho després de llegir aquest article? Podeu deixar els vostres comentaris!

Així estem deixant el planeta: Informe Planeta Viu 2018 (WWF)

Tot i que la natura ens proporciona tot el que la nostra societat moderna necessita, la nostra relació amb ella és més aviat destructiva. Tot l’impacte que la nostra societat ha infligit sobre la Terra ha conduït a una nova era geològica, que els experts han batejat com a Antropocè. L’Informe Planeta Viu ens mostra com estem deixant el planeta. No t’ho perdis!

AIXÍ ESTEM DEIXANT EL PLANETA: INFORME PLANETA VIU 2018 (WWF)

Aquesta no és la primera vegada que fem un resum de l’Informe Planeta Viu, realitzat per la WWF i que, amb aquesta última edició, compleix els 20 anys i compta amb la participació de més de 50 experts. Informes anteriors recalcaven el notable deteriorament dels sistemes naturals de la Terra: tant la naturalesa com la biodiversitat estan desapareixent a un ritme alarmant. A més, es calcula que a escala mundial la naturalesa proveeix serveis valorats en uns 110 bilions d’euros anuals.

QUÈ ESTÀ AMENAÇANT LA BIODIVERSITAT?

Segons un estudi recent, les principals amenaces per a la biodiversitat són dues: la sobreexplotació i l’agricultura. De fet, 3 de cada 4 espècies de plantes, amfibis, rèptils, aus i mamífers extingides des de l’any 1500 van desaparèixer a causa d’aquests dos motius. Això és a causa del gran creixement del consum a nivell mundial, que explica que l’empremta ecològica hagi augmentat un 190% en els últims 50 anys.

sobreexplotacion, agricultura, amenazas biodiversidad, informe planeta vivo 2018, wwf
La sobreexplotació i l’agricultura són les principals amenaces de la biodiversitat (Foto: Ininsa, Creative Commons).

La demanda de productes derivats dels ecosistemes, vinculat a la seva menor capacitat de reposar-los, explica que només el 25% de la superfície terrestre estigui completament lliure d’impactes d’activitats humanes. Es preveu que aquesta fracció sigui només un 10% al 2050.

La degradació del sòl inclou la pèrdua de bosc, essent major la taxa de desforestació als boscos tropicals, que tenen els nivells més alts de biodiversitat. La degradació del sòl té impactes diversos sobre les espècies, la qualitat dels hàbitats i el funcionament dels ecosistemes:

  • Pèrdua de biodiversitat.
  • Alteració de les funcions biològiques de la biodiversitat.
  • Alteració dels hàbitats i les funcions.
  • Alteració de la riquesa i abundància de les espècies.

Les espècies invasores també són una amenaça comuna, la dispersió de les quals s’associa al comerç. La contaminació, les preses, els incendis i la mineria són pressions addicionals, a més del paper cada vegada més gran del canvi global.

ÍNDEX PLANETA VIU 2018

L’Índex Planeta Viu (IPV) és un indicador de l’estat de la biodiversitat global i de la salut del planeta. S’estableix calculant l’abundància mitjana d’unes 22.000 poblacions de més de 4.000 espècies diferents de peixos, amfibis, rèptils, aus i mamífers de tot el món.

L’IPV global mostra que la mida de les poblacions de vertebrats han disminuït un 60% en poc més de 40 anys (entre 1970 i 2014).

indice planta vivo, tortuga marina, wwf, marc arenas camps, flores island, komodo national park, indonesia
Les poblacions de vertebrats s’han reduït en un 60% en poc més de 40 anys (Foto: Marc Arenas Camps ©).

Si distribuïm les espècies analitzades per regnes biogeogràfics, com mostra la imatge inferior, podem observar diferències en el IPV. Les disminucions de les poblacions més pronunciades es produeixen en els tròpics. El regne Neotropical ha patit la disminució més dràstica: el 89% de pèrdua respecte l’any 1970. D’altra banda, en les Neàrtiques i Paleàrtiques les reduccions han estat molt inferiors: el 23 i 31% respectivament. Els altres dos regnes presenten disminucions intermèdies, encara que importants: a l’Àfrica tropical és del 56% i a l’Indo-Pacífic del 64%. En tots els regnes, la principal amenaça és la degradació i pèrdua d’hàbitats, però s’observen variacions.

reinos biogeograficos, indice planeta vivo 2018, wwf
Regnes biogeogràfiques de l’IPV (Imatge: Modificada de WWF).

A diferència dels últims informes, en els quals es separava l’índex segons si les poblacions eren terrestres, marines o d’aigua dolça, en aquesta edició només s’ha calculat l’IPV d’aigua dolça. Són aquests els ecosistemes més amenaçats ja que es veuen afectats per la modificació, fragmentació i destrucció dels hàbitats; les espècies invasores; la pesca excessiva; la contaminació; les pràctiques forestals; les malalties i el canvi climàtic. Analitzant 3.358 poblacions de 880 espècies diferents s’ha calculat que l’IPV de l’aigua dolça presenta una disminució del 83% des del 1970, veient-se especialment afectades les espècies dels regnes neotropical (94% de disminució), l’Indo-Pacífic (82%) i l’Àfrica tropical (75%).

APUNTAR MÉS ALT: REVERTIR LA CORBA DE PÈRDUA DE BIODIVERSITAT

Tot i els acords polítics per a la conservació i ús sostenible de la biodiversitat (Conveni de Diversitat Biològica, COP6, Metes d’Aichi…), les tendències mundials de la biodiversitat continuen disminuint.

Segons s’indica en l’Informe Planeta Viu, “entre avui i finals de 2020 es presenta una finestra d’oportunitat sense precedents per donar forma a una visió positiva per a la naturalesa i les persones”. Això es deu al fet que el Conveni de Diversitat Biològica està en procés d’establir noves metes i objectius per al futur, sumant els Objectius de Desenvolupament Sostenible (ODS). Per al cas dels ODS, aquests fan referència a:

  • ODS 14: Conservar i utilitzar en forma sostenible els oceans, els mars i els recursos marins per al desenvolupament sostenible.
  • ODS 15: Efectuar una ordenació sostenible dels boscos, lluitar contra la desertificació, aturar i revertir la degradació de les terres i posar fre a la pèrdua de diversitat biològica.

A partir del 2020, els autors consideren que el que cal són metes atrevides i ben definides i un conjunt d’accions creïbles per restaurar l’abundància de la natura fins al 2050. Per aconseguir-ho, els autors recomanen seguir tres passos:

  1. Especificar clarament l’objectiu de recuperació de la biodiversitat.
  2. Desenvolupar un conjunt d’indicadors de progrés mesurables i rellevants.
  3. Acordar un paquet d’accions que en conjunt aconsegueixin arribar al objetiu en el marc de temps requerit.

CONCLUSIÓ

Veient les dades de l’Informe Planeta Viu 2018, és evident que la naturalesa està en retrocés: hem perdut el 60% de les poblacions de vertebrats del planeta, malgrat les diferències entre les diferents àrees. A més, les polítiques ambientals no són suficients per frenar aquesta tendència. Així doncs, calen polítiques més ambicioses per frenar i recuperar la naturalesa del planeta en què vivim. Tenim l’obligació de viure amb la natura, no contra la natura. De no tenir uns hàbits més sostenibles i respectuosos amb el medi ambient, perdrem els beneficis que aquesta ens aporta i afectarà la nostra pròpia supervivència.

Pots llegir l’informe complet a WWF.

 

El viatges de Jane Goodall: conferències i descobriments

Jane Goodall, una de les científiques més importants de la història i de l’actualitat, va visitar el desembre passat les ciutats de Madrid i Barcelona per explicar la seva història i transmetre el seu missatge d’esperança i conservació del medi ambient. All You Need Is Biology va estar present en la seva conferència de Barcelona per portar-vos les seves paraules i contribuir a la dispersió del seu missatge.

ELS VIATGES DE JANE GOODALL: CONFERÈNCIES I DESCOBRIMENTS

Als seus 84 anys, Jane Goodall viatja durant 300 dies a l’any per donar a conèixer el seu treball i conscienciar la població sobre el medi ambient. En les seves conferències repassa la seva biografia, els seus descobriments i dispersa el seu missatge sobre la sostenibilitat i conservació de la natura.

BREVÍSSIMA BIOGRAFIA DE JANE GOODALL

Jane Goodall no necessita presentació. És Doctora en Etologia per la Universitat de Cambridge i Doctora honoris causa per més de 45 universitats de tot el món. A més ha rebut més de 100 premis internacionals i títols, entre ells el de Dama de l’Imperi Britànic i el de Missatgera de la Pau per les Nacions Unides.

Jane Goodall, en una fotografia recent. Foto: Michelle Valberg

Els estudis científics sobre els ximpanzés de Gombe (Tanzània) que va iniciar el 1960, continuen a mans dels seus deixebles més de 58 anys després. Les seves investigacions van revolucionar la manera en la qual es veien en aquell moment els animals en general i l’ésser humà en particular. De fet, l’oportunitat de complir el seu somni de viatjar a l’Àfrica, a més de la seva mare i l’esforç propi de Jane, va ser possible gràcies Louis Leakey, reconegut paleoantropòleg. Louis volia estudiar els ximpanzés a la recerca d’algun comportament en comú entre ells i els humans actuals, la qual cosa significaria que aquest comportament també l’hauria de tenir el nostre avantpassat comú. Ús d’eines, canibalisme, altruisme, guerres entre grups, personalitat, emocions, són només alguns dels exemples del que Jane va descobrir observant els ximpanzés en el seu hàbitat natural.

Ximpanzé menjant carn. Foto: Cristina M. Gomes, Max Planck Institute.

Per donar a conèixer el seu treball, Jane ha escrit 26 llibres, diversos articles científics i ha participat en 20 produccions de cinema i televisió. Entre ells destaquem El viatge de Jane (2012) i Jane (2018), disponibles en plataformes com Filmin o Netflix.

 

LES CONFERÈNCIES DE JANE GOODALL

Encara que les seves conferències solen ser similars cada vegada que All You Need Is Biology ha tingut l’ocasió de veure-la, sempre és un plaer escoltar la seva veu pausada però enèrgica difonent el seu missatge d’esperança en el futur. En el seu relat, llança frases de gran valor que promouen les vocacions científiques i la importància de l’educació. Hem dividit la seva conferència en tres parts.

PRIMERA PART: DE LA JANE NENA A LA JANE A L’ÀFRICA

Jane comença el seu discurs explicant la seva curiositat científica i com va aprendre multitud de coses observant els animals que hi havia a casa (sobretot el seu gos). Una mare que no reprèn una nena per amagar cucs sota del seu coixí o estar desapareguda durant hores amagada al galliner per descobrir d’on surten els ous, és sens dubte digne d’esment: Jane sempre recalca que sense la comprensió de la seva mare, la petita científica que habitava dins la Jane hagués estat destruïda. I és que els nens són científics de manera innata: tenen curiositat, es fan preguntes, s’equivoquen, observen, volen aprendre.

Jane Goodall cosmocaixa conferencia conference
Jane Goodall en un moment de la seva conferència a Barcelona, 2018. Foto: Mireia Querol

Alimentant la passió de Jane, la seva mare li regalava llibres sobre animals i natura. “Tarzan” va ser clau i amb 10 anys va decidir que aniria a Àfrica (encara que al final Tarzan es casés amb la Jane equivocada, -tot fent broma-). Un somni complicat, tenint en compte la seva condició de dona jove sense estudis científics i una família amb pocs ingressos econòmics. Jane ens regala el consell que li va regalar la seva mare en el seu dia: aprofiteu qualsevol petit avantatge, sempre us pot servir d’utilitat en el futur. Després saltar d’una feina a una altra, els seus estudis de secretariat li van obrir les portes per treballar amb Leakey i complir el seu somni d’anar a l’Àfrica a treballar amb animals.

JANE A L’ÀFRICA

Com el govern britànic no es responsabilitzava d’una dona sola a la selva, la mare de Jane torna a donar-li suport i s’estableix en el campament amb ella. Després de setmanes d’observacions i moltes frustracions, Jane fa descobriments importants i per poder publicar-los, obté el doctorat sense haver cursat un graduat previ. A la universitat, li diuen que tot el que ha fet és incorrecte: havia posat noms als individus en lloc d’assignar-los un número, parlava d’emocions dels ximpanzés quan tota la comunitat científica deia que les emocions eren exclusives de l’ésser humà… fins llavors. Jane sens dubte va revolucionar la visió que es tenia dels animals i humans i va establir un mètode d’observació propi.

Jane Goodall vocalitza amb un ximpanzé el 1996. Foto: desconegut

SEGONA PART: JANE PEL MÓN

El 1986 Jane va haver de preparar una conferència en què va parlar de la destrucció de la selva, les malalties que pateixen els ximpanzés, com els afecten les guerres humanes… Jane sabia des de feia temps que cada espècie té un paper que jugar a la xarxa de la biodiversitat i que calia conservar-les, però també es va adonar que mentre les persones estiguessin patint guerra, pobresa i no tinguessin accés a l’educació, poc podrien fer per conservar la natura. Havia nascut la Jane activista, la qual crearia el Institut Jane Goodall que compta amb 4 programes principals:

  • Rescat i rehabilitació de ximpanzés al Congo. Les principals amenaces a què s’enfronten els ximpanzés són la desforestació, venda de cries com a mascotes -i el conseqüent assassinat de la mare i altres integrants del grup-i caça per a l’alimentació humana (el que es coneix com a “carn de selva” o bushmeat).
  • Investigació, conservació, educació i desenvolupament sostenible al Senegal i Guinea.
  • Mobilítzat per la selva. Reciclatge de mòbils per disminuir la demanda de minerals com el coltan o cassiterita, responsable de 6 milions de morts i altres conseqüències humanes i mediambientals.
  • Arrels i brots. Programa educatiu per a centres escolars de tot el món en el qual els joves realitzen projectes de respecte per tots els éssers vius, cultures i medi ambient. Si ets mestre o mestra potser t’interessi implantar-lo a la teva escola.

    Roots and Shoots raíces y brotes
    Jane amb alumnat d’un programa Arrels i Brots (Roots and Shoots)

TERCERA PART: EL MISSATGE D’ESPERANÇA

Jane opina que hi ha hagut una desconnexió entre el cor i el cervell humà, que ens porta a destruir l’únic planeta que tenim per viure. Hem perdut la connexió amb la natura i hem pensat que hem heretat el món dels nostres pares, quan en realitat, li estem robant als nostres fills i a la resta d’espècies.

Tendim a centrar-nos en el que no podem fer, de manera que no solem passar a l’acció perquè creiem que no hi ha res a fer per intentar canviar la situació delicada per la qual passa la Terra. Hem de fixar-nos en el que sí podem fer: tenim el poder de decidir l’impacte que tenim i el canvi que fem.

REALMENT ESTEM A TEMPS DE QUE EL MEDI AMBIENT ES RECUPERI?

Una pregunta recurrent a la qual ens enfrontem alguns i a la qual s’enfronta Jane sovint, és com conservar l’esperança i l’optimisme tenint coneixement de la greu situació per la qual passa el nostre planeta.

Jane manté l’esperança basant-se en 4 aspectes:

  1. La gent jove: els nens i nenes tenen un gran entusiasme i determinació quant coneixen el problema i prenen acció per ajudar a la resta.  Participen del canvi i comproven els resultats positius de les seves accions.
  2. El cervell humà: és innegable que la tecnologia desenvolupada pel nostre cervell cada vegada és més respectuosa amb el medi ambient. Només és necessària més implicació dels governs i finançament per a la investigació.
  3. Resiliència de la natura: molts llocs que han estat destruïts es recuperen amb el temps, si se’ls dóna una oportunitat.
  4. L’indomable esperit humà: tot i les dificultats (posant com a exemple les persones amb discapacitat o diversitat funcional) sempre hi ha una manera d’arribar a la meta, sigui seguint un camí o un altre.

 

En aquest vídeo podeu veure una xerrada sencera de les que fa Jane (doblat a l’espanyol). A partir del minut 59:30 explica els 4 motius per a l’esperança. Si preferiu veure una xerrada en català, teniu aquesta del 2012 (lelugerament diferent a les que fa actualment, però).

Jane acaba dient que vivim temps foscos, però que creu que hi ha una finestra oberta si tots treballem junts. El missatge final que deixa és el següent: esperança.

Finalitza la conferència amb l’emotiu alliberament de Wounda, un vídeo que no us hauríeu de perdre:

 

(Foto de portada: Morten Bjarnhof GANT)

Organismes model en genètica

Pels científics és bàsic treballar amb models per esbrinar què passa en un organisme complet, que és més complex que la suma de les seves parts. Per això hi ha certs organismes, que per les seves característiques, és fàcil utilitzar-los com a models en ciència. A continuació us presento les 7 espècies més utilitzades com a organismes genètics model.

QUÈ ÉS UN ORGANISME MODEL?

Els organismes genètics model són organismes de fàcil estudi, que gràcies a ells podem estudiar fenòmens importants i extrapolar-los a l’organisme que ens interessi. Com va dir Jacques Monod, premi Nobel de Medicina el 1965, “el que és vàlid pels bacteris ho és pels elefants”.

Aquests es caracteritzen per:

  • Fàcil manteniment: no suposa un gran cost tenir-los al laboratori.
  • Cicle biològic ràpid: en poques hores o dies es completa el seu cicle biològic.
  • Alt nombre de descendents: tenen un alt nombre de fills en poc temps.
  • Genoma senzill: tenen pocs gens.

Els organismes model s’utilitzen per obtenir informació sobre altres espècies que són més difícils d’estudiar directament. Aquests són àmpliament estudiats degut a que són fàcils de mantenir i reproduir en un entorn de laboratori i tenen avantatges experimentals particulars (Vídeo 1).

Vídeo 1. Organismos modelo: bien explicado (en castellà, Font: YouTube)

Els més utilitzats són: Drosophila melanogaster (mosca de la fruita), Mus musculus (ratolí domèstic), Escherichia coli (bacteri del colon), Arabidopsis thaliana (mala herba dels prats), Caenorhabditis elegans (cuc), Sacharomyces cerevisiae (llevat del pa) i Danio rerio (peix).

DROSOPHILA MELANOGASTER

La Drosophila melanogaster (Figura 1) és més coneguda com la mosca de la fruita o del vinagre. Segurament n’heu vist a les vostres cuines, voleiant sobre fruita madura o en descomposició inicial, i sobre líquids ensucrats o alcohòlics.

És un dels animals més coneguts, es coneix cada una de les seves parts del cos i les diferents etapes del seu cicle vital fins a la formació d’animal adult. Arriba a viure 30 dies i el procés d’ou a adult dura 7 dies. A més, es va seqüenciar el seu genoma l’any 2000.

En investigació té un paper destacat en la biomedicina ja que s’utilitza per estudiar aspectes relacionats amb el càncer, les malalties neurodegeneratives o la drogoaddicció.

drosophila melanogaster.jpg
Figura 1. Drosophila melanogaster (Font: YourGenome)

MUS MUSCULUS

Mus musculus (Figura 2) és el nom científic del ratolí comú, el mamífer més utilitzat en el laboratori. El ratolí adult arriba a fer (del nas a la cua) de 7,5 a 10 cm de llarg i pesa entre 10 i 25 grams. El seu període de gestació és de 19-21 dies i tenen entre 3 i 14 cries.

El seu genoma es va seqüenciar per complet l’any 2002. Aquest fenomen va generar una gran expectació per tractar-se d’un mamífer que té una gran rellevància científica per l’espècie humana.

Els ratolins de laboratori no estan dins les lleis generals de protecció dels animals però se’n segueixen uns protocols i normes bioètiques.

S’utilitza com a model en molts camps, com en la investigació de malalties cardiovasculars, diabetis, trastorns neurològics, càncer… i en l’enginyeria genètica.

mus musculus.jpg
Figura 2. Mus musculus (Font: eLife)

ESCHERICHIA COLI

Escherichia coli (Figura 3) és l’organisme més conegut en l’àmbit científic. És un bacteri que viu a la part més baixa dels intestins dels animals de sang calenta, incloent-hi els ocells i mamífers, i és necessari per a la correcta digestió dels aliments. El seu genoma va ser seqüenciat el 1997 i es va poder observar que el nombre de gens que el conformen és una sèptima part del nombre de gens en l’ésser humà.

En les últimes dècades, aquest bacteri s’ha convertit en un instrument més del laboratori, sobretot en el camp de la biologia molecular. Gràcies a ell, s’ha arribat al coneixement del fonaments de la biologia moderna i que han merescut el reconeixement de diversos premis Nobel, com els processos de recombinació genètica dels bacteris, transcripció de l’ARN, replicació de l’ADN i de la regulació gènica.

ecoli.jpg
Figura 3. Escherichia coli (Font: Public Health England)

ARABIDOPSIS THALIANA

És una planta anual (Figura 4) que es va introduir als laboratoris fa uns 40 anys. Pot completar tot el seu cicle vital en unes sis setmanes. La tija central florífera creix en unes tres setmanes des de la germinació i les flors de manera natural s’autopol·linitzen. En el laboratori, pot créixer dins de plaques o testos sota llum fluorescent o en hivernacle.

Igual que la Drosophila melanogaster, el seu genoma es va seqüenciar l’any 2000 i va ser el primer genoma de planta seqüenciat.

Actualment, els investigadors intenten descobrir els secrets que hi ha darrere del seu desenvolupament, creixement o floració.

arabidopsis.jpg
Figura 4. Arabidopsis thaliana (Font: Biology pages)

CAENORHABDITIS ELEGANS

És un cuc de terra (Figura 5) d’1 mm de llarg que viu en ambients temperats. Tot i que fa més de 40 anys que el podem trobar al laboratori, en les últimes dècades ha aconseguit el prestigi d’organismes més tradicionals, com la Drosophila melanogaster o Mus musculus. La seqüència del seu genoma com a primer organisme pluricel·lular es va publicar el 1998 i a dia d’avui es considera completa.

En la investigació ha ajudat en el coneixement de les causes de l’envelliment, de la mort cel·lular i de l’estructura del genoma.

C.-elegans
Figura 5. Caenorhabditis elegans (Font: Society for mucosal immunology)

SACHAROMYCES CEREVISIAE

Sacharomyces cerevisiae és un llevat (Figura 6), el llevat del pa, del vi i de la cervesa. La seva seqüenciació, concretament de la soca S288C, es va completar l’any 1996, després de quatre anys d’un projecte liderat per la Unió Europea i la participació de més de 100 laboratoris de tot el món. Va ser el primer organisme eucariota en ser seqüenciat i actualment és el genoma eucariota més conegut. Això ha fet que guanyés pes i s’hagi convertit en un potent model biològic d’organismes eucariotes.

S’utilitza sobretot en investigació biotecnològica, millorant i innovant els processos de panificació i de producció de begudes alcohòliques.

yeast.gif
Figura 6. Saccharomyces cerevisiae (Font: Fratelli Pasini)

DANIO RERIO

És el peix zebra (Figura 7), un peix tropical d’aigua dolça i que segur que pels amants dels aquaris és conegut. Genèticament parlant, és més similar a l’espècie humana que la Drosophila melanogaster o Caenorhabditis elegans i és més fàcil de manipular, mantenir i criar que Mus musculus. És capaç de produir entre 300 i 500 ous per posta i pot arribar a viure fins a 5 anys. L’esborrany de la seqüenciació del seu genoma es va publicar el 2002.

Fa poc més de 30 anys que es va introduir com a espècie model per la investigació en el camp de la biologia del desenvolupament i la genètica. S’utilitza molt per l’estudi de la biologia humana.

danio-rerio
Figura 7. Danio rerio (Font: NCBI)

(Foto portada: eLife)

 

 

Animals que caminen per la paret: un repte a la gravetat

Com s’ho fan alguns insectes, aranyes o llangardaixos per caminar sobre parets llises o de cap per avall i no caure? ¿Per què, si fos real, l’Spiderman no podria enganxar-se a les parets com ho fan aquests animals?

Científics de diferents àrees encara busquen comprendre els mecanismes que fan servir alguns animals per caminar sobre aquest tipus de superfícies sense relliscar o precipitar-se. A continuació, t’expliquem què sap la comunitat científica sobre aquest fenomen.

Animals que caminen per la paret: un repte a la gravetat

La competència per l’espai i els recursos (nínxol ecològic) ha donat lloc a nombroses i increïbles adaptacions al llarg de l’evolució, com la miniaturització.

Quan una superfície és massa llisa, de manera que les ungles, les urpes o les forces de fricció resulten insuficients per a desplaçar-se sobre ella sense caure, entren en joc mecanismes d’adhesió dinàmica: aquells que permeten a l’animal desplaçar-se sobre superfícies verticals llises o de cap per avall enganxant-se i desenganxant-se ràpidament. L’aparició d’estructures adhesives dinàmiques ha permès a diversos animals explotar nous ambients, podent desplaçar-se per caçar o romandre immòbils el temps necessari per fugir dels seus depredadors allà on la majoria tan sols podria estar estable uns pocs segons.

Gecko sobre una superfície llisa. Imatge de Shutterstock/Papa Bravo.

El desenvolupament d’estructures adhesives dinàmiques en les extremitats és típic d’insectes i d’aranyes, d’alguns rèptils com els geckos i certes sargantanes, i d’amfibis com les granotes arborícoles. Puntualment, també s’ha observat en petits mamífers com ratpenats i pòssums, uns marsupials arborícoles procedents d’Austràlia i de certes regions del sud-est asiàtic.

El fet que grups tan diferents d’animals presentin una adaptació similar s’explica per un procés de convergència evolutiva: davant un mateix problema (competència per l’espai i els recursos, elevada pressió de depredació, etc.), l’evolució tendeix a solucions iguals o similars (estructures adhesives per accedir a altres espais).

Els límits de l’adaptació (o per què l’Spiderman no podria caminar per les parets)

Estudiar el mecanisme mitjançant el qual alguns animals caminen sobre superfícies verticals llises o invertides és clau per al desenvolupament industrial de noves i més potents substàncies adhesives. No és estrany, doncs, que hi hagi molts estudis al respecte.

Podrà l’ésser humà escalar parets com ho fa l’Spiderman algun dia? Labonte et al. (2016) ens explica per què l’Spiderman com a tal no podria existir. O, almenys, com hauria de ser realment per poder adherir-se a les parets com una aranya.

Podrà l’ésser humà escalar com l’Spiderman algun dia? De moment, ens conformem amb aquesta esculptura. Imatge de domini públic.

Sense entrar en les estratègies pròpies de cada organisme (de les quals parlarem després), el principi bàsic pel qual insectes, aranyes o geckos poden caminar sobre superfícies verticals llises o cap per avall és la seva relació superfície/volum: com més petit és l’animal, més gran és la superfície del seu cos respecte al seu volum i menor la quantitat de superfície adhesiva necessària per poder desplaçar-se sense caure a causa del pes. Així doncs, els geckos serien els animals coneguts amb la mida més gran (relació superfície/volum més petita) capaços de caminar sobre superfícies verticals llises o cap per avall sense patir modificacions anatòmiques que farien inviable el seu desenvolupament.

I què vol dir “sense patir modificacions anatòmiques”? Els mateixos autors expliquen que com més gran és l’animal, més gran és la superfície adhesiva necessària per desplaçar-se sense desprendre’s. El creixement de la superfície adhesiva respecte la mida de l’animal segueix un patró d’al·lometria positiva extrema: per un petit increment de la mida de l’animal, es produeix un augment significativament major de la superfície adhesiva. Segons aquest estudi, la superfície adherent respecte a la superfície total pot ser fins a 200 vegades més gran en geckos que en àcars.

Imatge de David Labonte

No obstant això, la mateixa al·lometria es regeix per una sèrie de constriccions (limitacions) anatòmiques. Així, per tal que existís un animal més gran que un gecko capaç de caminar sobre una superfície vertical llisa o invertida, aquest hauria de desenvolupar, per exemple, unes extremitats enormes amb una superfície adherent igualment gran. Si bé podria tenir sentit des d’un punt de vista físic, les constriccions anatòmiques fan inviable l’existència d’animals amb aquestes característiques.

Ara ja podem respondre la pregunta “Per què l’Spiderman no podria adherir-se a les parets?”. Segons aquest estudi, perquè un ésser humà pogués caminar per les parets com una aranya el seu cos hauria d’estar recobert almenys d’un 40% d’estructures adhesives (un 80% si comptem únicament la seva part frontal); o això, o tenir braços o cames absurdament grans i impossibles des d’un punt de vista anatòmic.

Gran diversitat d’estratègies

L’adhesió dinàmica ha de ser prou forta perquè l’animal no caigui estant quiet, però prou feble per poder desenganxar-sense problemes en fer un pas.

Per aconseguir-ho, hi ha diferents estratègies.

Diversitat d’estructures adhesivas. Imatge de David Labonte.

1) Adhesió humida

Hi intervè una substància líquida.

Insectes

Els insectes presenten dos sistemes:

Potes amb coixinets llisos: el trobem, per exemple, en formigues, abelles, paneroles i saltamartins. L’últim segment de les seves potes (pretars), les ungles o les tíbies presenten un o diversos coixinets extremadament tous i deformables (com els arolis al pretars). A petita escala, cap superfície és totalment llisa, de manera que aquests coixinets es deformen fins a ocupar tots els seus espais disponibles.

Tars (part final de les potes dels insectes) d’una panerola. Imatge adaptada a partir de la original de Clemente & Federle, 2008.

Potes amb coixinets peluts: el trobem en escarabats i mosques, entre d’altres. Els coixinets d’aquests insectes estan densament coberts de petites estructures similars a pèls, les setes, gràcies a les quals el contacte amb la superfície augmenta.

Peu d’un escarabat de la família Chrysomelidae. Imatge de Stanislav Gorb et al.

En ambdós casos, intervé un líquid amb una fase hidrofòbica i una altra hidrofílica. Estudis amb formigues han demostrat que les terminacions de les seves potes secreten una fina capa de líquid que incrementa el contacte entre el pretars i la superfície sobre la que caminen, omplint els buits restants i actuant com un adhesiu sota els principis de capil·laritat (tensió superficial) i viscositat.

Si voleu conèixer més a fons aquest mecanisme, no us perdeu aquest increïble vídeo sobre les formigues!:

Granotes arborícoles

Els coixinets dels dits de les granotes arborícoles estan compostos de cèl·lules epitelials columnars separades entre si. Entre elles, nombroses glàndules hi aboquen una substància mucosa. La separació de les cèl·lules permet, d’una banda, que els coixinets es deformin per adaptar-se al terreny i, per altra, que la mucositat circuli entre elles i asseguri l’adhesió. A més a més, en ambients humits (moltes d’aquestes granotes viuen en selves), aquests espais faciliten l’eliminació de l’excés d’aigua que les faria relliscar.

Granota verda d’ulls vermells (Agalychnis callidryas). Fixa’t en els extrems dels dits. Imatge de domini públic.

En el següent vídeo, pots apreciar amb més detall les potes d’una de les granotes arborícoles més conegudes:

Les granotes arborícoles presenten un sistema similar al de coixinets llisos dels insectes. De fet, a molts augments les microestructures adhesives en grills i granotes són pràcticament idèntiques. Això va dur Barnes (2007) a considerar l’adhesió humida com una de les més exitoses.

Diferents granotes (a, b, c) i els seus respectius epitelis (d, e, f). La figura g correspon a la superfície dels coixinets d’un grill. Imatge de Barnes (2007).

Pòssums

Els estudis més detallats s’han realitzat sobre el pòssum pigmeu acròbata (Acrobates pygmaeus), un petit marsupial de la mida d’un ratolí capaç d’escalar superfícies de vidre fent servir els grans coixinets dels palmells de les seves potes. Aquests coixinets estan compostos de múltiples capes de cèl·lules epitelials esquamoses separades per solcs que en faciliten la deformació i pels quals hi circula la suor, que és el líquid que fan servir per adherir-se.

00530622
Acrobates pygmaeus. Imatge de Roland Seitre.
pygmffoot
Palmell del primer parell de potes d’Acrobates pygmaeus. Imatge de Simon Hinkley i Ken Walker.

2) Adhesió seca

No intervenen líquids.

Aranyes i geckos

Tant les aranyes com els geckos es regeixen pel mateix principi d’adhesió: les forces de Van de Waals. A diferència d’insectes, granotes i pòssums, no segreguen líquids adhesius.

Les forces de Van der Waals resulten de la interacció entre molècules o àtoms sense que hi hagi un enllaç químic entre ells, i la seva energia depèn de la distància. Aquestes interaccions apareixen entre els “pèls” o setes dels palmells de les potes dels geckos (les quals estan solcades per plecs, les lamel·les) i les setes de les potes de les aranyes (que estan cobertes de moltes pilositats formant les escòpules), i la superfície sobre la qual caminen.

Pota d’una aranya plena de setes. Imatge de Michael Pankratz.
Diversitat de potes de geckos. Imatge de Kellar Autumn.

Estudis recents, però, suggereixen que les interaccions de Van der Waals no serien les grans determinants de l’adhesió en els geckos, sinó les interaccions electrostàtiques (diferent polaritat entre les setes i la superfície), després de comprovar que la seva capacitat adhesiva minvava sobre materials menys energètics, com el tefló.

Sigui com sigui, l’habilitat dels geckos per enfilar-se és impressionant. Si no, mira aquest vídeo del gran David Attenborough:

3) Succió

Ratpenats

Els ratpenats de ventoses (família Thyropteridae), originaris de l’Amèrica Central i del Sud, presenten unes ventoses en forma de disc als seus polzes i al palmell del segon parell de potes que els permeten desplaçar-se sobre superfícies llises. A l’interior d’aquests discos, la pressió es redueix i el ratpenat queda adherit per succió. De fet, un sol disc pot suportar el pes de tot l’animal.

Ratpenat de la família Thyropteridae. Imatge de Christian Ziegler/ Minden Pictures.

Després de conèxier totes aquestes estratègies, creus que l’Spiderman n’està a l’alçada?

Imatge de portada d’autor desconegut. Font: link.