Arxiu de la categoria: CONTINGUTS

Organismes model en genètica

Pels científics és bàsic treballar amb models per esbrinar què passa en un organisme complet, que és més complex que la suma de les seves parts. Per això hi ha certs organismes, que per les seves característiques, és fàcil utilitzar-los com a models en ciència. A continuació us presento les 7 espècies més utilitzades com a organismes genètics model.

QUÈ ÉS UN ORGANISME MODEL?

Els organismes genètics model són organismes de fàcil estudi, que gràcies a ells podem estudiar fenòmens importants i extrapolar-los a l’organisme que ens interessi. Com va dir Jacques Monod, premi Nobel de Medicina el 1965, “el que és vàlid pels bacteris ho és pels elefants”.

Aquests es caracteritzen per:

  • Fàcil manteniment: no suposa un gran cost tenir-los al laboratori.
  • Cicle biològic ràpid: en poques hores o dies es completa el seu cicle biològic.
  • Alt nombre de descendents: tenen un alt nombre de fills en poc temps.
  • Genoma senzill: tenen pocs gens.

Els organismes model s’utilitzen per obtenir informació sobre altres espècies que són més difícils d’estudiar directament. Aquests són àmpliament estudiats degut a que són fàcils de mantenir i reproduir en un entorn de laboratori i tenen avantatges experimentals particulars (Vídeo 1).

Vídeo 1. Organismos modelo: bien explicado (en castellà, Font: YouTube)

Els més utilitzats són: Drosophila melanogaster (mosca de la fruita), Mus musculus (ratolí domèstic), Escherichia coli (bacteri del colon), Arabidopsis thaliana (mala herba dels prats), Caenorhabditis elegans (cuc), Sacharomyces cerevisiae (llevat del pa) i Danio rerio (peix).

DROSOPHILA MELANOGASTER

La Drosophila melanogaster (Figura 1) és més coneguda com la mosca de la fruita o del vinagre. Segurament n’heu vist a les vostres cuines, voleiant sobre fruita madura o en descomposició inicial, i sobre líquids ensucrats o alcohòlics.

És un dels animals més coneguts, es coneix cada una de les seves parts del cos i les diferents etapes del seu cicle vital fins a la formació d’animal adult. Arriba a viure 30 dies i el procés d’ou a adult dura 7 dies. A més, es va seqüenciar el seu genoma l’any 2000.

En investigació té un paper destacat en la biomedicina ja que s’utilitza per estudiar aspectes relacionats amb el càncer, les malalties neurodegeneratives o la drogoaddicció.

drosophila melanogaster.jpg
Figura 1. Drosophila melanogaster (Font: YourGenome)

MUS MUSCULUS

Mus musculus (Figura 2) és el nom científic del ratolí comú, el mamífer més utilitzat en el laboratori. El ratolí adult arriba a fer (del nas a la cua) de 7,5 a 10 cm de llarg i pesa entre 10 i 25 grams. El seu període de gestació és de 19-21 dies i tenen entre 3 i 14 cries.

El seu genoma es va seqüenciar per complet l’any 2002. Aquest fenomen va generar una gran expectació per tractar-se d’un mamífer que té una gran rellevància científica per l’espècie humana.

Els ratolins de laboratori no estan dins les lleis generals de protecció dels animals però se’n segueixen uns protocols i normes bioètiques.

S’utilitza com a model en molts camps, com en la investigació de malalties cardiovasculars, diabetis, trastorns neurològics, càncer… i en l’enginyeria genètica.

mus musculus.jpg
Figura 2. Mus musculus (Font: eLife)

ESCHERICHIA COLI

Escherichia coli (Figura 3) és l’organisme més conegut en l’àmbit científic. És un bacteri que viu a la part més baixa dels intestins dels animals de sang calenta, incloent-hi els ocells i mamífers, i és necessari per a la correcta digestió dels aliments. El seu genoma va ser seqüenciat el 1997 i es va poder observar que el nombre de gens que el conformen és una sèptima part del nombre de gens en l’ésser humà.

En les últimes dècades, aquest bacteri s’ha convertit en un instrument més del laboratori, sobretot en el camp de la biologia molecular. Gràcies a ell, s’ha arribat al coneixement del fonaments de la biologia moderna i que han merescut el reconeixement de diversos premis Nobel, com els processos de recombinació genètica dels bacteris, transcripció de l’ARN, replicació de l’ADN i de la regulació gènica.

ecoli.jpg
Figura 3. Escherichia coli (Font: Public Health England)

ARABIDOPSIS THALIANA

És una planta anual (Figura 4) que es va introduir als laboratoris fa uns 40 anys. Pot completar tot el seu cicle vital en unes sis setmanes. La tija central florífera creix en unes tres setmanes des de la germinació i les flors de manera natural s’autopol·linitzen. En el laboratori, pot créixer dins de plaques o testos sota llum fluorescent o en hivernacle.

Igual que la Drosophila melanogaster, el seu genoma es va seqüenciar l’any 2000 i va ser el primer genoma de planta seqüenciat.

Actualment, els investigadors intenten descobrir els secrets que hi ha darrere del seu desenvolupament, creixement o floració.

arabidopsis.jpg
Figura 4. Arabidopsis thaliana (Font: Biology pages)

CAENORHABDITIS ELEGANS

És un cuc de terra (Figura 5) d’1 mm de llarg que viu en ambients temperats. Tot i que fa més de 40 anys que el podem trobar al laboratori, en les últimes dècades ha aconseguit el prestigi d’organismes més tradicionals, com la Drosophila melanogaster o Mus musculus. La seqüència del seu genoma com a primer organisme pluricel·lular es va publicar el 1998 i a dia d’avui es considera completa.

En la investigació ha ajudat en el coneixement de les causes de l’envelliment, de la mort cel·lular i de l’estructura del genoma.

C.-elegans
Figura 5. Caenorhabditis elegans (Font: Society for mucosal immunology)

SACHAROMYCES CEREVISIAE

Sacharomyces cerevisiae és un llevat (Figura 6), el llevat del pa, del vi i de la cervesa. La seva seqüenciació, concretament de la soca S288C, es va completar l’any 1996, després de quatre anys d’un projecte liderat per la Unió Europea i la participació de més de 100 laboratoris de tot el món. Va ser el primer organisme eucariota en ser seqüenciat i actualment és el genoma eucariota més conegut. Això ha fet que guanyés pes i s’hagi convertit en un potent model biològic d’organismes eucariotes.

S’utilitza sobretot en investigació biotecnològica, millorant i innovant els processos de panificació i de producció de begudes alcohòliques.

yeast.gif
Figura 6. Saccharomyces cerevisiae (Font: Fratelli Pasini)

DANIO RERIO

És el peix zebra (Figura 7), un peix tropical d’aigua dolça i que segur que pels amants dels aquaris és conegut. Genèticament parlant, és més similar a l’espècie humana que la Drosophila melanogaster o Caenorhabditis elegans i és més fàcil de manipular, mantenir i criar que Mus musculus. És capaç de produir entre 300 i 500 ous per posta i pot arribar a viure fins a 5 anys. L’esborrany de la seqüenciació del seu genoma es va publicar el 2002.

Fa poc més de 30 anys que es va introduir com a espècie model per la investigació en el camp de la biologia del desenvolupament i la genètica. S’utilitza molt per l’estudi de la biologia humana.

danio-rerio
Figura 7. Danio rerio (Font: NCBI)

(Foto portada: eLife)

 

 

Anuncis

Animals que caminen per la paret: un repte a la gravetat

Com s’ho fan alguns insectes, aranyes o llangardaixos per caminar sobre parets llises o de cap per avall i no caure? ¿Per què, si fos real, l’Spiderman no podria enganxar-se a les parets com ho fan aquests animals?

Científics de diferents àrees encara busquen comprendre els mecanismes que fan servir alguns animals per caminar sobre aquest tipus de superfícies sense relliscar o precipitar-se. A continuació, t’expliquem què sap la comunitat científica sobre aquest fenomen.

Animals que caminen per la paret: un repte a la gravetat

La competència per l’espai i els recursos (nínxol ecològic) ha donat lloc a nombroses i increïbles adaptacions al llarg de l’evolució, com la miniaturització.

Quan una superfície és massa llisa, de manera que les ungles, les urpes o les forces de fricció resulten insuficients per a desplaçar-se sobre ella sense caure, entren en joc mecanismes d’adhesió dinàmica: aquells que permeten a l’animal desplaçar-se sobre superfícies verticals llises o de cap per avall enganxant-se i desenganxant-se ràpidament. L’aparició d’estructures adhesives dinàmiques ha permès a diversos animals explotar nous ambients, podent desplaçar-se per caçar o romandre immòbils el temps necessari per fugir dels seus depredadors allà on la majoria tan sols podria estar estable uns pocs segons.

Gecko sobre una superfície llisa. Imatge de Shutterstock/Papa Bravo.

El desenvolupament d’estructures adhesives dinàmiques en les extremitats és típic d’insectes i d’aranyes, d’alguns rèptils com els geckos i certes sargantanes, i d’amfibis com les granotes arborícoles. Puntualment, també s’ha observat en petits mamífers com ratpenats i pòssums, uns marsupials arborícoles procedents d’Austràlia i de certes regions del sud-est asiàtic.

El fet que grups tan diferents d’animals presentin una adaptació similar s’explica per un procés de convergència evolutiva: davant un mateix problema (competència per l’espai i els recursos, elevada pressió de depredació, etc.), l’evolució tendeix a solucions iguals o similars (estructures adhesives per accedir a altres espais).

Els límits de l’adaptació (o per què l’Spiderman no podria caminar per les parets)

Estudiar el mecanisme mitjançant el qual alguns animals caminen sobre superfícies verticals llises o invertides és clau per al desenvolupament industrial de noves i més potents substàncies adhesives. No és estrany, doncs, que hi hagi molts estudis al respecte.

Podrà l’ésser humà escalar parets com ho fa l’Spiderman algun dia? Labonte et al. (2016) ens explica per què l’Spiderman com a tal no podria existir. O, almenys, com hauria de ser realment per poder adherir-se a les parets com una aranya.

Podrà l’ésser humà escalar com l’Spiderman algun dia? De moment, ens conformem amb aquesta esculptura. Imatge de domini públic.

Sense entrar en les estratègies pròpies de cada organisme (de les quals parlarem després), el principi bàsic pel qual insectes, aranyes o geckos poden caminar sobre superfícies verticals llises o cap per avall és la seva relació superfície/volum: com més petit és l’animal, més gran és la superfície del seu cos respecte al seu volum i menor la quantitat de superfície adhesiva necessària per poder desplaçar-se sense caure a causa del pes. Així doncs, els geckos serien els animals coneguts amb la mida més gran (relació superfície/volum més petita) capaços de caminar sobre superfícies verticals llises o cap per avall sense patir modificacions anatòmiques que farien inviable el seu desenvolupament.

I què vol dir “sense patir modificacions anatòmiques”? Els mateixos autors expliquen que com més gran és l’animal, més gran és la superfície adhesiva necessària per desplaçar-se sense desprendre’s. El creixement de la superfície adhesiva respecte la mida de l’animal segueix un patró d’al·lometria positiva extrema: per un petit increment de la mida de l’animal, es produeix un augment significativament major de la superfície adhesiva. Segons aquest estudi, la superfície adherent respecte a la superfície total pot ser fins a 200 vegades més gran en geckos que en àcars.

Imatge de David Labonte

No obstant això, la mateixa al·lometria es regeix per una sèrie de constriccions (limitacions) anatòmiques. Així, per tal que existís un animal més gran que un gecko capaç de caminar sobre una superfície vertical llisa o invertida, aquest hauria de desenvolupar, per exemple, unes extremitats enormes amb una superfície adherent igualment gran. Si bé podria tenir sentit des d’un punt de vista físic, les constriccions anatòmiques fan inviable l’existència d’animals amb aquestes característiques.

Ara ja podem respondre la pregunta “Per què l’Spiderman no podria adherir-se a les parets?”. Segons aquest estudi, perquè un ésser humà pogués caminar per les parets com una aranya el seu cos hauria d’estar recobert almenys d’un 40% d’estructures adhesives (un 80% si comptem únicament la seva part frontal); o això, o tenir braços o cames absurdament grans i impossibles des d’un punt de vista anatòmic.

Gran diversitat d’estratègies

L’adhesió dinàmica ha de ser prou forta perquè l’animal no caigui estant quiet, però prou feble per poder desenganxar-sense problemes en fer un pas.

Per aconseguir-ho, hi ha diferents estratègies.

Diversitat d’estructures adhesivas. Imatge de David Labonte.

1) Adhesió humida

Hi intervè una substància líquida.

Insectes

Els insectes presenten dos sistemes:

Potes amb coixinets llisos: el trobem, per exemple, en formigues, abelles, paneroles i saltamartins. L’últim segment de les seves potes (pretars), les ungles o les tíbies presenten un o diversos coixinets extremadament tous i deformables (com els arolis al pretars). A petita escala, cap superfície és totalment llisa, de manera que aquests coixinets es deformen fins a ocupar tots els seus espais disponibles.

Tars (part final de les potes dels insectes) d’una panerola. Imatge adaptada a partir de la original de Clemente & Federle, 2008.

Potes amb coixinets peluts: el trobem en escarabats i mosques, entre d’altres. Els coixinets d’aquests insectes estan densament coberts de petites estructures similars a pèls, les setes, gràcies a les quals el contacte amb la superfície augmenta.

Peu d’un escarabat de la família Chrysomelidae. Imatge de Stanislav Gorb et al.

En ambdós casos, intervé un líquid amb una fase hidrofòbica i una altra hidrofílica. Estudis amb formigues han demostrat que les terminacions de les seves potes secreten una fina capa de líquid que incrementa el contacte entre el pretars i la superfície sobre la que caminen, omplint els buits restants i actuant com un adhesiu sota els principis de capil·laritat (tensió superficial) i viscositat.

Si voleu conèixer més a fons aquest mecanisme, no us perdeu aquest increïble vídeo sobre les formigues!:

Granotes arborícoles

Els coixinets dels dits de les granotes arborícoles estan compostos de cèl·lules epitelials columnars separades entre si. Entre elles, nombroses glàndules hi aboquen una substància mucosa. La separació de les cèl·lules permet, d’una banda, que els coixinets es deformin per adaptar-se al terreny i, per altra, que la mucositat circuli entre elles i asseguri l’adhesió. A més a més, en ambients humits (moltes d’aquestes granotes viuen en selves), aquests espais faciliten l’eliminació de l’excés d’aigua que les faria relliscar.

Granota verda d’ulls vermells (Agalychnis callidryas). Fixa’t en els extrems dels dits. Imatge de domini públic.

En el següent vídeo, pots apreciar amb més detall les potes d’una de les granotes arborícoles més conegudes:

Les granotes arborícoles presenten un sistema similar al de coixinets llisos dels insectes. De fet, a molts augments les microestructures adhesives en grills i granotes són pràcticament idèntiques. Això va dur Barnes (2007) a considerar l’adhesió humida com una de les més exitoses.

Diferents granotes (a, b, c) i els seus respectius epitelis (d, e, f). La figura g correspon a la superfície dels coixinets d’un grill. Imatge de Barnes (2007).

Pòssums

Els estudis més detallats s’han realitzat sobre el pòssum pigmeu acròbata (Acrobates pygmaeus), un petit marsupial de la mida d’un ratolí capaç d’escalar superfícies de vidre fent servir els grans coixinets dels palmells de les seves potes. Aquests coixinets estan compostos de múltiples capes de cèl·lules epitelials esquamoses separades per solcs que en faciliten la deformació i pels quals hi circula la suor, que és el líquid que fan servir per adherir-se.

00530622
Acrobates pygmaeus. Imatge de Roland Seitre.
pygmffoot
Palmell del primer parell de potes d’Acrobates pygmaeus. Imatge de Simon Hinkley i Ken Walker.

2) Adhesió seca

No intervenen líquids.

Aranyes i geckos

Tant les aranyes com els geckos es regeixen pel mateix principi d’adhesió: les forces de Van de Waals. A diferència d’insectes, granotes i pòssums, no segreguen líquids adhesius.

Les forces de Van der Waals resulten de la interacció entre molècules o àtoms sense que hi hagi un enllaç químic entre ells, i la seva energia depèn de la distància. Aquestes interaccions apareixen entre els “pèls” o setes dels palmells de les potes dels geckos (les quals estan solcades per plecs, les lamel·les) i les setes de les potes de les aranyes (que estan cobertes de moltes pilositats formant les escòpules), i la superfície sobre la qual caminen.

Pota d’una aranya plena de setes. Imatge de Michael Pankratz.
Diversitat de potes de geckos. Imatge de Kellar Autumn.

Estudis recents, però, suggereixen que les interaccions de Van der Waals no serien les grans determinants de l’adhesió en els geckos, sinó les interaccions electrostàtiques (diferent polaritat entre les setes i la superfície), després de comprovar que la seva capacitat adhesiva minvava sobre materials menys energètics, com el tefló.

Sigui com sigui, l’habilitat dels geckos per enfilar-se és impressionant. Si no, mira aquest vídeo del gran David Attenborough:

3) Succió

Ratpenats

Els ratpenats de ventoses (família Thyropteridae), originaris de l’Amèrica Central i del Sud, presenten unes ventoses en forma de disc als seus polzes i al palmell del segon parell de potes que els permeten desplaçar-se sobre superfícies llises. A l’interior d’aquests discos, la pressió es redueix i el ratpenat queda adherit per succió. De fet, un sol disc pot suportar el pes de tot l’animal.

Ratpenat de la família Thyropteridae. Imatge de Christian Ziegler/ Minden Pictures.

Després de conèxier totes aquestes estratègies, creus que l’Spiderman n’està a l’alçada?

Imatge de portada d’autor desconegut. Font: link.

La timidesa de la copa: arbres que no es toquen

Quan passeges pel bosc o la ciutat, acostumes a mirar cap amunt? L’habitual és mirar cap a on anem o a on posem els peus, però si et trobes en plena naturalesa, no oblidis observar els arbres, potser et trobes amb una imatge tan bella com la que il·lustra aquest article: estàs observant la timidesa de la copa.

UN FENOMEN BOTÀNIC

Fa menys de 100 anys, al 1920, es va observar per primera vegada un fenomen botànic que segueix deixant boniques i impressionants imatges de certs boscos. El 1955, el botànic Maxwell R. Jacobs, va descriure aquest fenomen com “timidesa de la copa” després d’estudiar diverses poblacions d’eucaliptus.

Els solcs de cel que deixa la timidesa de la copa. Foto: Tom Cowey

Aquest fenomen consisteix en un creixement limitat de les copes dels arbres, de tal manera que les fulles i branques d’arbres adjacents no arriben a tocar-se. Això produeix figures i patrons amb el cel de fons quan s’observen els arbres des del terra.

La timidesa de la copa, entre altres temes, s’explora en el documental Il était une fôret.

¿PER QUÈ ES PRODUEIX LA TIMIDESA DE LA COPA?

La comunitat científica encara no ha arribat a un consens que expliqui el mecanisme que dóna lloc a aquest fenomen. Un total de tres hipòtesis han intentat explicar la timidesa de la copa:

1. Hipòtesi de la fricció

La hipòtesi inicial de Maxwell R. Jacobs (actualment poc acceptada per la comunitat científica) explica que la fricció d’unes branques amb altres quan el vent les colpeja limitaria el creixement de les mateixes per evitar tocar els arbres veïns, a causa dels danys produïts per l’abrasió.

2. Hipòtesi de l’al·lelopatia

La hipòtesi més recolzada actualment indica que la timidesa de la copa té un origen al·lelopàtic.

En botànica, l’al·lelopatia és qualsevol efecte que una planta transmet a una altra a través de la producció de diferents compostos químics, ja sigui causant un efecte positiu o negatiu sobre l’altra planta. Aquests compostos són els anomenats al·leloquímics. En altres paraules, les plantes i arbres es comuniquen entre ells mitjançant senyals químics. Aquesta relació de produeix més freqüentment entre arbres i plantes de la mateixa espècie, encara que també es dóna entre espècies diferents. Per conèixer en profunditat el procés de la alelopatía, et convidem a llegir l’article Comunicació entre plantes: relacions al·lelopàtiques.

Foto: airwii

3. Hipòtesi dels fotoreceptors

A més de les senyals químics, els fotoreceptors fitocrom (sensors de llum capaços de detectar la zona de llum vermella llunyana) que posseeixen els arbres i les plantes els permet percebre la proximitat d’altres individus. Un altre tipus de fotoreceptors detecten la llum blava, el que produeix en les plantes i arbres l’evitació de les ombres produïdes per altres individus.

https://i1.wp.com/www.madrimasd.org/blogs/universo/wp-content/blogs.dir/42/files/163/o_Criptocromoa%20Salvador.png
Longituds dona dertectades per diferents fotorreceptors vegetals. Font: Assocació aquaròfila de Barcelona.

En conjunt, els senyals captats per aquests fotoreceptors provocarien a l’arbre la resposta de allunyar-se de l’adjacent, el que li permetria obtenir una major quantitat de llum, indispensable per fer la fotosíntesi.

¿TOTS ELS ARBRES SÓN TÍMIDS?

La timidesa de la copa s’ha observat en certes espècies de roures i pins europeus i espècies d’hàbitats tropicals i subtropicals, com alguns eucaliptus, espècies del gènere Dryobalanops, el pi Pinus contorta, Avicennia germinans, Didymopanax pittieri, Clusia alata, Celtis spinosa, Pterocymbium beccarii, Picea sitchensis i Larix kaempferi.

Dosser arbori de Dryobalanops aromàtica a Kuala Lumpur. Foto: Patrice78500

En altres espècies, les copes dels arbres arriben a tocar-se i a creuar fins i tot les seves branques, encara que el dosser arbori o canopia (hàbitat que inclou les copes i part superior dels arbres) no sol barrejar-se del tot.

HIPÒTESIS SOBRE ELS AVANTATGES DE LA TIMIDESA DE LA COPA

Relacionat amb cada hipòtesi, el sentit evolutiu de la timidesa de la copa segueix sense conèixer-se, tot i que la botànica ha llançat diverses hipòtesis:

  • Permetre una major penetració de la llum en el bosc per a realitzar la fotosíntesi més eficientment.
  • Evitar que es malmetin les branques i fulles quan es colpegen unes contra altres en cas de tempesta o ratxes de vent.
  • Evitar que malalties, larves i insectes que s’alimenten de fulles es propaguin fàcilment d’un arbre a un altre.
File:Weaver Ants - Oecophylla smaragdina.jpg
Les formigues construeixen estructures amb els seus propis cossos per passar d’una fulla a una altra. Foto: Rose Thumboor

De moment, sembla que la timidesa de la copa obeeix més a una relació de col·laboració entre espècies per la supervivència, enlloc de a una competició (la popularment coneguda com la “llei del més fort”). Caldrà esperar a futurs estudis que llancin una mica més de llum a aquest encara desconegut fenomen.

Del laboratori a la gran pantalla (II)

Com ja vaig comentar en l’anterior article sobre genètica i cinema, hi ha una gran varietat de llargmetratges que toquen la genètica. En el següent article parlarem de la ciència ficció, amb dues pel·lícules molt conegudes. Atenció: spoilers!

GATTACA (1997)

Direcció: Andrew Niccol

Repartiment: Ethan Hawke, Uma Thurman, Jude Law

Gènere: Ciència ficció

Sinopsi: Ambientada en una societat futura, en la que la major part dels nens són concebuts in vitro i amb tècniques de selecció genètica. Vincent, un dels últims nens concebuts de manera natural, neix amb una deficiència cardíaca i no li auguren més de trenta anys de vida. Se’l considera un invàlid i, com a tal, està condemnat a realitzar els treballs més desagradables. El seu germà Anton, en canvi, ha rebut una esplèndida herència genètica que li garanteix múltiples oportunitats. Des de nen, Vincent somia amb viatjar a l’espai, però sap molt bé que mai serà seleccionat. Durant anys exerceix tota classe de feines fins que un dia coneix a un home que li proporciona la clau per formar part de l’elit: suplantar a Jerome, un esportista que es va quedar paraplègic per culpa d’un accident. D’aquesta manera, Vincent ingressa a la Corporació Gattaca, una indústria aeroespacial, que el selecciona per realitzar una missió a Titan. Tot anirà bé, gràcies a l’ajuda de Jerome, fins que el director del projecte és assassinat i la consegüent investigació posa en perill els plans de Vincent.

Relació amb la genètica: GATTACA és la pel·lícula “genètica” per excel·lència. Començant pel títol, aquest està format per les inicials de les quatre bases nitrogenades que conformen l’ADN (guanina, adenina, timina i citosina). A més, la forma helicoidal de l’ADN es repeteix en varis moments del llargmetratge, com en les escales de la casa de Vincent.

El principal tema que tracta és el de la selecció genètica, tots els nens que neixen han sigut seleccionats genèticament, molt lligat a la bioètica. La idea d’aquesta selecció és arribar a la eugenèsia, és a dir, millorar la població mitjançant la selecció dels “millors” humans. Aquest concepte el podem relacionar amb l’Alemanya de Hitler, qui creia que els alemanys pertanyien a un grup superior de races anomenat “ari”. Hitler deia que la raça alemanya havia sigut més dotada que les demés i que aquesta superioritat biològica destinava als alemanys a estar al capdamunt d’un imperi a Europa Oriental.

Tot i que avui en dia la selecció genètica és vigent i és utilitzada per evitar malalties, no s’aplica amb els mateixos fins que els de la pel·lícula. Actualment, es decideix realitzar selecció genètica després d’haver estudiat a la família i realitzar l’adequat consell genètic. Aquest té com a objectiu ajudar als pacients i a les seves famílies a evitar el dolor i el patiment causat per una malaltia genètica, i no s’ha de confondre amb l’objectiu eugènic de reduir la incidència de malalties genètiques o la freqüència d’al·lels considerats deleteris a la població.

Això està molt relacionat amb la discriminació genètica, cas també exposat a la pel·lícula. Gattaca es situa en un possible futur en el qual la genètica, intentant millorar la qualitat de vida de la societat, provoca un moviment de discriminació.

Quan parlem de discriminació acostumem a pensar en la discriminació racial. Aquesta es defineix com el tracte diferent o excloent a una persona per motius d’origen racial o ètnic, el que constitueix una vulneració dels drets fonamentals de les persones, així com un atac a la seva dignitat, El racisme ha estat present en tota la història de la humanitat, especialment en el segle XX amb la discriminació racial a Estats Units i amb l’Apartheid a Sudàfrica.

Des de fa un temps, la discriminació genètica ha anat agafant pes. Ocorre quan les persones són tractades de manera diferent per la seva empresa o companyia d’assegurances perquè tenen una mutació genètica que causa o augmenta el risc d’un trastorn hereditari. La por a la discriminació és una preocupació comú entre les persones que fan proves genètiques i és un problema actual que preocupa a la població, perquè el teu propi genoma no ha de ser un currículum vitae que t’obri o tanqui portes com passa a la pel·lícula. Vincent entra a treballar a Gattaca després de realitzar una prova d’orina i una analítica de sang, ja que a Gattaca no escullen als treballadors per la seva capacitat ni habilitat sinó pel seu ADN.

No obstant, la pel·lícula acaba amb la frase “No hi ha gen per a l’esperit humà”. Això significa que, tot i que la societat en la que es situa Gattaca es basa en la modificació genètica, aquesta no afecta a la moralitat i caràcter final de les persones perquè no existeix forma de relacionar genèticament a l’esperi, només el cos té informació genètica.

Video 1. Tràiler Gattaca (Font: YouTube)

PARC JURÀSSIC (1993)

Direcció: Steven Spielberg

Repartiment: Sam Neil, Laura Dern, Jeff Goldblum

Gènere: Ciència ficció

Sinopsi: El multimilionari John Hammond aconsegueix fer realitat el seu somni de clonar dinosaures del Juràssic i crear amb ells un parc temàtic en una illa remota. Abans d’obrir-lo al públic, convida a una parella d’eminents científics i a un matemàtic perquè provin la viabilitat del projecte. Però les mesures de seguretat del parc no preveuen l’instint de supervivència de la mare naturalesa ni la cobdícia humana.

Relació amb la genètica: A la primera pel·lícula d’aquesta saga, a partir de fòssils de dinosaures extrauen l’ADN per poder clonar-los. Els dinosaures clonats formaran part del parc juràssic en el que es basa la pel·lícula.

És cert que es pot extraure ADN a partir d’ossos, molt utilitzat en la genètica forense. Igual que el tema de la clonació, el qual va ser conegut per l’ovella Dolly, el primer gran animal clonat a partir d’una cèl·lula adulta el juliol de 1996. Però la pel·lícula va més enllà i planteja la possibilitat de reimplantar, en el món actual, espècies ja extingides i desafiar la selecció natural.

Video 2. Tràiler Parc Juràssic (Font: YouTube)

REFERÈNCIES

MireiaRamos-catala2

Guerra contra el plàstic

Que els plàstics causen problemes en els ecosistemes, la biodiversitat i la salut humana és ben sabut. De fet, essent conscients d’això, la Unió Europea ha prohibit a partir del 2021 alguns objectes de plàstic d’un sol ús i ha establert algunes mesures per a altres. Vegem què podem fer nosaltres per lluitar aquesta guerra contra el plàstic!

GUERRA CONTRA EL PLÀSTIC

PER QUÈ HEM DE DECLARAR-LI LA GUERRA AL PLÀSTIC?

Segons un estudi publicat el 2015, s’estima que hi ha 5,25 trilions de partícules de plàstic als oceans del planeta, equivalents a un pes de 268.940 tones. Si ens fixem només en el mar Mediterrani, hi ha unes 2.000 tones de partícules de plàstic. També se sap que el 80% del plàstic marí prové de terra. Un altre estudi apunta, a més, que pel 2050 hi haurà més plàstics que peixos en els mars i oceans del planeta de no aturar la tendència actual.

pantai pede, labuan bajo, indonesia, plasticos, basura marina, plastico marino, guerra plastico, residuo zero
En una platja de Labuan Bajo, Indonesia, el més estrany era fer una passa sense trobar restes de brossa i plàstics (Foto: Marc Arenas).

Com ja vam parlar en aquest altre article, la brossa marines, de la qual el 75-85% són plàstics, causa greus problemes en la biodiversitat, els seus hàbitats i l’economia. De fet, se sap que cada any moren un milió d’aus i 100.000 mamífers marins a causa del plàstic.

El problema del plàstic també afecta la nostra salut. Segons un estudi publicat en les últimes setmanes, s’han detectat microplàstics en els excrements de totes les persones que van participar en l’estudi. La presència de plàstics en el cos pot posar en risc el sistema immunològic i causar malalties a causa de les seves toxines.

COM VIURE SENSE PLÀSTIC?

Hem de reconèixer que, actualment, viure sense plàstic és bastant complicat. El motiu és que és infinitament més fàcil trobar un producte en envàs de plàstic que de vidre o, fins i tot, sense envàs, és a dir, a granel. Significa això que no podrem guanyar-li la batalla al plàstic? Evidentment, no, però haurem d’esforçar-nos una mica.

PLÀSTICS PROHIBITS PER LA UNIÓ EUROPEA

Ja hem dit que la Unió Europea prohibirà alguns objectes de plàstic a partir del 2021. Aquests objectes són els plats, gots i coberts, les canyes de begudes i els bastonets de les orelles. Ja que en poc més de dos anys no els trobarem a les botigues, avança’t a la prohibició i implanta aquestes alternatives.

Utilitzar coberts, plats i gots de plàstic a una festa amb molta gent és còmode, i si són de colors fins i tot és divertit, però és totalment insostenible. Alternatives:

  • Actualment en el mercat pots trobar aquests objectes fets amb materials alternatius. En concret, solen estar fets de blat de moro, de manera que en acabar la teva festa o pícnic pots llençar-los a la fracció orgànica, ja que són compostables. També els pots trobar de paper, encara que són menys resistents i menys sostenibles.
  • Una altra alternativa és utilitzar els teus coberts metàl·lics, els teus plats de ceràmica i els teus gots de vidre. Més simple, més intel·ligent i més sostenible!

Les canyes de plàstic són un problema per al medi ambient, ja que moltes acaben al mar.

Només als Estats Units, cada dia se’n consumeixen 500 milions. Potser pensaràs que això és perquè es tracta d’un país molt poblat. Doncs bé, a Espanya cada dia se’n consumeixen 13 milions i és el país europeu en què més es consumeixen. Si ets dels que necessites sí o sí beure un refresc o còctel amb una canyeta, tenim alguna alternativa per a tu.

  • A casa podem fer servir canyes de bambú o metàl·liques reutilitzables. Són igual d’efectives i estaràs col·laborant en evitar que imatges com les del vídeo es repeteixin.
  • De debò que necessites beure amb una canyeta? Si en un bar, pub, club o restaurant només les tenen de plàstic, rebutja-la (però abans que et portin la beguda!). Segur que sobreviuràs!

Els bastonets de les orelles són un altre dels objectes prohibits a partir de 2021 ja que és un dels que més es troba entre la brossa marina.

bastoncillos oidos, basura marina, caballito de mar, plastico, plastico marino, residuo zero, justin hofman
Els bastonets de les orelles estaran prohibits a partir de 2021 (Foto: Justin Hofman)

A part de que les autoritats sanitàries només aconsellen el seu ús per la part externa de l’orella, si no pots evitar el seu ús, hauries optar per aquestes alternatives:

  • Al mercat hi ha bastonets fets amb bambú o altres fustes que vénen, a més, en caixes de cartró normalment reciclat.
  • Si vols ser encara més sostenible i reduir la teva producció d’escombraries, hi ha una altra alternativa millor: compra un bastonet metàl·lic com el et recomanem en aquest article i posa un tros de tela net en una punta perquè absorbeixi l’aigua de la dutxa.

ALTERNATIVES SOSTENIBLES A ALTRES OBJECTES DE PLÀSTIC

Les ampolles de plàstic també danyen al medi ambient. Sabies que triguen fins a 1.000 anys a degradar-se? A més, per elaborar cada ampolla de plàstic calen 100 ml de petroli. Segur que molts estareu pensant en les d’aigua, però la veritat és que això val també pels sabons, detergents, suavitzants… Veient com aquestes ampolles es van acumulant, et donem alguns consells:

  • Compra ampolles de major grandària. Cal menys plàstic per a una ampolla de 1L que per a 4 de 250 ml.
  • Per al cas concret de l’aigua, fes servir cantimplores per evitar l’ús del plàstic. Pots beure l’aigua de l’aixeta si a la teva població té la qualitat adequada, però si no és el cas pots instal·lar una osmosi o bé comprar garrafes d’aigua (recorda el que hem dit en el punt anterior).
  • Mira quins productes consumeixes a casa en ampolles de plàstic i busca per la teva zona alguna botiga que els vengui a granel. Per al cas de detergents, suavitzants, sabons… a Catalunya hi ha una cadena que els ven a granel.

Les bosses de plàstic, tot i que s’està reduint el seu ús des de que és obligatori cobrar-les, són un altre problema. A Espanya, segons Cicloplast, cada any es consumeixen 97.000 tones de bosses de plàstic, de les que en prou feines se’n reciclen el 10%.

  • Que fàcil i còmode és anar a comprar amb bosses de tela, un carro o cistella de la compra!

Per acabar, ara ens centrarem en les safates de poliestirè i el plàstic film. Aquests dos elements són cada vegada més freqüents en supermercats i llars, ja que en supermercats i grans superfícies venen el seu producte fresc envasat en ells. Alguns consells:

  • Si el teu supermercat només ven la carn, el peix… en aquests envasos, opta per un comerç local, que ho vendran a granel i a més podràs comprar la quantitat justa que necessitis.
  • Ves a comprar en botigues a granel i porta les teves carmanyoles (millor de vidre) de casa per evitar el paper plastificat (el qual va als abocadors) o els esmentats objectes. L’ús de carmanyoles, segons el Departament de Salut de la Generalitat de Catalunya, no suposa cap risc alimentari ni sanitari, de manera que si els rebutgen ho faran purament perquè no volen col·laborar en la guerra contra el plàstic. Et representa un supermercat així?

Som conscients que ens hem deixat moltes coses per comentar, i és que el plàstic està molt present en les nostres vides, però el millor és prendre consciència dels plàstics que generem cada dia per buscar una alternativa a cada un d’ells.

Què fas tu per a evitar l’ús del plàstic? Deixa’ns els teus consells en els comentaris perquè altres s’uneixin a aquesta guerra contra el plàstic.

(Foto de portada: El Observador Crítico)

Insectes cada cop més petits: el fenòmen de la miniaturització

Segons alguns estudis, els organismes multicel·lulars tendeixen a fer-se cada vegada més petits. Aquest procés, conegut com miniaturització, és una de les principals tendències evolutives dels insectes. La miniaturització és un motor per a la diversitat i les innovacions evolutives; tanmateix, també dóna lloc a certes limitacions.

T’expliquem en què consisteix aquest fenomen i et presentem alguns dels casos més extrems de miniaturització entre els insectes.

Per què els animals són cada cop més petits?

Des de fa anys, múltiples estudis apunten que entre els animals multicel·lulars (tots aquells formats per més d’una cèl·lula) hi ha una tendència força estesa a la miniaturització.

La miniaturització és el procés evolutiu encaminat a l’adquisició de cossos extremadament petits. El fenomen de la miniaturització s’ha observat en grups animals molt diversos, per exemple:

  • Musaranyes (Soricomorpha: Soricidae), mamífers.
  • Colibrís (Apodiformes: Trochilidae), aus.
  • Diversos grups d’insectes i d’aràcnids.

Per saber més sobre insectes gegants, pots llegir “La mida sí que importa (pels insectes)!

Al llarg de l’evolució, la diversificació i els fenòmens d’especiació han donat lloc a moltíssimes noves espècies, totes competint per un espai i uns nínxols ecològics cada vegada més limitats. Aquesta situació és encara més extrema en les regions tropicals, on les taxes de diversificació són increïblement altes.

Aprèn més sobre el concepte de nínxol ecològic llegint “L’espai vital dels éssers vius“.

Davant d’una necessitat creixent de recursos i espai, l’evolució ha donat lloc a fenòmens tan curiosos com la miniaturització: fent-se més petits, els organismes (ja siguin de vida lliure o paràsits) poden accedir a nous nínxols ecològics, adquirir noves fonts d’aliment i evitar la depredació.

Si bé existeixen diversos grups d’animals que tendeixen a la miniaturització, aquest fenomen es manifesta en major proporció entre els artròpodes, sent una de les seves tendències evolutives més significatives. D’altra banda, els artròpodes ostenten el rècord a presentar alguns dels animals multicel·lulars més petits coneguts fins a dia d’avui; alguns, fins i tot tan petits com … una ameba!

El Rècord Guinness dels insectes més petits del món

Els artròpodes més petits pertanyen a la subclasse de crustacis Tantulocarida, coneguts per ser ectoparàsits d’altres crustacis de major mida, com copèpodes o amfípodes. L’espècie Tantulacus dieteri és considerada fins a dia d’avui l’espècie d’artròpode més petita del món, amb només 85 micròmetres (0,085 mil·límetres), molt més petit que alguns éssers unicel·lulars.

Tanmateix, els insectes no es queden enrere.

Mymaridae

Els mimàrids són una família de vespes de la superfamília Chalcidoidea pròpies de regions temperades i tropicals. Els adults, usualment de 0,5 a 1 mil·límetre de longitud, viuen com a paràsits d’ous d’altres insectes (p. ex. xinxes). Com a conseqüència del seu estil de vida, se’ls considera de gran importància en el control biològic de plagues. A més a més, es troben entre els insectes més petits del món.

Actualment, el rècord als insectes més petits del món l’ostenten els mascles adults àpters (sense ales) de l’espècie de mimàrid Dicopomorpha echmepterygis, de Costa Rica, amb una mida mínima registrada de 0,139 mil·límetres. A banda de no presentar ales, tampoc tenen ulls ni peces bucals, i les seves potes acaben en una mena de ventoses que els permeten adherir-se a les femelles (més grans i alades) el temps suficient per fecundar-les. Són més petits que un parameci, un organisme unicel·lular!

Pots llegir “Microbiologia bàsica (I): el món invisible” per saber més sobre organismes unicel·lulars.

Mascle de D. echmepterygis; sense ulls ni peces bucals, el mascle d’aquesta espècie viu adherit a la femella. Link.

Els mimàrids també inclouen l’insecte volador més petit del món: l’espècie Kikiki huna de Hawaii, d’una mida aproximada de 0,15 mil·límetres.

Trichogrammatidae

Igual que els mimàrids, els tricogrammàtids són petits calcidoïdeus paràsits d’ous d’altres insectes, especialment de lepidòpters (papallones i arnes). Els adults de la majoria de les espècies mesuren menys d’1 mil·límetre i es distribueixen mundialment. Els mascles d’algunes espècies són àpters i s’aparellen amb les seves germanes dins dels ous parasitats on neixen, morint poc després sense ni tan sols abandonar aquest espai.

El gènere Megaphragma conté dos dels insectes més petits del món després dels mimàrids: Megaphragma caribea (0,17 mil·límetres) i Megaphragma mymaripenne (0,2 mil·límetres), de Hawaii.

A) M. mymaripenne; B) Paramecium caudatum. Link.

Els tricogrammàtids presenten un dels sistemes nerviosos més petits coneguts, i el de l’espècie M. mymaripenne és, fins a dia d’avui, un dels més reduïts i especials del món animal: està format per tan sols 7400 neurones sense nucli, un fet únic. Durant la fase de pupa, aquesta espècie desenvolupa neurones amb nuclis plenament funcionals que sintetitzen proteïnes suficients per a tota l’etapa adulta de l’insecte. Un cop assolida l’adultesa, les neurones perden el nucli i esdevenen petites, fet que estalvia molt d’espai.

Ptiliidae

Els ptílids són una família cosmopolita de petits escarabats caracteritzada per incloure els insectes no paràsits més petits del món, pertanyents als gèneres Nanosella i Scydosella.

Els ous dels ptílids són molt grans en comparació amb la mida de les femelles adultes, de manera que aquestes només desenvolupen i posen un únic ou cada vegada. D’altra banda, moltes espècies experimenten partenogènesi.

Coneix el fenomen de la partenogènesi llegint “Immaculada Concepció … en rèptils i insectes“.

Actualment, l’espècie d’escarabat més petita coneguda i, per tant, l’espècie d’insecte no paràsit (de vida lliure) més petita del món, és Scydosella musawasensis (0,3 mil·límetres), citada de Nicaragua i Colòmbia.

Scydosella musawasensis. Link (imatge original: Polilov, A (2015) How small is the smallest? New record and remeasuring of Scydosella musawasensis Hall, 1999 (Coleoptera, Ptiliidae), the smallest known free-living insect).

Conseqüències de la miniaturització

La miniaturització comporta tot un seguit de modificacions anatòmiques i fisiològiques, generalment adreçades a la simplificació d’estructures. Segons Gorodkov (1984), el límit de la miniaturització es trobava en 1 mil·límetre, per sota del qual es produirien grans simplificacions que farien inviable la vida multicel·lular.

Si bé aquesta simplificació ocorre en certs grups d’invertebrats, els insectes han demostrat que poden superar aquest llindar sense massa signes de simplificació (conservant un gran número de cèl·lules i presentant una major complexitat anatòmica que altres organismes de mida similar) i, fins i tot, donar lloc a estructures noves (com el cas de les neurones sense nucli de M. mymaripenne).

Tot i que els insectes porten molt bé això de la miniaturització, fer-se tan petit no sempre surt gratis:

  • Simplificació o pèrdua de certes funcions fisiològiques: pèrdua d’ales (i, conseqüentment, de la capacitat de vol), potes (o modificacions extremes de les mateixes), peces bucals, òrgans sensorials.
  • Canvis considerables en els efectes associats a certes forces físiques o a paràmetres ambientals: forces capil·lars, viscositat de l’aire o taxa de difusió, tots ells associats a la reducció extrema dels sistemes circulatori i traqueal (o respiratori). És a dir, ser més petit altera els moviments interns de gasos i líquids.

Així doncs, la miniaturització té un límit?

La resposta és . Tot i que els insectes s’hi resisteixen.

Existeixen diverses hipòtesis sobre aquest tema, cadascuna amb un òrgan diferent com a element limitant. De tots ells, el sistema nerviós i el reproductiu, a més dels òrgans sensorials, són força intolerants a la miniaturització; han de ser prou grans perquè siguin funcionals. Per sota d’una mida crítica, les seves funcions es veurien compromeses i, amb elles, la vida multicel·lular.

.             .            .

La vida animal multicel·lular sembla no tenir fre a l’hora de reduir-se. Descobrirem algun insecte encara més petit? Les investigacions i el temps ens ho diran.

Imatge de portada: link.

La farmacogenètica: un fàrmac per a cada persona

Qui no ha sentit a algú queixar-se de que els medicaments receptats pels metges no li fan res? Pot ser això cert? No tots els fàrmacs serveixen per a la mateixa població. Segueix llegint i descobreix els secrets de la farmacogenètica.

INTRODUCCIÓ

El mateix que passa amb els nutrients, passa amb els fàrmacs. Un altre dels objectius de la medicina personalitzada és fer-nos veure que no tots els medicaments serveix per a totes les persones. No obstant, això no és nou perquè cap allà al 1900, el metge canadenc William Osler va reconèixer que existia una variabilitat intrínseca i pròpia de cada individu, de manera que cada persona reacciona de forma diferent davant d’un fàrmac. És així com anys més tard definiríem la farmacogenètica.

És important assenyalar que no és el mateix que la farmacogenómica, la qual estudia les bases moleculars i genètiques de les malalties per desenvolupar noves vies de tractament.

Abans de tot necessitem començar pel principi: què és un fàrmac? Doncs bé, un fàrmac és tota substància fisicoquímica que interactua amb l’organisme i el modifica, per tractar de curar, prevenir o diagnosticar una malaltia. És important saber que els fàrmacs regulen funcions que fan les nostres cèl·lules, però no són capaces de crear noves funcions.

A part de conèixer si un fàrmac és bo o no per a una persona, també s’ha de tenir en compte la quantitat d’aquest que s’ha d’administrat. I és que encara no coneixem l’origen de totes les malalties, és a dir, desconeixem la majoria de les causes moleculars i genètiques reals de les malalties.

La classificació de les malalties es basa principalment en símptomes i signes i no en les causes moleculars. A vegades, un mateix grup de patologies és agrupat, però entre ells existeix una base molecular molt diferent. Això comporta que l’eficàcia terapèutica sigui limitada i baixa. Davant els fàrmacs, podem manifestar una resposta, una resposta parcial, que no ens produeixi cap efecte o que l’efecte sigui tòxic (Figura 1).

efectivitat i toxicitat
Figura 1. Efectivitat i toxicitat d’un fàrmac a la població. Els diferents colors mostren les diferents respostes (verd: efectiu i segur; blau: segur, però no efectiu; vermell: tòxic i no efectiu; groc: tòxic, però efectiu) (Font: Mireia Ramos, All You Need is Biology)

ELS FÀRMACS AL NOSTRE COS

Els fàrmacs acostumen a fer el mateix recorregut pel nostre cos. Quan ens prenem un fàrmac, normalment per via digestiva, aquest és absorbit pel nostre cos i va a parar al torrent sanguini. La sang el distribueix als teixits diana on ha de fer efecte. En aquest cas parlem de fàrmac actiu (Figura 2). Però no sempre és així, sinó que a vegades necessita activar-se. És llavors quan parlem de profàrmac, el qual necessita fer escala al fetge abans d’aterrar al torrent sanguini.

La majoria de les vegades, el fàrmac que ingerim és actiu i no necessita passa a visitar al fetge.

active and prodrug
Figura 2. Diferència entre un profármac i un fármac actiu (Font: Agent of Chemistry – Roger Tam)

Una vegada que el fàrmac ja ha anat al teixit diana i ha interactuat amb les cèl·lules en qüestió, es produeixen deixalles del fàrmac. Aquestes restes continuen circulant per la sang fins a arribar al fetge, que els metabolitza per a expulsar-los per una de les dues vies d’expulsió: (i) la bilis i excreció junt amb els excrements o (ii) la purificació de la sang pels ronyons i la orina.

LA IMPORTÀNCIA DE LA FARMACOGENÈTICA

Un clar exemple de com segons els polimorfismes de la població hi haurà diferent variabilitat de resposta el trobem en els gens transportadors. La glicoproteïna P és una proteïna situada a la membrana de les cèl·lules, que actua com a bomba d’expulsió de xenobiòtics cap a l’exterior de la cèl·lula, és a dir, tots els compostos químics que no formen part de la composició dels organismes vius.

Els humans presentem un polimorfisme que ha estat molt estudiat. Depenent del polimorfisme que posseeixi cada individu, la proteïna transportadora tindrà una activitat normal, intermèdia o baixa.

En una situació normal, la proteïna transportadora produeix una excreció bastant alta del fàrmac. En aquest cas, la persona és portadora de l’al·lel CC (dues citosines). Però si només té una citosina, combinada amb una timina (totes dues són bases pirimidíniques), l’expressió del gen no és tant bona i l’activitat d’expulsió és menor, donant una situació intermèdia. En canvi, si una persona presenta dues timines (TT), l’expressió de la glicoproteïna P a la membrana de la cèl·lula serà baixa. Això suposarà una menor activitat del gen responsable i, conseqüentment, major absorció en sang ja que el fàrmac no és excretat. Aquest polimorfisme, el polimorfisme TT, és perillós pel pacient, ja que passa molt fàrmac a la sang, resultant tòxic pel pacient. Per tant, si el pacient és TT la dosis haurà de ser menor.

Aquest exemple ens demostra que coneixent el genoma de cada individu i com actua segons el seu codi genètic en base a ell, podem saber si l’administració d’un fàrmac a un individu serà l’adequada o no. I en base a això, podem receptar un altre medicament que s’adapti millor a la genètica d’aquesta persona.

APLICACIONS DE LA FARMACOGENÈTICA

Les aplicacions d’aquestes disciplines de la medicina de precisió són moltes. Entre elles es troben optimitzar la dosi, escollir el fàrmac adequat, donar un pronòstic del pacient, diagnosticar-lo, aplicar la teràpia gènica, monitoritzar el progrés d’una persona, desenvolupar nous fàrmacs i predir possibles respostes adverses.

Els progressos que han tingut lloc en la genòmica, el disseny de fàrmacs, teràpies i diagnòstics per a les diferents patologies, han avançat notablement en els últims anys, i han donat pas al naixement d’una medicina més adaptada a les característiques de cada pacient. Ens trobem, per tant, al llindar d’una nova manera d’entendre les malalties i la medicina.

I això es produeix en una època en la que es vol deixar enrere el món de pacients que davant una malaltia o malestar són atesos i diagnosticats de la mateixa manera. Per rutina, se’ls prescriuen els mateixos medicaments i dosis. Per aquest motiu ha sorgit la necessitat d’una alternativa científica que, basada en el codi genètic, ofereix tractar al malalt de manera individualitzada.

REFERÈNCIES

  • Goldstein, DB et al. (2003) Pharmacogenetics goes genomic. Nature Review Genetics 4:937-947
  • Roden, DM et al. (2002) The genetic basis of variability in drug responses. Nature Reviews Drug Discovery 1:37-44
  • Wang, L (2010) Pharmacogenomics: a system approach. Syst Biol Med 2:3-22
  • Ramos, M. et al. (2017) El código genético, el secreto de la vida. RBA Libros
  • Foto portada: Duke Center for Applied Genomics & Precision Medicine

MireiaRamos-catala2