Arxiu de la categoria: DIVERSITAT VEGETAL

Pedres vives: plantes que semblen roques

Si donessis una passejada per certs deserts, et trobaries amb unes pedres molt especials: “pedres” vives. Lògicament, roques i pedres són elements inerts, així que un cop d’ull des de més a prop et descobriria que en realitat, es tracta de plantes que han adoptat aspecte de pedra. Vols saber per què? 

PEDRES VIVES: PLANTES QUE SEMBLEN ROQUES

Sota el nom popular de pedres vives o plantes pedra, trobem diferents gèneres de plantes suculentes. Com ja sabràs, les plantes suculentes o plantes crasses són totes aquelles que tenen una gran capacitat d’emmagatzematge d’aigua. Algunes de les seves estructures, habitualment les fulles o tija, presenten un aspecte carnós a causa d’aquesta especialització per emmagatzemar aigua. D’aquesta manera, aquestes reserves els permeten sobreviure en ambients molt àrids o a períodes d’escassetat d’aigua. Un exemple molt conegut de suculentes amb fulles carnoses és el Aloe vera, i en el cas de tiges suculentes, els cactus.

Planta de Aloe vera, amb una fulla tallada en primer pla on es veu la part suculenta. Foto: Indianmart

Sota el nom de plantes pedra trobem diferents espècies de diferents famílies. Les més conegudes són les que pertanyen al gènere Lithops, originàries d’Àfrica, ja que es conreen com a plantes ornamentals. Altres plantes que semblen pedres són l’espècie Dioscorea elephantipes (peu d’elefant) i Fredolia aretioides, també africanes. Als Andes trobem la Azorella compacta. Vegem amb més detall aquestes quatre pedres vives.

Lithops camuflades entre pedretes. Foto: Xocolatl

LITHOPS SP. 

Dins del gènere Lithops trobem diverses espècies, totes amb aspecte de petites pedres o còdols.

Com ja sabem, per sobreviure en ambients àrids les plantes poden acumular aigua al seu interior. A més, redueixen la superfície de contacte de les seves fulles amb l’aire, per minimitzar la pèrdua d’aigua per transpiració. El cas més extrem el trobem en els cactus, amb fulles diminutes i molt dures: les punxes.

cactus puas punxes tija suculenta tallo suculento
Las punxes dels cactus son, en realitat, fulles modificades, i la part verda correspon a la tija carnosa. Foto: freestockcenter

En el cas de les Lithops (del grec: “lithos” -pedra- i “ops” -forma-) , només tenen a l’exterior un parell de fulles suculentes de 2 a 5 centímetres, amb aspecte de petites pedres, ja que a més tenen unes petites taques blanques a la superfície. Aquest aspecte de pedra també contribueix a que passin desapercebudes pels seus depredadors. Aquesta estratègia (confondre’s amb l’entorn) es coneix com a  cripsi.

Lithops en un test en diferents estadis de creixement. S’observen les dues fulles de cada planta. Foto: yellowcloud

En realitat, aquestes taques són zones translúcides, sense clorofil·la, perquè la llum pugui penetrar cap a la resta de la planta, que és plana i roman sota terra. Entre les dues fulles madures, trobem un teixit per on es dona el creixement del parell de fulles noves. Un cop les dues fulles noves han emergit del centre de la planta, les dues velles es marceixen i moren.

Tall longitudinal d’una Lithops. S’observa el teixit central per on creixeran les noves fulles, el teixit translúcid suculent, el teixit verd fotosintètic i el teixit translúcid per on entra la llum (epidermis superior). Foto: C T Johansson
REPRODUCCIÓ DE LES LITHOPS

Les Lithops es reprodueixen de manera asexual (esqueixos) i sexual (llavors). Tot i això, la reproducció per esqueixos només és possible si la planta s’ha dividit de maneral natural, de manera que si la tallem i plantem abans que s’hagi dividit, no es desenvoluparà com una nova planta. És per això que principalment la reproducció és mitjançant llavors, que produeix una flor molt vistosa que emergeix entre les dues fulles de la planta. Observa aquest time-lapse de 7 dies de la floració d’una Lithops:

El seu curiós aspecte, bellesa en època de floració i fàcil manteniment, han fet de les Lithops  una planta ornamental en cases i jardins. Si tens una i vols saber si li estàs donant les cures adequades, en aquesta pàgina trobaràs consells per el seu manteniment i reproducció.

Si encara vols saber més sobre Lithops i altres gèneres de plantes pedra, et recomanem aquest vídeo (en castellà).

PEU D’ELEFANT

Dioscorea elephantipes, coneguda com peu d’elefant, closca de tortuga o pa de Hottentot, és una planta enfiladissa de fulla caduca. La seva tija carnosa està parcialment enterrada, plena de fissures i coberta per una dura escorça. Això li dóna un aspecte rocós, similar a la pell d’un elefant o a la closca d’una tortuga, com el seu nom popular suggereix. A més, aquesta planta acumula en les seves reserves grans quantitats de midó, pel que també se la coneix com pa de Hottentot.

Tija de Dioscorea elephantipes a l’estiu. S’observen els brots secs al centre. Foto: Hectonichus

A l’hivern, apareixen brots verds amb flors grogues, que creixeran fins a morir a l’estiu, època de màxima aridesa (recordem que és de fulla caduca). En aquest moment la planta entra en un estat de latència o adormiment i pràcticament no tornarà a necessitar aigua fins a l’aparició dels següents brots.

Peu d’elefant a l’estiu. S’observen brots amb fulles a la part superior. Foto: Natalie Tapson

A diferència de les Lithops, el peu d’elefant pot arribar a un metre d’alçada i tres de circumferència, encara que el seu creixement és molt lent. Però igual que les Lithops, la seva forma tendeix a l’esfera. Això és perquè l’esfera és la forma geomètrica que tanca més volum oferint menor superfície a l’exterior. Amb això s’aconsegueix que la planta pugui créixer minimitzant la superfície de contacte amb l’aire, reduint així la pèrdua d’aigua per transpiració.

Si penses en la gran quantitat de formes aproximadament esfèriques que trobem en els éssers vius (ous, llavors, fruits, animals, etc.), possiblement es degui a aquesta raó: màxim volum (de reserves nutritives, de volum corporal) utilitzant una mínima superfície (menys transpiració, menys pèrdua de calor, menys superfície que oferir als depredadors…). Si vols aprofundir en el tema (i altres formes) es tracta d’una idea del desaparegut Jorge Wagensberg, que tracta en el seu llibre La rebel·lió de les formes i inspira una exposició permanent al CosmoCaixa de Barcelona.

FREDOLIA ARETIOIDES

Fraedolia aretioides passant desapercebuda en el sòl del Sàhara. Foto: Rafael Medina

Fredolia aretioides, que viu al nord del Sàhara, utilitza la mateixa estratègia que la planta peu d’elefant: una forma pràcticament esfèrica per evitar al màxim la pèrdua d’aigua. A diferència de l’anterior no té una escorça dura, i a diferència de Lithops, té més de dues fulles. La planta consta de multitud de tiges i fulles endurides i de creixement compacte. Aquestes fulles són d’un color verd-grisós, el que li dóna un aspecte més rocós, que la confón entre les roques  del desert.

AZORELLA COMPACTA

Azorella compacta, llareta o yareta, és l’única planta pedra de les que tractem aquí que no viu a les zones àrida d’Àfrica. Es distribueix per Sud-amèrica, concretament pels Andes, de 3.200 metres a 4.800 metres per sobre del nivell del mar. Està perfectament adaptada a la gran insolació que rep el sòl a aquesta altitud, que a més, a la Puna andina és negre o gris causa del seu origen volcànic. Això vol dir que arran de terra la temperatura de l’aire és un grau o dos superior a la temperatura ambient.

Yareta als Andes. Foto: Pedro Szekely

A la yareta, tot i ser d’una altra família i créixer en un ambient diferent que Fredolia, l’evolució l’ha dotat de la mateixa estratègia per evitar la pèrdua d’aigua: forma arrodonida, tiges compactes i fulles petites i endurides. Igual que les anteriors espècies que hem vist, també es reprodueix per llavors i les seves flors són groc-verdoses.

CONCLUSIÓ

Per acabar, podem concloure que tot i amb d’orígens diferents, l’evolució ha portat a totes aquestes plantes a solucions semblants a l’escassetat d’aigua, a suportar elevades insolacions i a evitar perdre temperatura durant la nit: dotant-les de formes pràcticament esfèriques per reduir la seva relació entre la superfície i volum. A més, aquesta adaptació es complementa amb la reducció del nombre o grandària de les fulles i l’acumulació d’aigua i substàncies nutritives al seu interior.

 

Foto de portada: ellenm1 (Flickr)

Les illes com a laboratori de l’evolució

Les illes són laboratoris naturals on estudiar l’evolució en viu. Ja siguin d’origen volcànic o continental, el fet d’estar aïllades del continent pel mar fa que molts dels éssers vius que s’hi desenvolupen presentin adaptacions espectaculars, de vegades originant-se espècies gegants o nanes en comparació amb els seus congèneres continentals. En aquest article, descrivim quins són els mecanismes evolutius que expliquen aquest fenomen i posem alguns exemples ben sorprenents.

L’origen de les illes pot ser volcànic, que implica l’aparició de terres verges les quals que poden ser colonitzades per uns pocs individus i produir-se noves adaptacions a les noves condicions, o bé continental, que implica la separació del continent per processos tectònics, amb el que la fauna i flora abans connectada, s’aïlla i acaba diferenciant-se amb els pas de les generacions.

hawai_steve-juverston_flickr
Aspecte d’un con volcànic a Hawaii. Font: Steve Juverston, via Flickr.

MECANISMES EVOLUTIUS QUE ACTUEN EN ILLES

La generació de noves espècies provocada per l’aparició d’una barrera geogràfica, com pot ser l’aparició d’una serralada, canvis en el nivell del mar o creació de noves illes per moviments tectònics, s’anomena especiació al·lopàtrica i és el principal procés que actua en illes. Pot ser de dos tipus:

  1. Especiació vicariant: quan dues poblacions de la mateixa espècie són separades en el nostre cas per separació d’un tros de terra del continent. Un exemple d’aquest cas és l’illa de Madagascar, que quan es va separar del continent africà va deixar la biota de l’illa desconnectada de la del continent pel mar.
  1. Especiació peripàtrica: quan una petita població d’una espècie es separa de la població original per l’aparició d’una barrera geogràfica. És el cas de la colonització d’una terra verge com són les illes oceàniques. En aquest cas, els individus que colonitzen el nou ambient poden no representar l’espècie ancestral i amb el pas del temps i l’aïllament reproductiu, originar-se una espècie nova pel que s’anomena efecte fundador.

El gran naturalista britànic i creador de la teoria de l’evolució, Charles Darwin, va inspirar-se en les seves troballes a l’arxipèlag d’origen volcànic de les illes Galàpagos, per desenvolupar la seva gran teoria, paradigma de la ciència actual.

Les illes oceàniques es formen per explosió de volcans submarins o moviments de la dorsal oceànica. Degut a l’activitat volcànica, es formen conjunts d’arxipèlags, on cada illa té una història pròpia, amb un clima, relleu i geologia diferenciat. Això crea un escenari perfecte per observar com funciona l’evolució, ja que cada població que arriba a una nova illa es veu afectada per pressions ecològiques diferents i potser mai més entrarà en contacte amb les poblacions d’altres illes, formant-se espècies úniques, endèmiques de cada illa. Molts naturalistes i científics han estudiat l’evolució en viu en arxipèlags d’aquestes característiques, com les illes de Hawaii, Seychelles, Illes Mascarenyes, arxipèlag de Juan Fernández o les nostres Illes Canàries. Una de les últimes illes aparegudes a l’oceà Atlàntic és l’illa de Suerty que es va formar l’any 1963 30 km al sud d’Islàndia i des de llavors l’arribada de vida hi ha estat documentada i estudiada per comprendre una mica més els mecanismes ecològics i evolutius que hi actuen.

surtsey_eruption_1963_wikimedia
Illa de Suerty en erupció, al Sud d’Islàndia. Font: Wikimedia

ADAPTACIONS EN ILLES: GIGANTISME I LLENYOSITAT

Moltes vegades, les illes oceàniques, al ser verges, no tenen depredadors i això desencadena l’aparició d’adaptacions ben curioses. Un dels processos més sorprenents és el gigantisme, en animals o adquisició de condició llenyosa, en plantes.

L’adquisició de llenyositat en illes per part de plantes herbàcies al continent ha estat força documentat en diverses famílies i arxipèlags d’arreu del món. La causa d’aquest fenomen seria l’absència d’herbívors i competidors en illes, que permetria un desenvolupament major en alçada en la busca de llum.

Per exemple, a Hawaii trobem l’exemple de l’aliança de les espases platejades de Hawaii. Compren 28 espècies en tres gèneres (Argyroxiphium, Dubautia i Wilkesia), tots membres llenyosos de la família dels gira-sols o Asteraceae. Els seus parents més propers són herbes perennes de Nord Amèrica.

hawai
Aspecte d’una espasa platejada del gènere Argyroxiphium (esquerra) i els seus parents més proers al continent (dreta), del gènere Raillardella. Font: Wikimedia.

A les Illes Canàries trobem molts exemples d’aquest fenomen. El gènere Echium de la família de les borratges o Boraginaceae, conté unes 60 espècies, de les quals 27 es troben a diferents arxipèlags d’origen volcànic de la Macaronèsia (Canàries, Madeira i Cap Verd). Gairebé tots els membres d’aquest gènere que trobem a la Macaronesia són arbusts, que formen una inflorescència que pot arribar fins als 3 m d’alçada i són el símbol del Parc Natural del Teide (els coneguts tajinastes), mentre que els seus parents més propers, euroasiàtics, són herbes, com per exemple la llengua de bou (Echium vulgare).

echium
Aspecte d’un tajinaste vermell (esquerra) a Tenerife i els seu parent continental (Echium vulgare) a la dreta. Font: Wikimedia.

També a la Macaronèsia, trobem un un altre exemple dins la família de les Euphorbiaceae o lleterasses. És el cas de les espècies Euphorbia mellifera, endèmica de Canàries i Madeira i E. stygiana, endèmica de Azores. Es tracta d’arbres en perill d’extinció o críticament amenaçats, segons la IUCN, que poden arribar a fer fins a 15 m d’alçada i que formen part de la vegetació de laurisilva, el bosc subtropical humit típic macaronèsic. Els seus ancestres més propers són plantes herbàcies del Mediterrani.

euphorbia
Euphorbia mellifera a Maderia (esquerra) i un dels seus parents més propers herbàcies del Mediterrani (dreta, E. palustris). Font: esquerra Laia Barres González i dreta Wikimedia.

Dins el regne dels animals, també trobem adaptacions peculiars en illes Els animals herbívors que habiten illes no solen tenir grans depredadors ni competidors i això facilita que apareguin espècies de dimensions més grans que al continent, on la presència de grans carnívors evitaria l’aparició d’aquest tipus de característiques per la incompatibilitat amb amagar-se o fugir de la presa.

Un dels exemples més famosos de gigantisme insular és el cas de les tortugues gegants de les Galàpagos (complex Chelonoidis nigra), que engloba unes 10 espècies diferents, moltes endèmiques de una única illa de l’arxipèlag. Són les tortugues més grans i longeves del món. Poden arribar als 2 m de llarg i als 450 kg de pes i poden viure més de 100 anys.

galapagos_geochelone_nigra_porteri_wikipedia
Tortuga gegant de les Galàpagos. Font: Wikipedia.

D’entre els rèptils, també hi ha el cas dels llangardaixos gegants del gènere Gallotia de les Illes Canàries. Són diverses espècies endèmiques de cada una de les illes: G. auaritae de La Palma, que es creia extinta fins el descobriment de diversos individus l’any 2007, G. bravoana de La Gomera, G. intermedia de Tenerife, G. simonyi d’El Hierro i G. stehlini de Gran Canaria, d’entre d’altres. D’entre els llangardaixos gegants de les Canàries hi ha l’extint Gallotia goliath, que podia arribar fins a 1 m de llarg i del qual actualment es pensa que s’inclou dins la circumscripció de G. simony.

gran-canaria-gallotia-stehlini_flickr_el-coleccionista-de-instantes-fotografia-video
Gallotia stehlini de Gran Canaria. Font: El coleccionista de instantes Fotografía & Vídeo via Flickr.

Un altre exemple el trobem a l’illa de Flores, a Indonèsia, on existeix una espècie de rata gegant (Papagomys armandvillei) que arriba a fer el doble que una rata comú. Curiosament, en aquesta illa es van trobar fòssils d’un homínid que va experimentar el procés contrari, ja que es tractava de primats enans, en comparació amb les mides actuals del ser humà. Es tracta de l’Homo floresiensis, que només feia 1 m d’alçada i pesava 25 kg. Es va extingir fa uns 50000 anys i va conviure amb l’Homo sapiens.

giant-rat_pinterest
Rata gegant (Papagomys armandvillei) de l’illa de Flores. Font: Wikimedia.

El nanisme és un altre dels processos evolutius que es poden donar en illes. Provocat per l’absència de recursos en algunes illes, en comparació al continent d’on provenen les poblacions originals.

Malauradament, les illes, per albergar una biota tan peculiar i exclusiva, són també testimonis de molts casos de sobreexplotació i extinció d’espècies. La biologia de la conservació en illes ens ajuda a entendre i conservar aquest patrimoni natural tan ric i únic.

Laia-català

REFERÈNCIES

Barahona, F.; Evans, S. E.; Mateo, J.A.; García-Márquez, M. & López-Jurado, L.F. 2000. Endemism, gigantism and extinction in island lizards: the genus Gallotia on the Canary Islands. Journal of Zoology 250: 373-388.

Böhle, U.R., Hilger, H.H. & Martin, W.F. 2001. Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae). Proceedings of the National Academy of Sciences 93: 11740-11745.

Carlquist, S.J. 1974. Island biology. New York: Columbia University Press.

Foster, J.B. 1964. The evolution of mammals on islands. Nature 202: 234–235.

Whittaker, R.J. & Fernández-Palacios, J.M. 2007. Island biogeography: ecology, evolution, and conservation, 2nd edn. Oxford University Press, Oxford.

Les epífites, les plantes que no necessiten sòl

Sovint es diu que les plantes epífites viuen de l’aire i realment sembla així, ja que són plantes que no necessiten gairebé sòl per desenvolupar-se, aprofiten troncs per créixer i enfilar-se en busca de la font d’energia més buscada als boscos tropicals: el sol. En aquest article descrivim les adaptacions de les epífites i els grups més comuns i espectaculars d’aquestes plantes increïbles.

Adaptacions de les epífites

Les plantes epífites són aquelles que viuen sobre una altra planta sense parasitar-la, sense afectar negativament cap dels seus òrgans o funcions. Les epífites aprofiten l’estructura d’altres plantes com a suport físic, per créixer cap al dosser dels boscos ombrejats, aprofitant els troncs i branques d’arbres més vells per arribar a més alçada i captar la llum del sol. Les epífites mai toquen el terra, estan adaptades a viure de l’aire!

cactaceae-bromeliaceae-epifites-min
Espècies de Cactaceae, Bromeliaceae i falgueres epífites creixent al llarg del tronc en un bosc del Brasil. Font: Barres Fotonatura.

Són plantes que presenten adaptacions sorprenents a aquest hàbit de vida, com:

  • La capacitat de captar l’aigua i els nutrients de l’aire, la pluja i de la petita quantitat de sòl o restes orgànics que poden quedar-se presos al tronc dels arbres on arrelen.
  • Les arrels que desenvolupen no tenen la funció de captar nutrients sinó la de subjectar-se.
  • Freqüentment, desenvolupen estructures per tal d’acumular la humitat.

Tot i que les epífites depenen del seu hoste per aconseguir els seus nutrients i no tenen l’objectiu de parasitar-lo, de vegades creixen tant que acaben sobrecarregant-lo i matant el seu suport. Aquest és el cas d’alguns Ficus (Moraceae), anomenats “estranguladors”, que desenvolupen les seves arrels aèries al voltant d’altres troncs fins a no deixar-lo créixer més.

375px-strangler_fig_inside-min
Estructura que deixen les arrels d’un Ficus estrangulador quan el seu hoste mor. Font: Wikipedia.com.

Gràcies a la contribució de les epífites podem dir que el bosc tropical humit està organitzat en un gradient vertical al llarg dels troncs dels arbres, on trobem la diversitat d’organismes organitzada segons la distància al sòl. Les epífites són responsables en gran part de la biodiversitat extremament rica que fa que els boscos humits tropicals siguin un dels ecosistemes més complexes de la Terra. A més de proporcionar diferents estrats de vegetació en alçada, les epífites proporcionen refugi i nutrients a diverses espècies d’insectes i amfibis, que aprofiten l’aigua acumulada en les seves fulles o l’aixopluc que generen al mig del tronc per fer-hi niu.

Les plantes epífites es troben majoritàriament en boscos tropicals humits, on s’han registrat arbres amb dotzenes d’epífites a sobre. Tot i així, en climes temperats o fins i tot deserts, també trobem espècies epífites tolerants a la sequera.

Diversitat d’epífites

Al voltant de 25000 espècies tenen actualment aquesta forma de vida. Les epífites més conegudes i comuns són les famílies Bromeliaceae, Orchidaceae i el grup de les falgueres. L’epifitisme ha aparegut diverses vegades al llarg de l’evolució i en trobem exemples en d’altres famílies d’espermatòfits (plantes amb tronc i llavor) tropicals com són les Ericaceae, Gesneriaceae, Melastomataceae, Moraceae i Piperaceae i en plantes sense llavor (líquens, molses i hepàtiques) en climes temperats.

Orquídies

La família de les orquídies és on trobem més espècies d’epífites, amb més de 20 gèneres tropicals exclusivament epífits, d’entre els quals destaca pel nombre d’espècies els gèneres Bulbophyllum (1800) i Dendrobium (1200). El gènere d’orquídies epífites Phalaenopsis (60 espècies) és cultivada arreu per la seva bellesa. De fet, moltes plantes usades en jardineria d’interior són epífites pels pocs requeriments en nutrients i aigua.

imagen3-min
Diverses orquídees epífites del gènere Epidendrum. Font: Barres Fotonatura.

Però d’entre les orquídies, en volíem destacar una altra coneguda per motius ben diferents: la Vainilla (Vanilla planifolia), originària de Mèxic i Amèrica central, on es consumia barrejada amb el cacau. Es va importar a l’Illa de Reunió i Madagascar (actualment, primers productors mundials) pels espanyols quan van descobrir el seu aroma. Els cultius de vainilla imiten la seva forma natural de créixer, sobre els arbres, i no planten la vainilla al terra, sinó sobre troncs.

vainilla-cultiu-pixabay-com-min
Cultiu de Vainilla. Font: pixabay.com.

La part que es consumeix de la vainilla és el fruit encara immadur, que passa per un procés de curació.

Les orquídies tenen un dels sistemes de pol·linització més complexes de tot el món vegetal, amb diversos casos de coevolució monoespecífica lligada a insectes o colibrís. La vainilla no en deixa de ser un exemple, ja que és pol·linitzada per abelles i colibrís natius de Mèxic, així que la pol·linització no es dona de forma natural en les àrees de cultiu i s’ha de fer a mà. Normalment dones i nens encara practiquen aquesta tècnica artesanal de pol·linitzar cada una de les flors de vainilla per obtenir-ne el fruit tan preuat. De fet, al pes, és el cultiu més car del món i no és per menys!

vainilla-flor_wikipedia-min
Flor de Vainilla planifolia. Font: Wikipedia.com.

Bromèlies

Les Bromeliàcies o clavells de l’aire inclouen més de 3000 espècies neotropicals, la majoria d’elles de forma epífita. Els gèneres més rics en espècies són Tillandsia (450), Pitcairnia (250), Vriesia (200), Aechmea (150) i Puya (150). Les fulles de les bromèlies creixen en roseta i tenen una forma imbrincada, característica que facilita l’acumulació d’aigua dins aquesta estructura. El cultiu de bromèlies s’ha arribat a prohibir al Brasil (on en són natives un 43% d’espècies d’aquesta família) per desconeixement, ja que es pensava que aquesta aigua afavoria la reproducció del mosquit Aedes aegypt, transmissor dels virus de la zika, chikungunya i dengue. Quan en realitat les bromèlies tenen compostos secundaris que precisament eviten la proliferació d’ous i larves d’aquest mosquit alhora que l’aigua que queda presa a l’interior de les fulles crea un microhàbitat que acumula nutrients que alimenten altres insectes, amfibis i ocells natius que ajuden a combatre’l.

bromelia-aigua-otavio-nogueiraccommons-min
Aigua acumulada a l’interior d’una Bromèlia. Font: Otavio Nogueira Creative Commons.

Les seves flors tenen colors molt vius i són acompanyades per bràctees també ben vistoses per atreure l’atenció dels pol·linitzadors, principalment colibrís i rat-penats. Moltes bromèlies s’usen molt com a plantes ornamentals, especialment del gènere Tillandsia i Guzmania.

tillandsia-sp-min
Bromèlies del gènere Tillandsia. Font: Barres Fotonatura.

Epífites de climes temperats

D’entre les falgueres epífites, una de les més conegudes és la banya de cèrvol (Platycerium bifurcatum), molt usada com a planta ornamental. La banya de cérvol és nativa d’Austràlia però es troba en totes les àrees humides tropicals pel seu ús en horticultura. Desenvolupa dues formes de fulla: la primera té forma de ronyó i no produeix espores, la seva funció és adherir-se al tronc. Aquestes fulles amb el temps adquireixen una coloració marró i formen una base des d’on creixen es altres tipus de fulles, que són fèrtils i per tant produeixen espores. Són llargues i bifurcades i poden créixer fins a 90 cm de llargària. Les espores d’aquesta falguera són produïdes a l’àpex de les fulles fèrtils, que adquireixen una aparença vellutada.

platycerium-bifurcatum-min
Aparença dels dos tipus de fulla de la banya de cérvol. Fonnt: Barres Fotonatura.

A boscos temperats, les epífites més comuns són líquens. D’entre els líquens, destaquem el gènere Usnea o barba de caputxí. És un gènere de líquens cosmopolita que creix sobre coníferes i arbres caducifolis. Aquests líquens de coloració grisenca, creixen en forma de cortines que pengen dels arbres. Curiosament, hi ha una espècie de bromèlia epífita que recorda molt a les Usnea per aquesta particular forma de créixer. El seu nom és molsa espanyola (Tillandsia usneoides) però no és ni una molsa ni un liquen, sinó una bromèlia també d’hàbit epífit, de fulles molt petites que van creixent de forma encadenada cap al terra. Tampoc es troba a Espanya, sinó que viu al continent americà.

imagen2-min
Creixement en forma de barbes o cortines del líquen Usnea articulata (esquerra) i la Bromèlia Tillandsia usneoides (dreta). Font: Barres Fotonatura.

Les plantes epífites encara són poc conegudes perquè les tècniques d’escalada sobretot al mig del bosc humit tropical, fa poc temps que s’han desenvolupat i el seu estudi és més aviat recent comparat per exemple amb les plantes carnívores o paràsites. Encara n’hi ha moltes per descobrir!

REFERÈNCIES

Benzing, D.H. 1990. Vascular Epiphytes: General Biology and Related Biota. Cambridge: Cambridge University Press.

Smith N., Mori S. A., Henderson, A., Stevenson D. W. & Heald, S. V. 2004. Flowering Plants of the Neotropics. New Jersey, USA: The New York Botanical Garden, Princeton university press.

http://www.kew.org/science-conservation/plants-fungi/vanilla-planifolia-vanilla

https://www.anbg.gov.au/gnp/interns-2004/platycerium-bifurcatum.html

Laia-català

El gran viatge del coco

Cocos nucifera L., la palma cocotera, és una de les palmeres més emblemàtiques dels països tropicals: fotografiada per turistes en platges bucòliques; base de la gastronomia i cultura de molts països i font d’inspiració de molts artistes, és encara un enigma pels científics. D’on és originari el coco? La resposta a aquesta qüestió ha vist una mica més de llum gràcies a un estudi filogeogràfic, una disciplina que integra la genètica de poblacions amb la biogeografia. En aquest post, desvelarem aquesta i altres preguntes sobre aquesta palmera icònica.

CARACTERÍSTIQUES DEL COCOTER

El coco pertany a les Arecàcies, la família de plantes monocotiledònies de port arbori coneguda com palmeres. Sí, heu llegit bé! Totes les palmeres són més properes a les gramínies (cereals) que als arbres caducifolis. De fet, el seu tronc no és un tronc verdader ja que no té teixits que permetin el creixement en diàmetre i per tant tampoc branques. Si us fixeu bé el tronc de qualsevol tipus de palmera sempre té el mateix gruix, només creix en vertical. Aquest fals tronc s’anomena estípit i es forma per la sobreposició de la base de les fulles. Els senyals que es poden observar a l’estípit són les marques que deixen els pecíols de les fulles antigues que han caigut. Si algun cop podeu observar un estípit tallat podreu fixar-vos que no presenta la típica estructura d’anells de creixement, sinó que és com una massa de fibra. Aquesta estructura, de fet és òptima per sobreviure als vents huracanats dels països tropicals ja que és resistent i alhora flexible, el que facilita l’elasticitat necessària per no trencar-se amb les batzegades del vent tropical i alhora mantenir-se ferm.

Public Domain Pictures_estípit
Detall de l’estípit d’una palmera (Font: Public Domain Pictures).

La funció de l’estípit és suportar el pes de les fulles, les flors i els fruits; que hi creixen al capdamunt. Les fulles de les arecàcies són pinnatipartides. Tenen flors en inflorescències que creixen en panícula i fruits normalment en drupa, com el dàtil o el coco.

Al Mediterrani només hi ha dues espècies de palmeres autòctones. Una es troba a casa nostra ja que el seu límit nord de distribució és a les costes del Garraf. Es tracta del margalló (Chamaerops humilis). L’altre palmera pròpiament mediterrània és endèmica del sud de Grècia, Turquia i Creta, la palmera de Creta (Phoenix theophrastii).

Wikimedia_margalló
Margalló (Chamaerops humilis) a les costes del Garraf (Font: Wikimedia).

ELS USOS DEL COCOTER

La família de Arecàcies té aproximadament 2600 espècies classificades en uns 202 gèneres. El cocoter és monotípic perquè és l´única espècie del gènere Cocos. Es troba a 89 països tropicals i és considerat l’arbre de la vida ja que proporciona recursos com a:

  • Aliment: el coco és un fruit altament nutritiu, ric en greixos (és la fruita més calòrica que existeix), sals minerals (destaca l’alta contingut de potassi) i fibra. De l’endosperma sec (la “polpa” blanca o copra, que en realitat és el pinyol) també se’n extreuen la llet i l’oli de coco, molt usats per cuinar, per la indústria cosmètica i fins i tot com a biofuel. La saba ensucrada de la inflorescència també es consumeix com a vi després d’una fermentació alcohòlica.
Wikipedia cocos
Coco assecant-se per fer copra (Font: Peter Davis / AusAID).
  • Aigua potable: el coco verd conté aigua potable i dolça dins la seva polpa amb forces sals minerals. És consumida a molts països tropicals com a beguda isotònica.
  • Material per a la construcció: la fibra del mesocarp del fruit és una fibra molt usada per a fabricar cordes, estores, substrat per a plantar, etc. L’endocarp, la capa que recobreix la polpa, s’usa com a recipient per a menjar i beure, en decoració o com a instrument musical. Les fulles també s’usen per a elaborar artesania (estores, joguines, cistells…), per a recobrir sostres i com a combustible. La fusta s’ha usat tradicionalment per a la construcció de cases.
  • Element religiós: el coco forma part de diferents manifestacions espirituals pels hindús i algunes comunitats filipines.
estructura coco cat
Esquema amb les parts del coco.

DISPERSIÓ OCEÀNICA

El coco està adaptat a la dispersió hidrocora, és a dir, per l’aigua. És dels poc fruits que es coneix adaptat a la dispersió pels oceans. L’aigua que conté el coco permet que suri i facilita la dispersió a llargues distàncies. A més, el fruit és resistent a la salinitat i no es podreix. Quan arriba a les platges, pot germinar havent navegat 110 dies (o 4000 km). Tot i així, la seva distribució pantropical no es deu només a la seva adaptació a recórrer llargues distàncies pel mar sinó també està lligat al seu cultiu pels humans. Les migracions humanes al sud-est asiàtic no haurien estat possibles sense el cultiu del coco i a l’invers, el coco no s’hauria dispersat de manera tant extensa si no fos pel seu valor.

ORIGEN DEL COCOTER

És doncs força probable que la gran varietat d’usos hagi condicionat la història de la migració del cocoter. Hi ha diverses hipòtesis sobre el seu origen. Ja De Candolle al 1886, va proposar que el coco era americà, basant-se en que tots els membres de la tribu Cocoseae (unes 200 espècies repartides en 20 gèneres), exceptuant la palmera d’oli de Guinea (Elaeis guineenses, d’on s’extreu l’oli de palma), són nadius americans. Altres hipòtesis (Beccari, 1963) afirmen que té un origen asiàtic ja que la variació morfològica a la regió és major, els noms populars i usos són més diversos en aquest continent i a més existeix un cranc ermità (Brigus latro) que només pot viure en simbiosis amb el cocoter que només es troba a l’Àsia. Així doncs, des de l’Àsia i amb l’ajuda dels humans, haurien migrat direcció est cap a l’oceà Pacífic i direcció oest cap a l’oceà Índic.

Coconut_distribution-1024x636
Distribució del cocoter (Font: Gunn et al., 2011).

Els estudis més recents han fet noves troballes usant el DNA com a font d’informació. Sembla que tot i la gran varietat de cultivars i la manipulació humana, hi ha una estructura força marcada en dos grups genètics, un a l’oceà Índic (incloent les poblacions de l’Índia i l’Àfrica), i l’altre al Pacífic (incloent les poblacions del sud-est asiàtic, el carib i sud Amèrica). Així, totes les poblacions actuals de cocoter provenen d’algun d’aquests dos grups, demostrant-se l’origen asiàtic del cocoter.  Per exemple, les poblacions caribenyes i brasileres provenen del grup índic i les poblacions americanes de la costa del Pacífic provenen del sud-est asiàtic.

Gun et al image
Mapa amb els grups genètics del cocoter descoberts per Gunn et al. (2011).

Per tant, sembla que el cocoter és nadiu tant a les costes del Pacífic com a les de l’Índic i el cultiu de coco va sorgir de manera independent en les dues regions.

REFERÈNCIES

  • Beccari, O. 1963. The origin and dispersal of Cocos nucifera. Principes 7: 57–69.
  • de Candolle, A. 1886. Origin of cultivated plants. New York: Hafner. 468 p.
  • Cook, O.F. 1911. History of the Coconut Palm in America. American Journal of Sciences 31(183): 221-226.
  • Gunn, B.F. 2004. The phylogeny of the Cocoeae (Arecaceae) with emphasis on Cocos nucifera. Annals of the Missouri Botanical Garden 91: 505–522.
  • Gunn, B.F., Baudouin, L. & Olsen, K. M. 2011. Independent Origins of Cultivated Coconut (Cocos nucifera L.) in the Old World Tropics. PLoS ONE 6(6): e21143.
  • Meerow, A.W., Noblick, L., Salas-Leiva, Dayana E., Sanchez, V., Francisco-Ortega, J., Jestrow, B. & Nakamura, K. 2015. Phylogeny and historical biogeography of the cocosoid palms (Arecaceae, Arecoideae, Cocoseae) inferred from sequences of six WRKY gene family loci. Cladistics 31: 1096-0031.
  • Scientific American: Coconuts: not indigenous, but quite at home nevertheless

Laia-català

Les selves marines: les praderies de Posidonia

Les praderies de Posidonia i altres fanerògames marines constitueixen un dels ecosistemes marins més importants de la Terra. Molts s’atreveixen a catalogar-les com a les selves del mar per la seva elevada biodiversitat. És el que veurem aquest article, centrant-nos especialment en les praderies de Posidonia oceanica!

QUÈ SÓN LES FANERÒGAMES MARINES?

Les fanerògames marines són plantes superiors que van colonitzar els ambients costaners marins, estant presents en tots els oceans i mars, excepte l’Antàrtic. S’han trobat unes 66 espècies.

Totes tenen un patró semblant: un rizoma subterrani horitzontal (una tija gruixuda enterrada), a partir del qual neixen les arrels i unes ramificacions verticals de les que surten les fulles.

Al llarg de l’evolució, han anat adquirint les adaptacions necessàries per a viure en un medi amb una elevada concentració de sals. Tenen la capacitat de realitzar la pol·linització sota l’aigua mitjançant flors poc vistoses, a més de reproduir-se asexualment.

Com ja hem comentat, aquí ens centrarem en les praderies de Posidonia oceanica, una espècie endèmica del mar Mediterrani. Té l’estructura típica abans comentada, però entre les seves particularitats hi ha unes fulles de 0,5 cm d’ample per un metre de llarg, agrupades en feixos de 4-8 fulles.

pradera posidonia oceanica
Praderia de Posidonia oceanica (Foto: Manu Sanfélix).

En un únic metre quadrat, poden haver-hi 10.000 fulles. Això fa que les partícules que cauen al fons quedin atrapades i es formi el que es coneix com a “mata”, un substrat molt compactat que es va elevant lentament (10-18 cm/segle) i que actua com a barrera contra l’onatge, el que afavoreix la formació de les platges. Vols saber per què ens estem quedant sense platges?

Sabies que a l’illa de Formentera (Illes Balears) han trobat un exemplar de Posidònia amb més de 100.000 anys d’edat?

LA BIODIVERSITAT EN LES PRADERIES DE POSIDONIA

Les praderies de Posidonia i altres fanerògames marines són ecosistemes amb una elevada biodiversitat. A més dels organismes que hi viuen de forma permanent, altres hi van a reproduir-se, deixar les seves postes o a refugiar-se. Sense anar més lluny, s’hi han arribat a descriure fins a 1.000 espècies diferents.

Tot i l’elevada biodiversitat associada, només unes poques espècies són capaces d’alimentar-se de la planta en qüestió. Alguns exemples són les salpes (Sarpa salpa), la tortuga verda (Chelonia mydas), alguns eriçons com Paracentrotus lividus… tots ells amb bacteris simbionts en l’aparell digestiu per a digerir-la.

sarpa salpa
Salpa (Sarpa Salpa) (Foto: Jordi Regàs, CIB)

Hi ha moltes algues i animals que viuen enganxats a les fulles o en els rizomes, els anomenats epífets. Alguns exemples són l’hidrozou Aglaophenia harpago i el briozou Lichenopora radiata. Però sens dubte, l’animal epífet de la Posidonia més característic és Electra posidoniae. Aquest briozou forma unes tires blanquinoses més o menys estretes sobre de les fulles de la planta.

Aglaophenia harpago
Hidrozou Aglaophenia harpago sobre Posidonia oceanica (Foto: Peter Jonas).
Lichenopora radiata
Briozou Lichenopora radiata (Foto: Javier Murcia).
Electra_posidoniae
Briozou Electra posidoniae (Foto: Jordi Regàs, CIB).

Lògicament, també hi ha fauna que es desplaça per sobre de les fulles. Es tracta d’animals petits que s’alimenten dels epífets, com són els crustacis, els gasteròpodes (caragols i nudibranquis); cucs tipus poliquet, nematode o platelmint i equinoderms. En són exemples el nudibranqui Diaphorodoris papillata i el crustaci Idotea hectica.

Nudibranquio Diaphorodoris papillata (Foto: CIB).
Nudibranqui Diaphorodoris papillata (Foto: CIB).
Crustáceo Idotea hectica (Foto: David Luquet).
Crustaci Idotea hectica (Foto: David Luquet).

Un dels animals més característics de les praderies de Posidonia oceanica és la nacra (Pinna nobilis), el mol·lusc més gran de la Mediterrània, que pot arribar a fer un metre i viu amb part del cos enterrat a la sorra.

nacra pinna nobilis
Nacra (Pinna nobilis) (Foto: Maite Vázquez)

Entre els equinoderms, es considera que l’estrella de mar Asterina pancerii és l’única lligada estrictament a les praderies, encara que els eriçons de mar de l’espècie Paracentrotus lividus pot arribar a ser molt abundants.

Asterina pancerii estrella de mar
Estrella de mar Asterina pancerii (Foto: Jordi Regàs, CIB).
paracentrotus lividus
Eriçoó de mar Paracentrotus lividus (Foto: Jordi Regàs, CIB).

Altres animals que es passegen lliurement per la praderia són els peixos. El serrà o vaca serrana (Serranus scriba) és dels més comuns; però el més singular és el peix ventosa (Opeatogenys gracilis), de color verd per camuflar-se amb les fulles. Uns altres que també es camuflen la mar de bé són els del gènere Syngnathus, com S. typhle i S. acus.

vaca serrana serranus scriba
Vaca serrana (Serranus scriba) (Foto: Jordi Regàs, CIB).
Opeatogenys gracilis pez ventosa
Peix ventosa (Opeatogenys gracilis) (Foto: Manuel Campillo).
syngnathus typhle
Peix Syngnathus typhle (Foto: Sea Horse Project).

LA POSIDONIA TÉ UNA ALTA IMPORTÀNCIA ECOLÒGICA

Com hem vist, les praderies de Posidonia són zones amb una elevada biodiversitat d’espècies animals i vegetals. Així doncs, és la llar de moltes espècies en diferents fases del seu cicle vital.

Però la seva importància va molt més enllà. A causa de la seva forma de creixement mitjançant rizomes subterranis, la Posidonia reté la sorra i, segle rere segle, va formant una barrera natural que serveix de protecció per a la costa, el que permet la formació i dóna estabilitat a platges, dunes i al bosc litoral.

Finalment, es produeix una gran quantitat de matèria orgànica que es dispersa gràcies a les corrents i onatge cap a altres ecosistemes.

Si vols saber tots els valors associats a la Posidonia, pots seguir llegint a Altas de las praderas marinas de España del 2015.

REFERÈNCIES

  • Ballesteros, E & Llobet, T (2015). Fauna i flora de la mar Mediterrpania. Ed. Brau
  • Departament de Medi Ambient, Generalitat de Catalunya (2002). Biodiversidad y medio marino.  Mediterrània viva. Editorial Anthias SL.
  • Minguell, J (2008). Flora i fauna del Mediterrani.
  • Ruiz, JM; Guillén, JE; Ramos Segura, A & Otero MM (Eds) (2015). Altas de las praderas marinas de España. IEO/IEL/UICN. Murcia-Alicante-Málaga. 681 pp.
  • Tríptic: Las praderas de Posidonia en peligro. Parc Natural del Montgrí, les Illes Medes i el Baix Ter.
  • Foto de pordada: G. Pergent (INPN).

Difusió-català

Els biomes del Brasil més desconeguts

El Brasil és un dels països més ric en biodiversitat del món. Dins el Brasil, la selva amazònica,  coneguda com el pulmó del món, és sovint reconeguda com la regió amb més diversitat d’éssers vius del món. És realment així? El Brasil amaga molts més biomes tant o més rics que la selva humida tropical, molt més desconeguts i amb un alt grau d’explotació que amenaça la seva conservació. En aquest post explicarem les característiques dels sis biomes del Brasil i farem un repàs dels diferents cultius de plantes al·lòctones que s’hi han introduït des de temps històrics i que han afectat aquest equilibri natural, des del sucre i el cafè fins la soja.

QUÈ ÉS UN BIOMA?

En aquest post parlarem dels diferents biomes del Brasil. Però què és un bioma? Un bioma és un conjunt d’ecosistemes amb una historia comú, que comparteixen un clima similar i per tant es caracteritzen per la presència d’animals i plantes semblants. El bioma és un concepte que engloba tots els éssers vius d’una comunitat però a la pràctica es defineix per la fisionomia o aparença general de la vegetació. És una unitat de classificació biològica que serveix per classificar grans regions geogràfiques del món. A nivell global, es reconeixen deu biomes al món: desert polar, tundra, taigà, bosc temperat caducifoli, laurisilva, selva tropical, estepa, sabana, desert i mediterrani.

BIOLOGIA DEL BRASIL

El Brasil és reconegut per ser el país amb la diversitat més nombrosa del planeta, seguit de la Xina, Indonèsia, Mèxic i Àfrica del Sud.

El Brasil, segons recents publicacions científiques, és el país amb la flora més rica del món, amb unes 46100 espècies de plantes, fongs i algues descrites, de les quals gairebé la meitat (43%) són endèmiques. Aquest nombre augmenta cada any ja que molta de la biodiversitat del Brasil encara està per descobrir. De fet es calcula que 20.000 espècies encara no han estat descrites. Els botànics descriuen prop de 250 espècies noves de plantes cada any al Brasil. Així que si ets taxònom i vols contribuir, cap al Brasil falta gent!

BIOMES DEL BRASIL:

Actualment es consideren sis tipus de biomes al Brasil: l’amazones, la mata atlàntica, el cerrado, la caatinga, la pampa i el pantanal. Aquesta classificació poc ha canviat des de la primera temptativa de classificar la vegetació brasilera en dominis florístics elaborada per Martius el 1824, que va donar nom de nimfes gregues als cinc dominis que va detectar. Va escollir les Nayades, les nimfes dels llacs, rius i fonts per anomenar l’amazones. Per al cerrado va considerar les Oreades, nimfes de les muntanyes, companyes de la Deessa de la caça, Diana. Va anomenar la mata atlàntica sota el nom de Dryades, les nimfes protectores dels roures i dels arbres en general. Va considerar la pampa i els boscos d’araucàries dins el domini de les Napeies, les nimfes dels valls i prats i finalment les Hamadryades, nimfes que protegeixen cadascuna un arbre en concret, van ser usades per la caatinga.

Brasil és dels pocs països del món que inclou dos dels seus biomes com a hotspot per a la conservació de la biodiversitat: el cerrado i la mata atlàntica.

La cattinga és l’únic bioma exclusiu del Brasil, tot i que trobem altres tipus de sabanes com el cerrado a Sud Amèrica i la mata atlàntica, a part del Brasil, només es troba al nord est d’Argentina i l’est del Paraguai.

mapa
Mapa amb la distribució dels sis biomes del Brasil
  1. AMAZONES

La regió irrigada pel cabdal del riu Amazones és la formació forestal més gran del planeta i el bioma amb més biodiversitat del Brasil. Ocupa gairebé el 50% del territori i està greument amenaçat degut a la seva desforestació causada per les industries fusteres i el cultiu de soja. Actualment es calcula que el 16% del seu total ha desaparegut sota les pressions antròpiques.

amazon
Vista àrea del bioma amazònic (Font: Commons Wikimedia).

L’origen d’aquesta gran diversitat segueix sent un misteri. Recents estudis científics expliquen que probablement l’aixecament de la serralada dels Andes, que va començar fa almenys 34 milions d’anys, va originar aquesta riquesa. La serralada dels Andes va començar a formar-se per l’esfondrament de la placa tectònica Americana sota la placa oceànica del Pacífic. Aquest procés geològic va canviar el règim de vents de la zona, modificant el patró de pluges al costat oriental dels Andes afectant fins i tot el sentit i direcció del riu Amazones, que abans desembocava al oceà Pacífic però degut a aquest aixecament es va redirigir cap a l’Atlàntic.

Aquests fenòmens geològics i climàtics van originar la formació d’una gran àrea d’aiguamolls a la part oriental dels Andes, originant l’aparició de moltes espècies noves.

L’Amazones es caracteritza per ser un bosc tropical humit tancat, de sòl sorrenc i pobre en nutrients, amb una estratificació en altura. El sotabosc és pràcticament inexistent i els organismes es distribueixen a diferents nivells de les copes dels arbres. Trobem famílies de dispersió pantropical com Fabaceae, Rubiaceae o Orchidaceae o d’altres d’origen amazònic; com les  Lecythidaceae (que té com un dels representants més famosos el productor de la nou de Pará, (Bertholletia excelsa) o les Vochysiaceae.

cadtanha pará
Bertholletia excelsa, arbre productor de la nou del Brasil, típic de l’Amazonia (Font: Flickr i Commons Wikimedia).

2. MATA ATLÀNTICA

Es tracta del bosc tropical que avarca la regió litoral del país i per tant el seu principal condicionant són els vents humits que arriben del mar i els relleus abruptes. Es caracteritza per estar composta per una gran varietat d’ecosistemes, que van des de boscos semicaducifolis estacionals a camps oberts de muntanya passant pels boscs d’araucàries al sud del país ja que té una elevada varietat d’altituds, latituds i per tant, climes.

araucaria
Bosc d’araucàries, una ecoregió dins el domini de la mata atlàntica del sud del Brasil (Font: Wikipedia).

Tot i que no és un bioma tant conegut com la selva amazònica, és el bioma amb la diversitat més gran d’angiospermes, pteridòfits i fongs del país; amb un nivell d’endemisme molt elevat (50% de les seves espècies en són exclusives) i es troba en un nivell de conservació molt més compromès. De fet fins l’arribada dels europeus va ser el bosc tropical més gran de tot el planeta. Avui en dia només resta el 10% de la seva extensió originària degut a la pressió antròpica. Un dels primers motius de l’explotació d’aquest bioma fou el pau-brasil (Caesalpinia echinata), arbre de fusta noble i resina valorada com a tintura vermella que va donar nom al país, però després el van seguir d’altres com el cultiu de canya de sucre, cafè o l’extracció d’or.

pau brasil
Detalls del pau-brasil (Caesalpinia echinata), arbre que dóna nom al Brasil (Font: Flickr).

Però no va ser fins al S. XX que la degradació d’aquest medi es va agreujar, tenint en compte que les grans capitals econòmiques i històriques del país com Sao Paulo, Rio de Janeiro i Salvador estan dins el seu domini.

Tot i així, cal ser optimistes. El bioma Mata Atlàntica és la regió amb més unitats de conservació d’Amèrica del Sud.

Les famílies més freqüents a la mata atlàntica són orquidàcies, bromeliàcies i fabàcies.

mata atl
Fisionomia típica de la Mata Atlàntica (Font: Commons Wikimedia).

3. CERRADO

És el segon tipus de bioma més extens al continent Sud Americà i ocupa el 22% del Brasil.

Es considera la sabana més rica del món en nombre d’espècies. Conté un elevat nivell d’endemismes i per això és considerat com un dels hotspots mundials en termes de biodiversitat. Conté 11.627 espècies de plantes (de les quals el 40% en són endèmiques) i unes 200 espècies d’animals, dels quals 137 es troben amenaçats d’extinció.

El bioma cerrado es troba a àrees de l’interior del Brasil amb dues estacions ben marcades (pluges o seca). Engloba diferents tipus d’hàbitats com són el campo sujo, campo limpo o el cerradão. Està composta per arbres petits, d’arrels profundes i fulles protegides de tricomes amb sotabosc compost per ciperàcies i gramínies. Els sòls del cerrado són sorrencs i pobres en nutrients, presentant colors vermellosos per l’alt contingut en ferro.

cerrado
Fisionomia típica del cerrado (Font: pixabay).

Els gèneres Vochysia i Qualea (Vochysiaceae) dominen el paisatge de sabana del cerrado. També s’hi troben molts representants de les asteràcies, orquidàcies i fabàcies.

És el segon bioma que més s’ha degradat en les últimes dècades al Brasil. La causa d’aquesta destrucció és el desenvolupament de la indústria agropecuària: aproximadament el 40% de soja del Brasil (Brasil és el primer productor de soja del món) i el 70% de carn de vaca i es produeixen en dominis del cerrado. La meitat del bioma cerrado s’ha destruït en només els últims 50 anys. Tot i aquest risc només el 8% de la seva àrea es troba protegida legalment.

soja
Monocultiu de soja al domini del cerrado a l’estat de Tocantins (Foto: barres fotonatura).

4. CAATINGA

És l’únic bioma exclusiu del Brasil i ocupa el 11% del territori del país. El seu nom prové d’un dels idiomes originaris del Brasil, el tupí-guaraní i significa bosc blanc. Tot i així és el bioma més poc conegut i infravalorat per la seva aridesa.

El clima de la caatinga és semi àrid i els sòls són pedregosos. La vegetació és de tipus sabana estèpica i es caracteritza per presentar una gran adaptació a l’aridesa (vegetació xeròfita) i sovint és espinosa. Els arbres de la caatinga perden les fulles durant l’època seca, deixant un paisatge ple de troncs blanquinosos.

caatinga
Fisionomia típica de la caatinga (Font: Commons Wikimedia).

Les famílies predominants d’aquest paisatge tant àrid són les Cactaceae (Cereus, Pilosocereus o Melocactus són gèneres comuns), Bromeliaceae i Euphorbiaceae, però també trobem força representants de les Asteraceae, Fabaceae i Poaceae. Una de les espècies originària i més representativa de la caatinga és el juazeiro (Ziziphus joazeiro, Rhamnaceae).

melocactus
Melocactus sp. (Cactaceae), un gènere molt comú a la caatinga (Font: barres fotonatura).

El seu estat de conservació també és crític. Prop del 80% de la caatinga ja està antropizat. El principal motiu d’aquesta degradació és la indústria agroalimentària i minera.

5. PAMPA

La Pampa és un bioma que ocupa un sol estat al país, Rio Grande do Sul i avarca només el 2% del territori brasiler. La pampa es troba també molt ben representada a l’Uruguai i el nord d’Argentina. Forma paisatges molt diversos que van des de planícies, muntanyes o afloraments rocosos, però el més típic són els camps graminosos amb tossals o petits puigs i arbres aïllats pròxims als cursos d’aigua.

S’hi han catalogat unes 1.900 espècies de plantes amb flors, de les quals 266 són de la família de les gramínies (Poaceae) i 141 de les Cyperaceae. També sobresurten les representants de les Compostes (Asteraceae) i les lleguminoses (Fabaceae). En les àrees d’afloraments rocosos són majoritàries les Cactaceae i les Bromeliaceae.

pampa
Paisatge típic de la pampa (Font: Flickr).

Pel que fa a la fauna, trobem fins a 300 espècies d’aus i 100 de mamífers, sent-ne emblemàtics el nyandú, les vicunyes (camèlids sud americans) o les Cavia, rosegadors propers a les capibares.

L’àrea de la pampa té un patrimoni cultural molt característic, compartit amb els habitants de la pampa de l’Argentina i Uruguai i desenvolupada pels gautxes.

Les activitats econòmiques més desenvolupades a la regió són l’agricultura i la ramaderia, que van arribar amb la colonització ibèrica, desplaçant gran part de la vegetació autòctona. Segons estimatives de pèrdua d’hàbitat, al 2008 només restava un 36% de la vegetació nativa. Només un 3% de la pampa està protegit sota algun tipus d’unitat de conservació.

6. PANTANAL

Es tracta d’una selva estèpica inundada que ocupa la plana al·luvial del riu Paraguai i els seus afluents. És per tant, una gran planícia humida, que s’inunda durant les èpoques de pluja, de novembre a abril. Aquestes inundacions afavoreixen l’alta biodiversitat. Ocupa només l’1,75% del territori brasiler i és per tant el bioma menys extens del país.

Quan es produeixen les inundacions, aflora gran quantitat de matèria orgànica, ja que l’aigua transporta totes les restes de vegetació i animals en descomposició afavorint la fertilització del sòl.

Són típiques del pantanal els camps de gramínies (Poaceae). En les zones que no arriben a inundar-se trobem vegetació arbustiva i fins a arbres. Han estat catalogades unes 2.000 espècies de plantes diferents, sent-ne algunes de les més representatives les palmeres (Arecaceae) o macròfites aquàtiques (Lentibularaceae, Nymphaeaceae, Pontederiaceae).

pantanal
Victoria regia (Nymphaeaceae) al pantanal de l’estat de Mato Grosso (Font: Flickr),

Conté una altra diversitat de peixos (263 espècies), amfibis (41 espècies), rèptils (113 espècies), aus (650 espècies) i mamífers (132 espècies), sent-ne el guacamai blau, el caiman negre o el jaguar les espècies més emblemàtiques.

Després de l’Amazones, és el segon bioma del Brasil més preservat ja que es considera que el 80% de la seva extensió conserva la seva vegetació nativa. Tot i així, l’activitat humana també hi ha deixat un gran impacte, sobretot les activitats agropecuàries. La pesca i la ramaderia bovina són les activitats econòmiques més desenvolupades al pantanal. També l’establiment de plantes hidroelèctriques amenaça l’equilibri ecològic d’aquest ambient, ja que si es trenca el règim d’inundacions de la regió, tota la vida es veurà afectada.

REFERÈNCIES

Fotosíntesi i vida vegetal

En aquest article parlarem de la fotosíntesi i de les primeres formes de vida vegetal. En la sistemàtica actual , el nom de planta s’ajusta a plantes principalment del medi terrestre, en canvi, el terme vegetal és més antic i de connotació aristotèlica que fa referència a organismes amb funcions fotosintètiques. Però, com en tot, hi ha excepcions. 

La paraula planta va sorgir fa moltíssim temps. Però, prèviament, Aristòtil va ser qui va diferenciar els éssers vius en tres grans grups:

  • Vegetals (ànima vegetativa): realitzen la nutrició i reproducció.
  • Animals (ànima sensitiva): nutrició, reproducció, percepció, moviment i desig.
  • Ésser humà: afegeix a la llista anterior la capacitat de raonament.
Aristotle_Dominiopublico
Aristòtil (Domini públic)

Aquesta manera simplista de percebre el món ha perdurat durant molt de temps, tot i que ha anat variant amb els estudis de diferents autors com Linné o Whittaker, entre d’altres.

Una classificació molt actual és la proposada en 2012, The Revised Classification of Eukaryotes. J. Eukariot. Microbiol. 59 (5): 429-493; i ens revela un veritable àrbre de la vida.

image description
Sina ;. Adl, et al. (2012) The revised classification of Eukaryotes.  J Eukaryot Microbiol.; 59 (5): 429-493

¿QUÈ ÉS LA FOTOSÍNTESI? ¿ÉS UN PROCÉS ÚNIC?

La fotosíntesi és un procés metabòlic que permet utilitzar l’energia lumínica per transformar compostos simples i inorgànics en complexos orgànics. Per això és necessari un conjunt de pigments fotosintètics  que captin els raigs de llum i que mitjançant una sèrie de reaccions químiques puguin realitzar processos interns que donin lloc a compostos orgànics.

Aquesta opció nutritiva ha sigut desenvolupada per molts organismes en múltiples grups i branques de l’arbre de la vida dels eucariotes I entre ells trobem als Archaeplastida, el llinatge d’organismes que ha donat peu a les plantes terrestres.

Les plantes terrestres (Embryophyta) es poden definir fàcilment, però i les algues? En general, es diu que són organismes eucariotes que viuen principalment en medi aquàtic i que tenen organització relativament simple (colònies simples o amb òrgans senzills), però això no és sempre cert. Per aquest motiu, tot els grups d’Archeaplastida que queden fora del concepte de planta terrestre (petit grup dins dels Archaeplastida) es denominen “algues“.

També hi ha procariotes fotosintètics dins del domini Eubacteria, i es en aquests on la fotosíntesi presenta una gran variabilitat. En canvi, en els eucariotes és única: la fotosíntesi oxigénica.

El domini eubacteria és molt ampli, i en les seves ramificacions hi ha fins a 5 grans grups d’organismes fotosintètics: Chloroflexi, Firmicutes, Chlorobi, Proteobacteria i Cianobacteris. Aquests últims són els únics eubactèris que realitzen una fotosíntesi oxigénica; amb alliberació d’oxigen de les molècules d’aigua i utilitzant com a donar d’electrons l’hidrogen de l’aigua. La resta duu a terme la fotosíntesi anoxigénica on el donador d’electrons és el sofre o sulfur d’hidrogen, però mai alliberen O2 i molt rarament intervé l’aigua en el procés; és per això que es coneixen com les bactèries vermelles o porpres del sofre.

La fotosíntesi és, probablement més antiga que la vida mateixa. La oxigénica que està circumscrita a aquest grup de bactèries és probablement posterior, però va resultar imprescindible per al desenvolupament de la vida en el nostre planta, ja que va transformar l’atmosfera en una molt més oxigenada i gràcies a això la vida a la Terra ha pogut evolucionar.

SONY DSC
Amazones, el pulmó de la Terra (Autor: Christian Cruzado; Flickr)

¿QUINS PIGMENTS S’UTILITZEN?

Els cianobacteris comparteixen pigments amb les plantes terrestres i la resta d’eucariotes fotosintètics. Aquests pigments són principalment clorofil·les a i b (les universals), essent la c i d només presents en alguns grups. A més hi ha dos pigments que també són universals: els carotens, que actuen com antenes que transfereixen l’energia a les clorofil·les i protegeixen el centre de reacció contra l’autooxidació, i les ficobiliproteínes (ficocianina, ficoeritrina, etc.), que apareixen tant en cianobacteris com en altres grups fotosintètics i s’encarreguen de capturar l’energia lumínica.

Però, perquè hi ha aquesta variabilitat de pigments accessoris? perquè cada pigment té un espectre d’absorció diferent, i al presentar diferents molècules es pot recollir molt millor l’espectre de la llum solar, és a dir, la captació d’energia és molt més eficient.

La resta de bacteris fotosintètics anoxigènics no tenen clorofil·les, i, en el seu lloc, tenen molècules especifiques de procariotes, les bacterioclorofil·les.

Pigment_spectra.png
Espectre d’absorció de diferents pigments (Font: York University)

¿On es situen els pigments?

En organismes amb fotosíntesi oxigénica, els cianobacteris i els eucariotes fotosintètics, els pigments es troben en estructures complexes. En els cianobacteris, en el citoplasma perifèric hi ha una sèrie de sacs aplanats concèntrics denominats tilacoides, els quals només estan rodejats per una membrana. Al lumen tilacoïdal és on es localitzen els pigments. En els eucariotes, en canvi, trobem els cloroplasts: orgànuls intracel·lulars propis dels eucariotes fotosintètics on es realitza la fotosíntesi, que tenen com a mínim dues membranes, encara que poden ser més, i que presenten diversos tilacoides disposats de diferents maneres segons els organismes. Tots dos grups, per tant, realitzen la fotosíntesi oxigénica i tenen tilacoides; la diferencia és que en els eucariotes, els tilacoides es troben a l’interior dels cloroplasts.

Plagiomnium_affine_laminazellen
Cél·lules vegetals en les que són visibles els cloroplasts (Autor: Kristian Peters – Fabelfroh)

En canvi, en organismes amb fotosíntesi anoxigénica hi ha diverses opcions.Les bactèries porpres contenen pigments en cromatòfors, una espècie de vesícules al centre o la perifèria de la cèl·lula. Per una altra banda, en les bactèries verdes (Chlorobi y Chloroflexi) es troben vesícules aplanades a la perifèria de la cèl·lula sobre la membrana plasmàtica on estan les bacterioclorofil·les. En Heliobacterium, el pigment està adossat a la cara interna de la membrana plasmàtica. Generalment no són estructures complexes, i acostumen a presentar membranes simples.

ORIGEN DELS ORGANISMES FOTOSINTÉTICS

L’evidència fòssil dels primers organismes fotosintètics són els estromatòlits (3,2 Ga).Són unes estructures formades per capes fines superposades d’organismes juntament amb els seus depòsits de carbonat càlcic. Aquestes formacions apareixen en zones someres, de mars càlids i ben irradiats. Encara que moltes tenen forma de columna, s’observen desviacions, ja que s’orienten cara al Sol. En el seu moment, van tenir una importància capital en la construcció de formacions d’esculls i, també, en els canvis de composició de l’atmosfera. Actualment hi ha alguns que encara segueixen vius.

1301321830_947d538a4d_o.jpg
Estromatòlits (Autor:Alessandro, Flickr)

REFERÉNCIES

  • Apunts obtinguts en diverses assignatures durant la realització del Grau de Biologia Ambiental (Universitat Autònoma de Barcelona) y el Màster de Biodiversitat (Universitat de Barcelona).
  • Font Quer, P. (1953): Diccionario de Botánica. Editorial Labor, Barcelona.
  • Izco, J., Barreno, E., Brugués, M., Costa, M., Devesa, J. A., Fernández, F., Gallardo, T., Llimona, X., Parada, C., Talavera, S. & Valdés, B. (2004) Botánica 2.ªEdición. McGraw-Hill, pp. 906.
  • Willis, K.J. & McElwain, J.C. (2014) The Evolution of Plants (second edition). Oxford University Press, 424 pp.

Difusió-català

La flor de les margarides: en tenen o no en tenen?

D’entre tots els tipus de flors que existeixen una de les més complexes i evolucionades és la flor de la família de les margarides (Compostes o Asteraceae), anomenada capítol. En aquest article desfullarem les margarides per entendre com funciona aquest òrgan tan especial.

QUÈ SÓN LES COMPOSTES O ASTERACEAE?

Les Asteraceae és la família d’angiospermes actual més nombrosa i una de les més cosmopolita. N’existeixen al voltant de 25.000 espècies distribuïdes en 1.100 gèneres, el que representa un 10% de totes les espècies de plantes que existeixen actualment i es troben distribuïdes a tot el món excepte l’Antàrtida. Moltes asteràcies s’usen de manera quotidiana en la nostra alimentació com per exemple l’enciam (Lactuca sativa), l’endívia o escarola (Cichorium endivia), la carxofa (Cynara scolymus) o el gira-sol (Helianthus annus). També moltes espècies són usades en medicina tradicional com la camamilla (Chamomilla recutita), l’equinàcia (Echinaceae purpurea), el pixallits o dent de lleó (Taraxacum officinale), o l’àrnica (Arnica montana). També són freqüents els usos de les asteràcies en jardineria, com les margarides (per exemple Bellis perennis, però d’altres espècies també se’n diuen), el crisantem (Leucanthemum sp.), les calèndules (Calendula sp.) o les dàlies (Dahlia sp.).

img 1 compositae
Diversitat d’asteràcies amb usos: a. Dahlia sp., b. Gira-sol (Helianthus annus), c. Arnica montana, d. Echinacea purpurea.

 EL CAPÍTOL

La flor de les asteràcies o capítol no és una flor típica ja que està formada per diverses flors que s’agrupen amb aparença d’una sola estructura per atraure l’atenció dels pol·linitzadors. Aquest conjunt de flors que imita una flor simple s’anomena inflorescència. La gran majoria d’asteràcies presenten més d’un capítol i la forma d’organitzar-se a les tiges també té una estructura concreta com per exemple raïms o corimbes de capítols. Aquesta estructura de segon grau s’anomena sinflorescència.

Normalment el capítol està format per dos tipus de flors: les flors del radi o lígules i les flors del disc o flòsculs. Totes elles són pentàmeres (presenten cinc pètals, tot i que soldats).

img 2 compositae
Lígula (A), flòscul (B) i esquema de la disposició de les flors en un capítol típic d’una Compositae amb els dos tipus de flors (C), extret de Greenish (1920).

Les flors del radi o lígules solen ser flors femenines, de dos carpels soldats en un ovari ínfer, i presenten una corol·la asimètrica o lígula, que és el que recorda el pètal de la flor típica i el que “desfullaríem” de la margarida.

Les flors del disc o flòsculs solen ser hermafrodites i tenen una corol·la tubular actinomorfa (simètrica) menys vistosa. Són les flors del centre del capítol que formen petits botons.

Els capítols que acabem de descriure són els més habituals i característics de les asteràcies i s’anomenen heterògams. Els capítols heterògams poden ser radiats, com la típica margarida o disciformes, quan només tenen flòsculs, però els més externs tenen uns filaments que poden recordar les lígules, com és el cas de les centàurees (Centaurea sp.).

img 3 compositae
Capítol heterògam disciforme d’una Centaurea (Centaurea deusta) de Croàcia.

Els capítols homògams només presenten un sol tipus de flors, sempre hermafrodites. Els capítols homògams discoides només presenten flòsculs, no tenen cap flor amb lígula, com són les flors dels cards.

img 4 compositae
Capítol homògam discoide del card de formatjar (Cynara cardunculus).

Els capítols homògams ligulats només presenten lígules, no tenen cap flor del disc, com són les flors de la xicòria (Cichorium intybus).

img 5 compositae
Capítol homògam ligulat de la xicòria (Cichorium intybus).

ADAPTACIONS DEL CAPÍTOL

Una de les adaptacions més sorprenents dels capítols és que les flors que el formen tenen una maduració diferenciada en el temps per evitar l’autopol·linització. Les flors maduren de forma centrípeta, de fora cap a dins, per això el disc presenta de vegades una coloració més fosca com més a l’interior.

img 6 compositae
Capítol de Pericallis echinata, endemisme canari on s’aprecia els diferents graus de maduració de les flors del disc.

Una altra adaptació del capítol, que no és exclusiva d’aquesta família però n’és un caràcter diagnòstic és la presentació secundària del pol·len. És un mecanisme pel qual el pol·len, quan és madur, es presenta al pol·linitzadors en una estructura diferent a les anteres. En el cas de les asteràcies és a l’estigma del pistil. El procés es produeix gràcies a una adaptació especial de les anteres que es troben soldades (estams singenèsics) formant un tub al voltant de l’estil. Així, quan l’estil madura, s’allarga a través d’aquest tub i els grans de pol·len queden enganxats a l’estigma i queden a disposició dels pol·linitzadors quan aquest es presenta a l’exterior. Això només es pot produir perquè les flors són proterandres, és a dir, els estams maduren abans que l’estil.

img 7 compositae
Esquema que il·lustra el mecanisme de la presentació secundària del pol·len a l’estigma en les Asteraceae. Extret de Funk et al., 2009.

Aquesta estructura bàsica té moltes variacions i trobem capítols sorprenentment diferents.

Tot i que la majoria d’espècies d’asteràcies són monoiques (presenten flors hermafrodites en el mateix individu), trobem gèneres dioics, com Baccharis, un gènere de les zones tropicals de Sud Amèrica, que presenta individus exclusivament amb flors femenines i individus exclusivament amb flors masculines.

img 8 compositae
Peu femení (esquerra) i masculí (dreta) de Baccharis sp., gènere dioic del continent americà.

Molt rarament, els capítols només tenen una sola flor, com és el cas del d’Echinops, en el que les flors solitàries s’agrupen en capítols esfèrics de segon grau.

img 9 compositae
Flors solitàries agrupades en un capítol de segon grau de Echinops ritro.

Existeixen altres casos d’agrupaments de capítols en capítols de segon grau (sincefàlia), per exemple en el cas del edelweiss o flor de neu (Leontopodium alpinum). El capítol de la flor de neu és especialment vistós ja que tot i que és discoide, presenta unes bràctees densament tomentoses (amb molts tricomes), el que els confereix una coloració blanca, adaptació adquirida per reflectir les altes radiacions de l’alta muntanya on viu i alhora actuen com a falsos pètals.

img 10 compositae
Capítols agregats de la flor de neu (Leontopodium alpinum).

 Molt poques vegades, els capítols es presenten de forma solitària a l’àpex de les tiges i no formen sinflorescències, com és el cas del gira-sol (Helianthus annus) o el gènere Wunderlichia, un dels més petits de la família, endèmic del Brasil, amb aspecte d’arbre tomentós fantasmagòric, ja que perd les seves fulles en florir.

img 11 compositae
Capítol solitari de Wunderlichia mirabilis al Brasil.

La pol·linització dels capítols normalment es produeix per insectes, sobretot papallones, que se senten atretes per la coloració dels pètals i per la recompensa ensucrada que és el nèctar.

Un cop les flors han estat fertilitzades per un pol·linitzador es forma la cipsel·la o fruit de les compostes. Són molt fàcils de reconèixer perquè molt sovint presenten una sèrie d’apèndixs en forma de pèl, esquames o punxes anomenats papus o vil·là, que faciliten la seva dispersió pel vent.

img 12 compositae
Diversitat d’aquenis i papus característics de les Compositae (extret de Funk et al., 2005).

Així ara ja podrem entendre perquè podem “desfullar” una margarida estirant cada un dels pètals que formen les flors ligulades del seu capítol o perquè quan bufem els angelets surten tantes llavors d’una sola flor.

 REFERÈNCIES

  • Font Quer P (1953). Diccionario de Botánica. Ed. Labor.
  • Funk VA, Bayer RJ, Keeley S, Chan R, Watson L, Emeinholzer B, Schilling E, Panero JL., Baldwin BG, Garcia-Jacas N, Susanna A & Jansen RK (2005). Everywhere but antarctica: using a supertree to understand the diversity and distribution of the Compositae. Biologiske skrifter 55: 343-374.
  • Funk VA, Susanna A, Stuessy TF & Bayer RJ (2009). Systematics, evolution, and biogeography of Compositae. International association for plant taxonomy, Vienna, Austria.
  • Kadereit JW & Jeffrey C. (2007). The families and genera of vascular plants, vol. 8, Flowering Plants. Eudicots. Asterales. Springer, Berlin.

Laia-català

Plantes carnívores

El carnivorisme és un tipus de nutrició que normalment associem als animals, al món dels  heteròtrofs. Però s’ha vist que hi ha plantes que també són capaces d’alimentar-se d’altres organismes. Aquestes són les anomenades plantes carnívores i les seves estratègies per capturar a les preses són ben diferents i curioses.

QUÈ ÉS UNA PLANTA CARNÍVORA?

Una planta carnívora és aquella planta que tot i ser autòtrofa obté un suplement nutritiu gràcies a que s’alimenta d’animals, sobretot d’insectes.

Per a que una planta sigui carnívora ha de complir  tres requisits bàsics:

  • Han d’atreure la presa per capturar-la i matar-la. Per tal d’atreure normalment presenten coloració vermellosa i també secreten nèctar. I per a capturar les preses han de constar de trampes, adaptacions morfològiques i anatòmiques que permeten retenir i matar la presa.
  • També han de ser capaces de digerir i absorbir els nutrients alliberats per la presa que han capturat.
  • I finalment han d’extreure un benefici significatiu de tot el procés.
Dionaea muscipula
Venus atrapamosques (Dionaea muscipula) (Autor: Jason).

ON VIUEN?

Les carnívores resulten poc competitives en ambients normals i a més acostumen a presentar un sistema radicular petit, per això requereixen d’aquesta especialització que els permet créixer més ràpidament. Generalment es troben en llocs amb poca mineralització, però alta concentració de matèria orgànica i zones d’humitat elevada i assolellades, ja que totes les  carnívores fan la fotosíntesi.

Normalment també són plantes calcífugues, és a dir, no estan ben adaptades a sòls alcalins i prefereixen ambients àcids on la font de calci és la presa. També tendeixen a viure en ambients reductors, per tant apareixen en sòls amb poc oxigen i carregats d’aigua. Algunes fins i tot són aquàtiques i viuen surant o submergides però prop de la superfície.

TIPUS DE TRAMPES I EXEMPLES

El sistema de captura és bastant divers, però es pot classificar segons si hi ha moviment o no.  Considerem actives aquelles que tenen moviment mecànic o per succió. En segon lloc hi hauria les semiactives; aquestes tenen moviment i consten de pèls adhesius. I finalment hi ha les passives, és a dir, que capturen sense moviment gràcies a pèls adhesius o estructures de caiguda com els cucurutxos o les urnes. A continuació veurem les estratègies a través de varis exemples.

TRAMPES ACTIVES

Venus atrapamosques

En el cas d’aquesta planta les trampes són mecàniques i estan formades per dues valves unides a un eix central. Aquestes valves són el resultat de la transformació de les fulles, les quals ja no són fotosintètiques. En conseqüència la tija és l’encarregada d’actuar com a pecíol i de fer la fotosíntesis; per això es troba eixamplada, augmentant la seva superfície facilita el procés. D’altra banda, les valves consten de glàndules de nèctar que atrauen a la presa i a més estan envoltades en el seu perímetre per dents que faciliten el tancament, ja que queden superposades per encaixar perfectament i evitar que l’animal s’escapi.

Però, què acciona el seu tancament?  Els encarregats són una sèrie de pèls disparadors que es troben al interior de la valva. Quan la presa es situa sobre la trampa i mou dos cops el mateix pèl o en mou dos en menys de 20s les valves es tanquen immediatament.

A continuació podem veure un vídeo on s’explica aquest procés. El vídeo és originari d’un reportatge emès per La 2 de TVE (Canal de Youtube: Luis Estévez):

Utricularia, la succionadora

Aquesta planta aquàtica que viu submergida prop de la superfície consta de sàculs o utricles que actuen com a trampes. Els sàculs es caracteritzen per tenir a l’entrada uns pèls sensitius que activen el mecanisme de succió de l’animal cap a l’interior, ja que en conseqüència el sàcul genera una pressió interna molt forta. D’aquesta manera succionen l’aigua i arrosseguen l’animal a la trampa. En el moment que entra l’aigua al sàcul, aquest pot arribar a augmentar un 40% el seu volum. La pressió interna és tan gran que quan l’animal és capturat s’escolta la succió.

En el següent curt podem veure a l’Utricularia en acció. El vídeo és originari d’un reportatge emès per La 2 de TVE (Canal de Youtube: Schoolbox):

TRAMPES SEMIACTIVES

Quan t’agafi ja no podràs escapar 

La presència de pèls adhesius no és exclusiva de plantes carnívores, moltes plantes els utilitzen com a defensa o per evitar pèrdua d’aigua. Però algunes carnívores, com la Drosera, els utilitzen per a capturar animals.

Els pèls adhesius o glàndules que presenta Drosera a les seves fulles estan formats per un peu i una cèl·lula apical que allibera mucílag. Aquesta substància atrau les preses per l’olor i pel gust. Quan la presa es situa a les fulles, les gotes de mucílag es van fusionant entre elles fins que formen una massa viscosa que acaba lubricant tota la presa fent impossible que pugui escapar. Cal remarcar que les glàndules tenen certa mobilitat i es desplacen per posar-se en contacte amb l’animal. A més, això provoca el tancament de la fulla facilitant la posterior digestió.

El següent vídeo mostra el funcionament d’aquest mecanisme (Canal de Youtube: TheShopofHorrors):

TRAMPES PASIVES

Compte que t’enganxes!

El cas de Drosophyllum és molt semblant al de Drosera, però aquesta vegada els pèls adhesius no tenen moviment i en conseqüència la fulla tampoc. El insecte queda atrapat simplement perquè s’enganxa i no es pot alliberar.

Drosophyllum
Insectes atrapats pels pèls adhesius de Drosophyllum (Autor: incidencematrix).

Vigila que caus!

Finalment veiem les trampes passives de caiguda, els cucurutxos i les urnes. Aquests a vegades presenten una tapa immòbil que no forma part del mecanisme de captura, però que protegeix la trampa de l’excés d’aigua, evitant que s’ompli. Els cucurutxos i urnes poden estar formats per la pròpia fulla o bé ser una estructura addicional originada pel nervi foliar. Aquest baixa fins l’altura del terra i desprès forma la trampa.

Nepenthes
Urna de Nepenthes (Autor: Nico Nelson).

Les preses es senten atretes cap aquests paranys degut a les glàndules de nèctar situades al interior. Un cop dins sortir és ben complicat! Les parets d’aquestes trampes poden ser viscoses, presentar pèls orientats cap a baix que dificulten la sortida o bé tenen taques translúcides que fan pensar a l’animal que hi ha una sortida, però que en realitat no ho és i llavors l’animal cau esgotat al fons intentant escapar. D’altres a més alliberen substàncies que atordeixen a la presa impedint la fugida.

Heliamphora
Cucurutxos de Heliamphora (Autor: Brian Gratwicke).

Cal dir que els animals grans que acostumen a caure en aquestes trampes és perquè estan malalts o perquè el seu desenvolupament no els permet distingir la trampa, tot i que n’hi ha que arriben a fer 20cm de llarg.

FALSES CARNÍVORES

Hi ha algunes plantes que sembla que en un futur podrien arribar a ser carnívores, però que no ho són per que no tenen un mecanisme especialitzat, és a dir, no compleixen un o més dels requisits necessaris.

És el cas de Dipsacus fullonum.  Aquesta espècie consta d’unes fulles que emmagatzemen aigua al voltant de la tija. Això evita que els insectes no voladors puguin pujar i alhora actua com a trampa potencial de caiguda. De tal manera que alguns insectes poden morir ofegats a l’aigua. Per tant, en un futur podria ser carnívora, ja que capturaria els insectes i a partir d’aquesta aigua absorbiria els nutrients.

Dipsacus fullonum
Acumulació d’aigua amb insectes morts a les fulles de Dipsacus fullonum (Autor: Wendell Smith).

Difusió-català

REFERÈNCIES

Les Reines del Jardí; flors amb corona

Si creies que les corones eren només pels reis i les reines, estaves ben equivocat. En aquest article podràs veure que algunes flors, com els narcisos, també són portadores de corones i en són ben dignes d’elles! A més no totes porten la mateixa, sinó que n’hi ha de ben diferents, de totes mides i colors. I són aquestes estructures tan peculiars les que han ocasionat que moltes d’aquestes plantes siguin cultivades per a la jardineria.

INTRODUCCIÓ 

En primer lloc, cal presentar les amarilidoidees (Subfamília Amaryllidoideae, Fam. Amaryllidaceae) perquè és on trobarem aquestes flors reials portadores de corona.

Els membres d’aquesta subfamília són plantes herbàcies perennes o biennals amb bulbs o rarament amb rizomes (tiges subterrànies habitualment allargades i de creixement horitzontal, semblants a arrels i que sovint emmagatzemen substàncies de reserva). Aquestes acostumen a presentar fulles allargades i estretes, que envolten una part de la tija, amb els nervis paral·lels, sense pèls, caduques, planes i amb el marge sencer, llis.

Narcís
Foto d’un narcís (Narcissus) com a exemple d’un membre d’Amaryllidoideae.

LES SEVES FLORS

Ara que ja ens fem una idea de com són les plantes, hem de conèixer les característiques de les flors. És a dir, com són:

  • Hermafrodites: contenen òrgans reproductors tan masculins com femenins.
  • Bracteades: cada flor consta d’una fulla especialitzada que l’acompanya i que s’origina a la seva axil·la.
  • Poden créixer solitàries o en conjunt.
  • Sense diferenciació entre sèpals i pètals. Per tant, en aquest cas no es distingeix entre una corol·la i un calze, sinó que es tracta d’un periant format per dos verticils de tèpals petaloides. En cada verticil trobem 3 tèpals i en total 6 per flor. Aquests poden estar lliures o units entre ells. Quan es troben soldats poden formar corones, tal i com s’explica a l’apartat següent.
característiques florals
Parts de la flor: 1. tèpal petaloide; 2. corona; 3. bràctea floral (Modificació foto de Miguel Ángel García).

DIVERSITAT DE CORONES

El grup Amaryllidaceae es composa de 59 gèneres diferents. Però no tots són dignes de portar corona. I, a continuació, podràs veure quins sí que ho són i a on apareixen.

PARACOROL·LES

A Europa, regió mediterrània i a l’oest d’Àsia trobem unes de les flors amb corona més conegudes. Es tracta del narcis (Narcissus), una de les plantes més utilitzada en jardineria i segurament la reina del jardí més habitual. Aquest gènere consta d’una corona llarga amb forma de copa o embut. El seu origen és petaloide, és a dir, part dels tèpals es fusiona per donar lloc a aquesta estructura. A aquest tipus de corona se la denomina paracorol·la.

Narcissus
Narcissus (Autor: Blondinrikard Fröberg).

CORONES ESTAMINALS

D’altra banda, dins del mateix territori trobem al gènere Pancratium. Però aquest llueix una corona totalment diferent; en aquest cas l’origen és estaminal, és a dir, les bases dels estams s’han eixamplat i fusionat entre elles per formar l’embut.

Pancratium illyricum
Pancratium illyricum (Autor: Tigerente).

Des del centre fins al est d’Àsia i a Austràlia trobem els gèneres Calostemma i Proiphys, els quals porten una corona estaminal  (com al cas anterior).

Calostemma_luteum
Calostemma luteum (Autor: Melburnian).
Proiphys_amboinensis
Proiphys amboinensis (Autor: Tauʻolunga).

ALTRES CORONES

A més, dins la mateixa distribució que els dos exemples anteriors, apareix Lycoris. Però, aquest llueix una corona més petita, ja que esta formada només per la unió de la base dels 6 tèpals que donen lloc a petit tub.

Lycoris_aurea
Lycoris aurea (Public Domain).

Finalment a Amèrica és on trobem una gran varietat de gèneres i de corones ben diverses, formades de diferents maneres; algunes com en els casos anteriors. Els gèneres d’aquest territori són: Clinanthus, Pamianthe, Paramongaia, Hieronymiella, Placea, Hymenocallis, Ismene, Leptochiton, Eucrosia, Mathieua, Phaedranassa, Rauhia i Stenomesson

Pamianthe peruviana
Pamianthe peruviana (Autor: Col Ford and Natasha de Vere).
Placea amoena
Placea amoena (Autor: Dick Culbert).
Phaedranassa tunguraguae
Phaedranassa tunguraguae (Autor: Michael Wolf).
Ismene amancaes
Ismene amancaes (Autor: Mayta).
Hymenocallis caribaea
Hymenocallis caribaea (Autor:Tatters ❀).
Eucrosia bicolor
Eucrosia bicolor (Autor: Raffi Kojian – http://www.gardenology.org).
Clinanthus_variegatus
Clinanthus variegatus (Autor: Melburnian)

Ara que ja coneixes les diferents corones reials, quina seria la reina del teu jardí?Difusió-català

REFERÈNCIES

  • Aguilella & F. Puche. 2004. Diccionari de botànica. Col·leció Educació. Material. Universitat de València: pp. 500.
  • Bolòs, J. Vigo, R. M. Masalles & J. M. Ninot. 2005. Flora manual dels Països catalans. 3ed. Pòrtic Natura, Barcelona: pp. 1310.
  • W. Byng. 2014. The Flowering Plants Handbook: A practical guide to famílies and genera of the world. Plant Gateway Ltd., Hertford, UK.
  • Apunts de Fanerògames, Grau de Biologia Ambiental, UAB.
  • Guía de Consultas Diversidad Vegetal. FACENA (UNNE). Monocotiledoneas- Asparagales: Amaryllidaceae.