Arxiu de la categoria: EVOLUCIÓ HUMANA

Ötzi, la momia del gel, segueix fascinant

Amb més de cinc mil anys d’edat, Ötzi és la mòmia humana més antiga que es coneix i una de les més estudiades per la ciència. Va ser descoberta en 1991 als Alps i des de llavors no ha deixat de donar informació sobre com era la vida al Neolític. T’animes a descobrir tots els seus secrets?

QUÈ ÉS UNA MÒMIA?

Les mòmies són cossos conservats de persones i animals que encara conserven la pell. Les més famoses són les egípcies, conservades gràcies als processos químics aplicats als cadàvers (embalsamament), encara que moltes altres cultures practicaven la momificació. Però les mòmies també poden donar-se de manera natural si les condicions són idònies per evitar la descomposició, com llocs humits i pantanosos, en el fred de les muntanyes i regions polars o en zones seques i sorrenques com els deserts. A més de la pell, altres estructures que poden conservar-se al llarg dels mil·lennis són les ungles, pèl i evidentment ossos i dents.

momia, mummy, natural, mireia querol rovira
Mòmia natural al Museu Britànic, Londres. Foto: Mireia Querol Rovira

A diferència dels fòssils, que tenen milions d’anys, les mòmies no solen superar els milers d’anys, encara que es conserven fòssils de dinosaures amb impressions de pell o escates. Si vols saber més sobre els processos de fossilització, et convidem a llegir Coneixent els fòssils i la seva edat. Ötzi, per no superar els 11.000 anys d’edat, es tracta d’un subfòssil.

QUI ERA ÖTZI?

Ötzi, l’Home de Similaun, l’Home de Hauslabjoc o simplement l’Home de Gel, va ser descobert a la Vall d’Ötz (a la frontera austríaco-italiana dels Alps) per uns alpinistes el 1991 a 3.200 metres d’altura. Gràcies a una tempesta al Sàhara, la pols va arribar fins als Alps i al escalfar-se amb el Sol, va fondre el gel més del que és habitual i va deixar en part descobert a Ötzi, que portava més de 5.000 anys sota el gel. No va ser fins al seu posterior estudi que es va descobrir la seva antiguitat real, ja que in situ es pensava que era un alpinista accidentat.

Ötzi, abans de ser extret de la muntanya. Foto: Paul Hanny / Museu Arqueològic del Tirol del Sud

Gràcies a la tècnica del carboni 14, es va determinar que Ötzi va morir cap al 3.255 a.C. (Calcolític, Edat del Coure), el que el convertia en la mòmia més antiga del món millor conservada. A més del cos, es van trobar més de 70 objectes personals (armes, roba, eines…), el que va donar més informació sobre la vida d’aquest home prehistòric.

Primer pla d’Ötzi. Font

UN HOMO SAPIENS MODERN

Al llarg de diversos articles hem parlat de altres espècies que ens van precedir, però Ötzi pertanyia a la nostra espècie, és a dir, Homo sapiens. Els primers Homo sapiens, apareguts a l’Àfrica fa 200.000 anys, van representar la transició evolutiva entre el H. heidelbergensis africà als primers humans moderns. Després de més de 7 milions d’anys d’evolució, H. sapiens som els únics hominins supervivents.

Reconstrucció d’Ötzi, per Alfons i Adrie Kennis. Foto: Thilo Parg

H. sapiens van migrar d’Àfrica fins a la resta de continents, un tema que per la seva extensió no podem tractar en aquest article. Si vols saber sobre com la paleoparasitologia ens ajuda a seguir les rutes migratòries dels nostres avantpassats no et perdis aquest article . Quan Ötzi vivia, els Neandertals ja s’havien extingit feia uns milers d’anys i els seus avantpassats sapiens portaven bastant temps a Europa (des de feia uns 45.000 anys).

El que diferencia H. sapiens d’altres espècies és un crani molt arrodonit i gran (1000-1400 cm 3) en comparació amb el cos, un rostre pla i vertical, dents petites, una mandíbula gens robusta i la presència de mentó, característica que no té cap de les espècies precedents.

Comparació del crani de sapiens i neanderthalensis on es veu la presència de mentó (“chin”). Cleveland Museum of Natural History. Foto de Matt Celeskey.

A nivell d’esquelet, com altres hominins recents, Ötzi i nosaltres estem perfectament adaptats al bipedisme, amb una constitució lleugera distintiva. Tenim uns membres inferiors llargs i gràcils, amb el fèmur inclinat cap al genoll per mantenir el centre de gravetat sota el cos. La pelvis és estreta i curta. La columna està corbada per mantenir l’equilibri i distribuir el pes de forma eficient al caminar, amb fortes vèrtebres lumbars. Els braços són relativament curts i les mans àgils i amb excel·lent precisió prènsil, amb falanges llargues i primes comparades amb les dels neandertals.

Reconstrucció d’Ötzi, un H. sapiens com tu. Foto: Thilo Parg

A nivell cognitiu, el que ens diferencia de la resta d’espècies hominines és la capacitat de pensament simbòlic (representació de la natura mitjançant símbols i pensament abstracte), encara que el debat segueix obert ja que els neandertals presentaven comportaments que podrien considerar simbòlics (com decorar-se el cos amb joies o pintures). El que està clar és que ja fa 40.000 anys, va aparèixer a Europa l’evidència més clara de comportament modern, amb l’aparició de la pintura rupestre i l’escultura. La innovació tecnològica, l’agricultura i la ramaderia són altres dels nostres trets distintius.

QUINA VALUOSA INFORMACIÓ ENS HA REVELAT LA CIÈNCIA SOBRE ÖTZI?

S’han utilitzat diferents tècniques que han anat revelant informació sobre la mòmia i canviant les diferents hipòtesis sobre ella a mesura que avança la tecnologia.

Científic examinant a Ötzi. © South Tyrol Museum of Archaeology/EURAC/Samadelli/Staschitz

CARBONI 14 I DENTICIÓ: EDAT

Ötzi tenia uns 46 anys d’edat quan va morir (l’esperança de vida en l’Edat de Coure eren uns 35 anys). Aquesta dada prové de l’estudi de les dents, que estan desgastades, potser per menjar gra durant tota la seva vida. Per conèixer la seva antiguitat, es va realitzar la prova del carboni 14 al seu cos i vestimenta. Té aproximadament 5.300 anys. Es calcula que passava uns 45 quilos i mesurava 1,60 m.

TOMOGRAFIA AXIAL COMPUTERITZADA (TAC)

Un  TAC  (o escàner) en el cos de Ötzi va posar al descobert que patia diversos problemes bucals, com càries (potser deguda al consum de pa i civada), periodontitis (piorrea), i dents desgastades d’usar-les com a eina de esquinçament. També va perdre part d’un molar i va patir un cop en un incisiu.

Mà de l’Home de Gel. Foto: Robert Clark
Peus d’Ötzi. Foto: Robert Clark

També patia artritis, càlculs biliars, tenia un bony en un dit del peu, trencaments en nas i costelles que es van curar abans de la mort i tenia els pulmons negres d’inhalar CO2, potser de les fogueres. S’han trobat més de 60 tatuatges en tot el seu cos (els més antics que es coneixen), consistents en petites línies, creus i punts. Es feien amb petits talls que després es fregaven amb carbó. No semblen decoratius, per la qual cosa s’especula que formessin part d’algun tractament per millorar l’artirtis, ja que assenyalen els punts on patia dolor.

La mòmia té 61 tatuatges, molts d’ells simples línies. Foto: Marco Samadelli and Gregor Staschitz / Museu Arqueològic del Tirol del Sud

En el seu sistema també tenia nivells alts d’arsènic, probablement per haver treballat amb minerals i metalls.

L’ÚLTIM SOPAR

Una anàlisi de l’estómac va revelar que havia menjat unes dues hores abans de morir. Va menjar cabra dels alps, cereals i plantes no identificades. Es van trobar 30 tipus diferents de pol·len, de manera que probablement va morir a la primavera. Però també es van trobar ous de paràsits que causen la malaltia de Lyme, que afecta principalment al sistema vascular, nerviós i esquelet.

Contingut estomacal de l’Home de Gel. Foto: Robert Clark

RAIGS X: ¿ACCIDENT O ASSASSINAT?

En primera instància es va creure que Ötzi havia mort a causa d’una caiguda per una glacera. Però les radiografies van mostrar la presència d’una punta de fletxa en la seva espatlla, de manera que els investigadors van analitzar amb més atenció el cos i van trobar diverses ferides en mans i tors i un cop al cap, la causa de la seva mort.

otzi x-ray
Radiografia del tors d’Ötzi, punta de fletxa assenyalada en vermell. Foto: Robert Clark

ANÀLISI D’ADN: PATIA DIVERSES MALALTIES

Es van fer proves d’ADN en diverses mostres de sang, i es van trobar fins a 3 tipus de sang diferent. La sang del seu ganivet de sílex no és seva: tot apunta que es va veure embolicat en una baralla amb diverses persones i va ser assassinat. El seu cos no es va trobar en una posició natural, de manera que es barregen dues hipòtesis: o bé un company va intentar ajudar-lo a extreure la fletxa o els enemics van intentar recuperarla. En qualsevol cas, no es van emportar els estris d’avançada tecnologia i roba d’abric d’Ötzi. Per què? El misteri segueix obert.

Ropa que llevaba Ötzi. Fuente
In primo piano l'accetta della mummia di Similaun
La destral d’Ötzi (primer pla) té la fulla de coure, el que indica un alt status i és l’única de l’epoca amb el mànec de fusta intacte. Font

El 2008 es publicar el genoma complet de l’Home de Gel. Així es va descobrir que era intolerant a la lactosa, la seva sang era de tipus 0 , tenia els ulls marrons, patia del cor i artèries i està emparentat amb els actuals habitants de Còrsega i Sardenya. A més, de 3.7000 mostres d’ADN donada per voluntaris del Tirol, s’han trobat 19 individus que comparteixen una mutació genètica amb Ötzi.

ADN NO HUMÀ EN ÖTZI

Les mostres de ADN no humà solen ser de bacteris que viuen en el nostre cos. Una biòpsia al maluc va treure a la llum la presència d’ADN d’un bacteri (Treponema denticola) implicat en la malaltia periodontal, que confirmava els resultats del TAC. També es van trobar restes del bacteri Clostridium i Helicobacter pylori, per la qual cosa tindria un fort mal de panxa i diarrees el dia de la seva mort. No solament això, l’estudi de Helicobacter d’Ötzi ha llançat noves dades sobre les migracions humanes, l’origen de les poblacions europees i l’impacte en la nostra evolució.

Més de 25 anys estudiant a Ötzi. Foto: Esame Colorimetrico / Museu Arqueològic de Tirol del Sud

VOLS VEURE A ÖTZI?

Tan important és aquest descobriment, que li han dedicat un museu pràcticament sencer per a ell: el Museu d’Arqueologia del Tirol del sud, a Bolzano. Allà hi ha exposada la impressionant roba que portava, fabricada amb pells d’animals com óssos i cabres, les seves sabates, de doble capa i farcit de palla, les seves eines, armes … fins la farmaciola que portava. I ell mateix, per descomptat, conservat a -6º. Potser algun dia el sentirem “parlar”: estan intentant recostruir el seu to de veu a partir de les cordes vocals.

Ötzi a la seva cambra frigorífica. Foto: © South Tyrol Museum of Archaeology/Ochsenreiter

Encara no se sap qui era. Potser un personatge important? Un hàbil caçador? Un agricultor o un ramader? Un remeier? Probablement mai ho sabrem. El que és segur és que ell mai podria arribar a imaginar-se les atencions que seguiria rebent 5.000 anys després de la seva mort. mireia querol rovira

De la medicina tradicional a la medicina personalitzada

Des de la prehistòria, on la medicina va tenir els seus començaments amb plantes, minerals i parts d’animals; fins a dia d’avui, la medicina ha evolucionat a passos de gegant. Gran part de la “culpa” d’aquest fet li devem a la genètica, que ens permet parlar de medicina personalitzada. D’aquest tipus de medicina és del què tracta el següent article.

L’EVOLUCIÓ DE LES MALALTIES

Per parlar de medicina hem de conèixer primer les malalties. Però no podem pensar que totes les malalties són genètiques, sinó que existeixen malalties relacionades amb canvis anatòmics, fruit de la nostra evolució.

El ximpanzè és l’animal actual més proper a nosaltres, els humans, amb el que compartim el 99% del nostre genoma. Malgrat tot, els humans tenim característiques fenotípiques molt particulars com el cervell més desenvolupat, tan a mida com a expansió de l’escorça cerebral; pell que sua sense pèl, postura bípeda i dependència prolongada de les cries, que permet la transmissió de coneixements durant més temps; entre d’altres.

Possiblement, la postura bípeda va ser clau perquè es produís aviat la divergència entre el llinatge del ximpanzé i el d’humans; i també és la raó de l’aparició d’algunes malalties relacionades amb factors anatòmics. Entre ells trobem hèrnies, morenes, varius, desordres de la columna, com hèrnies dels discos intervertebrals; osteoartritis en l’articulació del genoll, prolapse uterí i dificultats en el part.

El fet de que la pelvis es remodelés (Figura 1) i fos més estreta va resultar en problemes obstètrics milions d’anys després, quan el cervell es va expandir i, per conseqüència, el crani també. Els caps dels fetus eren més llargs i gran, cosa que produïa dificultats en el part. Això explica perquè els parts dels humans són és llargs i prolongats en comparació amb el dels ximpanzés i altres animals.

19
Figura 1. Comparació de la pelvis en humans i ximpanzès en postura bípeda (Font: Libros maravillosos – La especie elegida (capítulo 5))

L’evolució cap a la vida moderna ens ha comportat molts canvis en tots els sentits. En comparació amb els nostres avantpassats caçadors i recol·lectors (Figura 2), la nostra dieta ha canviat molt i no té res a veure amb el que mengen la resta de primats. Per aquests últims, la fruita representa la majoria de la ingesta, però per nosaltres ho és la carn vermella. A més, som els únics animals que seguim alimentant-nos de llet passat el període de lactància.

cazadores y recolectores
Figura 2. Imatge d’humans caçadors i recol·lectors (Font: Río Verde en la historia)

Si al canvi en la dieta li afegim el sedentarisme i la poca activitat física dels humans moderns, pot ajudar a explicar la gravetat i la freqüència d’algunes malalties humanes modernes.

L’estil de vida també pot produir-nos afectacions. Per exemple la miopia, que la seva taxa és major en individus occidentals que llegeixen molt o fan activitats de visió de prop, en comparació amb individus de pobles aborígens.

Un altre exemple clar és l’alteració en l’etapa reproductiva femenina. Actualment les dones tenen fills cada vegada més tard. Això també va lligat a una disminució de la duració de la lactància materna. Aquests canvis, que socialment es poden considerar positius, tenen efectes negatius sobre la salut dels òrgans reproductius. Està demostrat que la combinació de menarquia precoç, la lactància limitada o inexistent i una menopausa més tardana són els principals factors de risc pel càncer de mama i ovari.

Els éssers humans cada vegada vivim més anys i volem la millor qualitat de vida. És fàcil que a major longevitat apareguin més malalties, pel deteriorament de l’organisme i de les seves cèl·lules.

L’EVOLUCIÓ DE LA MEDICINA

La història de la medicina és la història de la lluita dels homes contra les malalties i, des de començaments d’aquest segle, també és la història de l’esforç humà per mantenir la salut.

Els coneixements científics de la medicina els hem adquirit basant-nos en l’observació i en l’experiència, però no sempre ha sigut així. Els nostres avantpassats van experimentar les malalties i la por a la mort abans de poder-se fer una imatge racional d’elles, i la medicina de llavors es trobava immersa en un sistema de creences, mites i rituals.

Però en els últims anys ha nascut la genòmica personalitzada, que et diu els teus factors de risc. Això obre una porta a la medicina personalitzada, que ajusta els tractaments als pacients depenent del seu genoma (Figura 3). Utilitza la informació dels gens i proteïnes d’una persona per prevenir, diagnosticar i tractar una malaltia, i tot gràcies a la seqüenciació del genoma humà.

PGX_BROCHURE
Figura 3. La medicina personalitzada pretèn tractar a les persones individualment, segons el seu genoma (Font: Indiana Institute of Personalized Medicine)

Els mètodes moleculars que fan possible la medicina de precisió, inclouen proves de variació de gens, proteïnes i nous tractaments dirigits a mecanismes moleculars. Amb els resultats d’aquests proves i tractaments es pot determinar l’estat de la malaltia, predir l’estat futur d’aquesta mateixa, la resposta al medicament i el tractament o, inclús, el paper dels aliments que ingerim en determinats moments, el que resulta de gran ajuda als metges a individualitzar el tractament de cada pacient.

Per això tenim al nostre abast la nutrigenètica i la nutrigenòmica, que a l’igual que la farmacogenètica i la farmacogenòmica, ajuden a l’avenç d’una medicina cada vegada més dirigida. Per tant, aquestes disciplines són avui en dia un dels pilars de la medicina personalitzada, ja que suposa tractar cada pacient de forma individualitzada i a mida.

L’evolució cap a la medicina de precisió és personalitzada, preventiva, predictiva i participativa. Cada vegada hi ha més accés a la informació i el pacient és més proactiu, avançant-se als problemes, prevenint-los i estant preparats per enfrontar-los eficientment.

REFERÈNCIES

  • Varki, A. Nothing in medicine makes sense, except in the light of evolution. J Mol Med (2012) 90:481–494
  • Nesse, R. and Williams, C. Evolution and the origins of disease. Sci Am. (1998) 279(5):86-93
  • Mackenbach, J. The origins of human disease: a short story on “where diseases come from”. J Epidemiol Community Health. (2006) 60(1): 81–86
  • Foto portada: Todos Somos Uno

MireiaRamos-catala

Crònica de les Jornades de l’origen africà del gènere Homo

Els passats 28 i 29 d’octubre s’ha celebrat a CosmoCaixa, el museu de la ciència de Barcelona, unes interessants jornades sobre evolució humana al voltant de l’exposició “El bressol de la humanitat”. No hi vas poder assistir? All you need is Biology et porta un resum sobre el viscut allà.

EL BRESSOL DE LA HUMANITAT

Mauricio Antón, cuna humanidad, bressol humanitat
Les petjades de Laetoli. Il·lustració de Mauricio Antón. Font

Fins al gener podem gaudir per última vegada d’una exposició única al nostre país, amb peces reals i motlles excepcionals de fòssils dels nostres avantpassats, eines lítiques i il·lustracions que ens traslladen on va començar la nostra història, a l’Àfrica. Al voltant d’aquesta exposició, CosmoCaixa ha organitzat unes jornades sobre l’origen africà d’Homo, dirigides pels comissaris de l’exposició: Enric Baquedano i Manuel Domínguez-Rodrigo. Si vols saber més sobre aquesta exposició clica aquí o descàrrega l’app per iPhone o Android. A continuació presentem el programa i un resum de cadascuna de les conferències:

DESCOBRINT “EL BRESSOL DE LA HUMANITAT”

Per Enrique Baquedano, codirector de IDEA (Instituto de Evolución en África)

Enrique va fer un repàs cronològic sobre les hipòtesis de l’origen del nostre llinatge i com els descobriments fòssils van anar desbancant les idees de l’origen europeu o indonesi plantejades al s. XIX. No va ser fins a 1924, que es descobreix el nen de Taung (Australophitecus africanus) i sobretot amb la troballa de P. boisei (1959) per part de Mary Leakey, els que confirmaran l’origen africà dels nostres avantpassats i les idees de Darwin i altres que el van precedir.

Clica aquí per descarregar un resum de la conferència (castellà). En el vídeo següent pots veure a Enrique parlant sobre “El bressol de la Humanitat”.

ELS MEUS DESCOBRIMENTS PALEOANTROPOLÒGICS AL “BRESSOL DE LA HUMANITAT”

Per Donald Johanson, director de l’Institute of Human Origins (EUA)

El plat fort de les jornades va ser sens dubte la presència, per primera vegada en una xerrada a Espanya, del Dr. Donald Johanson, conegut pel gran públic com el codescubridor de la Lucy.

conferencia, conference, Donald Johanson, Cosmocaixa, museo de la ciencia, Barcelona, Spain, España, Catalunya
Donald Johanson, CosmoCaixa. Foto de Mireia Querol Rovira

Va destacar la meravella del paisatge africà: qualsevol que ha estat vol tornar-hi, i és que de fet, és la nostra primera llar. I va començar un repàs de com van ser les seves primeres excavacions, la troballa de la Lucy i d’altres fòssils no menys importants que van quedar eclipsats per ella. I per què Lucy és tan important? Perquè va ser la primera evidència clara de bipedisme més antic i que aquest va aparèixer a la selva (no a la sabana) i abans que l’encefalització (cervells grans que suposadament defineixen el nostre llinatge).

A través de la presentació de fòssils, va anar explicant la importància del mètode científic, com aquests van anar recolzant (o no) les seves hipòtesis, i la importància del treball en equip i multidisciplinari per a l’avenç científic. Tota una lliçó d’amor a la ciència.

Clica aquí per descarregar un resum de la conferència (castellà).

donald Johanson, conferencia, conference, cosmocaixa, Barcelona
Fites evolutives, Donald Johanson. Foto de Mireia Querol Rovira.

GEOLOGIA DE LA GRAN FALLA DEL RIFT

Per David Uribelarrea, professor de geologia de la Universidad Complutense de Madrid.

L’emergència i conservació dels hominins no es pot entendre sense la singular geologia de l’est d’Àfrica. La formació del Rift va influir en el clima global, parant els vents humits de l’Índic i contribuint a la dessecació del que fa milions d’anys estava ocupat per bosc humit. És precisament aquí on es troben fòssils que abasten totes les etapes, des dels pre-australopitecs fins als primers H. sapiens. És per això que se’l coneix com el “bressol de la humanitat”. A més, el terreny volcànic és perfecte per a la conservació i datació de fòssils.

Clica aquí per descarregar un resum de la conferència (castellà).

Formación del Rift Valley. Trabajo de David Uribelarrea. Foto de Mireia Querol Rovira
Formació del Rift Valley. Treball de David Uribelarrea. Foto de Mireia Querol Rovira

IL·LUSTRAR “LA CUNA DE LA HUMANIDAD”

Per Mauricio Antón, paleoartista, Museo Nacional de Ciencias Naturales.

Com eren els nostres avantpassats? No és una pregunta fàcil de respondre, per això és indispensable la feina dels paleoartistes. Mauricio ens va explicar l’origen del paleoart i quines tècniques s’utilitzen per a la reconstrucció dels individus a través dels fòssils i la importància de conèixer anatomia. A més del físic, el veritable repte és representar als individus en el seu comportament natural i entorn. Eren bípedes? Com era la seva expressió facial? Vivien en grups? Caçaven o eren carronyers? És per això que les il·lustracions sempre són vistes sota un filtre ideològic, i no es pot agradar a tothom. Per ser paleoartista no només és necessari saber dibuixar, sinó tenir també coneixements paleoantropològics i sens dubte en això, en Mauricio és un mestre.

Clica aquí per descarregar un resum de la conferència (castellà).

Metodología del paleoarte, Mauricio Antón. Foto de Mireia Querol Rovira
Metodologia del paleoart, Mauricio Antón. Foto de Mireia Querol Rovira

LA FAUNA AFRICANA QUE VA ACOMPANYAR ALS HOMININS

Taula rodona amb la participació de Jordi Agustí, Núria Garcia, Bienvenido Pérez-Navarro i Jan Van der Made.

L’estudi dels fòssils animals és igual d’important que el dels dels hominins. A través de l’estudi de la dentició dels ungulats per exemple, podem veure les adaptacions als canvis climàtics que també van influir en els hominins, o quin tipus de vegetació hi havia en aquell moment.

També és temptador pensar que el canvi climàtic (i el pas de bosc humit a sabana) va provocar la diversificació de hominins, però va succeir això en altres grups? Per exemple, en els carnívors, no va ser així, sinó que es van reduir.

Diversidad en carnívoros de 4,4 Ma hasta 1 Ma. Trabajo de Núria Garcia. Foto de Mireia Querol Rovira
Diversidad en carnívoros de 4,4 Ma hasta 1 Ma. Trabajo de Núria Garcia. Foto de Mireia Querol Rovira

I què ens poden indicar els fòssils d’hipopòtams? La presència d’aigua. O l’escassa presència de carnívors en jaciments amb eines auxelianes? Que hi ha un canvi en el comportament humà cap a un comportament més caçador. Altres espècies van afavorir la disponibilitat de carronya per als nostres avantpassats. La relació entre ells i la resta de la fauna és evident.

Clica aquí per descarregar un resum de la taula rodona (castellà).

ELS PRIMERS HOMININS

Per Antonio Rosas, professor d’investigació del CSIC

En aquesta xerrada Antonio va parlar sobre qui són els homínids, sobre la famosa frase si “venim del mico” i quines característiques defineixen el nostre llinatge. Una cosa gens fàcil, així que se sol prendre com a característica única el nostre bipedisme. Però com va sorgir? A partir de quina locomoció? Coneixent l’origen del bipedisme, ens posarem més sobre la pista del nostre últim avantpassat comú entre nosaltres i els ximpanzés.

Clica aquí per descarregar un resum de la conferència (pròximament).

Antonio Rosas plantea si el último ancestro común era cuadrúpedo o bípedo. Foto de Mireia Querol Rovira
Antonio Rosas planteja si l’últim avantpassat comú era quadrúpede arbori. Foto de Mireia Querol Rovira

LES PRIMERES EINES I LA SEVA SORTIDA D’ÀFRICA

Per Eudald Carbonell, catedràtic de prehistòria (Universitat Rovira i Virgili) i codirector d’Atapuerca.

Eudald ens va parlar de la intel·ligència operativa, aquesta capacitat de previsió, planificació i direcció que va permetre als nostres avantpassats construir les primeres eines. Una cosa que és més antiga del que havíem cregut fins ara (clàssicament se segueixen associant a H. habilis, sobre 2,8 milions d’anys). Eudald va exposar que ja haurien d’existir indústries senzilles fa 3-4 milions d’anys enrere.

La importancia de las herrammientas en nuestra evolución como especie. Foto de Mireia Querol Rovira
La importància de les eines en la nostra evolució com a espècie. Foto de Mireia Querol Rovira

Sumat a la hipòtesi de sortida de l’Àfrica a causa de la climatologia i ecologia, la dispersió humana va sempre lligada a la tecnologia. Una tecnologia que en primera instància va servir per a l’obtenció de l’aliment, i més tard lligada al simbolisme, cosa que ens separa de la resta d’animals (que de moment sapiguem).

Clica aquí per descarregar un resum de la conferència (pròximament).

ELS CANVIS QUE ENS VAN FER ANATÒMICAMENT MODERNS

Per Juan Luis Arsuaga, catedràtic de paleontologia (Universidad Complutense de Madrid) i codirector d’Atapuerca. Director científic del Museo de Evolución Humana (Burgos).

En aquesta conferència Arsuaga intenta respondre a la pregunta de què ens fa diferents com a espècie. Què separa H. sapiens dels nostres avantpassats, fins i tot dels neandertals, tan semblants a nosaltres? Per què som els únics animals amb creixement permanent del pèl del cap i cara? Serà que ens fa diferents nostre part tan dolorós? O el nostre curt tub digestiu? Arsuaga va presentar una “idea atrevida però no prou boja per no ser certa”.

Descobreix-la en el resum de la conferència (pròximament).

"Nuestro primer amor es Lucy y nadie podrá sustituirla". Juan Luis Arsuaga. Foto de Mireia Querol Rovira
“El nostre primer amor és Lucy i ningú podrà substituir-la”. Juan Luis Arsuaga. Foto de Mireia Querol Rovira

COM ENS VAM FER SAPIENS?

Per Nicholas Conard, catedràtic de prehistòria (Universitat de Tübingen, Alemania).

En aquesta conferència Nicholas ens va presentar troballes fetes a jaciments europeus, sobretot alemanys, que ens donen informació sobre el comportament neandertal (per exemple, que sí que innovaven i no eren per a res “primitius”). Va passar després a les primeres manifestacions d’art més antigues per part de H. sapiens, com a eines amb marques fetes intencionadament, o figures simbòliques com lleons-home i venus que presumiblement representaven sexualitat, reproducció i fins i tot un ajut per ajudar a donar a llum. Fins i tot instruments musicals, com flautes, de les que vam poder escoltar un enregistrament. És a dir, fa 40.000 anys, aquells sapiens, ja eren com nosaltres.

Clica aquí per descarregar un resum de la conferència (pròximament).

nicholas-conard-cosmocaixa
Nicholas Conard i l’art paleolític. Foto de Mireia Querol Rovira

Ha estat un enorme privilegi poder escoltar i concentrar a tantes personalitats del món de la paleoantropologia i arqueologia, fins i tot parlar amb elles. Les intervencions del públic també van ser molt interessants. I tu, ¿vas estar allà? Deixa’ns un comentari, i si vols ampliar informació sobre algun ponent (per exemple, recomanacions sobre llibres o publicacions), no dubtis a comentar!

Foto de portada propietat de CosmoCaixa

mireia querol rovira

Paràsits: senyals del nostre camí

Els misteris sobre l’evolució humana, el seu desenvolupament i els seus moviments al llarg de la història de la Terra segueixen sent un dels temes que aixequen més interès i expectació. Encara queden molts aspectes per esclarir i entendre, però gràcies a la ciència anem avançant a grans passes. Pot, doncs, la parasitologia ajudar a esclarir fets del passat? Ho descobrirem de la mà de la paleoparasitologia. 

QUÈ ÉS LA PALEOPARASITOLOGIA?

Es tracta d’una branca de la paleontologia que estudia els registres parasitològics trobats en restes arqueològics, és a dir, estudia els paràsits o les seves restes que es poden trobar en restes arqueològics. Aquests estudis pretenen descobrir l’origen i evolució de les diferents malalties parasitàries que afecten  l’home, així com determinar les seves relacions filogenètiques. A part d’obtenir aquesta informació biològica, ens permet conèixer aspectes socioculturals dels antics humans com per exemple la seva dieta, el seu nivell d’higiene, si eren nòmades o sedentaris, les seves migracions, etc.

Generalment, els materials estudiats per la paleoparasitologia són restes de teixit fossilitzat, mòmies, fòssils, copròlits (excrements momificats) o sediments que hagin pogut estar en contacte amb els fossin els hostatgers d’aquests paràsits.

img_5
Copròlits humans momificats (Imatge: M. Beltrame)

Trobar restes d’un paràsit a les mostres és una feina molt complicada, ja que el pas del temps destrueix i erosiona totes les restes orgàniques. Tot i així, es poden trobar molts ous o ooquistes al teixit momificat, ja que són estructures de resistència que es poden mantenir durant llargs períodes de temps.

Sin título
A. Ou de poll (Pediculus humanus) trobat als cabells d’una mòmia al Brasil (12.000 anys d’antiguitat. B.Ou de Trichuris sp. trobat a Cabo Vírgenes, Argentina (6000 anys antiguitat). (Imatge: Araujo).

En certs casos, els escrits i dibuixos de les antigues societats ens permeten obtenir informació adiccional de la presència d’un determinat paràsit. A la imatge següent observem una ceràmica Moche del Perú on es representen les ferides típiques d’un cas de leishmaniosi. A la imatge del costat trobem un crani momificat que presenta unes lesions molt semblants. Això indica, que el contagi de leishmània ja es donava a les societats antigues precolombines.

Sin título1
A. Imatge modificada d’una ceràmica Moche amb lesions de leishmaniosi (cercle vermell). (Imatge: Oscar Anton, Pinterest) B. Crani momificat que presenta lesions típiques d’un quadre clínic de leishmaniosi. (Imatge: Karl J. Reinhard).

L’ARRIBADA AL CONTINENT AMERICÀ: MIGRACIONS HUMANES I PARÀSITS

Fa uns 150000 anys va aparèixer a Àfrica una nova espècie d’homínid: l’Homo sapiens. Es va començar a expandir en diverses onades cap a la resta del continent, Europa i Àsia. En aquest viatge s’emportà paràsits que ja afectaven els seus avantpassats (coneguts com a paràsits d’herència o heirloom parasites en anglès) i va anar adquirint noves parasitosis al llarg del seu camí (paràsits souvenirs), a causa de les relacions que anava establint amb altres homínids i animals.

Gràcies a les restes arqueològiques i pistes que van anar deixant al seu pas, s’ha pogut reconstruir els passos que van seguir els nostres avantpassats. Una de les rutes que emprengueren fou per l’Estret de Bering (que fa 13.000 anys estava congelat i unia les costes de Sibèria i Alaska) per arribar al continent americà. Sempre s’ha cregut que aquesta fou l’única ruta d’arribada al nou món, però troballes parasitològiques demostren una teoria molt diferent.

inside_map
Representació gràfica de la possible ruta que seguiren els primers pobladors per arribar al continent americà. (Imatge: The Siberian Times).

Uns paràsits molt interessants que es poden trobar a jaciments arqueològics precolombins són Trichuris trichiura (nemàtode) i Ancylostoma duodenale. Aquests paràsits necessiten unes condicions climàtiques tropicals i subtropicals, ja que una part important de maduració en el seu cicle vital es duu a terme a l’ambient. Els seus ous són expulsats del cos amb els excrements i maduren a l’exterior.

Sin título3
A. Part superior: exemplar adult de A. duodenale (Christopher Noble). Part inferior un dels seus ous. (Imatge: Universidad Antioquia) B. A la part superior exemplar adult de Trichuris trichiura (Invertebrate zoology Virtual collection) i a la part inferior un dels seus ous (Microbiolgia blogspot).

Com van aconseguir, doncs, sobreviure a les dures condicions antàrtiques que es donaven a l’Estret de Bering? No van poder. Aquests paràsits no haurien pogut sobreviure a les condicions climàtiques d’aquesta regió i menys s’haguessin pogut expandir i reproduir, ja que els seus ous no podrien madurar. Per altra banda, cal destacar que tampoc s’han trobat evidències  que aquests paràsits afectin poblacions àrtiques actuals com els Inuits.

Així doncs, els principals experts en paleoparasitologia afirmen que la migració per l’Estret de Bering no va ser l’única forma d’arribada al continent americà. Adauto Aráujo i Karl Reinhard proposen que van existir, almenys, dues formes més de colonització de continent per part dels primers pobladors. Per una banda proposen una ruta costal (seguit la costa. Ruta b a la imatge inferior) i per l’altra una ruta transpacífica (trevessant l’oceà Pacífic, ruta c). En aquestes condicions climàtiques els paràsits intestinals que hem comentat abans podrien haver conservat les seves capacitats infectives i seguir afectant els nous americans.

img_1
Rutes proposades pels investigadores de l’arribada dels humans al continent americà basades en evidències paleoparasitològiques (Imagen: Aráujo, et al.)

Una de les preguntes que es formulen dels escèptics d’aquestes teories és si els paràsits ja es podrien trobar al continent americà. La resposta és ben senzilla. Aquests paràsits són específics de l’home i el seu origen és més antic que l’arribada a Amèrica. Per tant, necessitarien humans per poder completar el seu cicle biològic. Així doncs, segurament no hi havia paràsits intestinals al continent americà abans de l’arribada dels primers pobladors.

Una altra prova parasitològica que confirma aquesta teoria de les tres rutes és la presència del paràsit intestinal Enterobius vermicularis (cucs intestinals). Aquest paràsit es va relacionar per primera vegada amb avantpassats de l’Homo sapiens i altres homínids anteriors. Al llarg de l’evolució ha anat coevolucionant amb els seus hostatgers fins al punt de produir-se una diferenciació en diverses subespècies. En el continent americà s’han trobat restes de dos llinatges diferents de E. vermicularis, fet que es podria explicar a què no arribaren amb un sol grup d’humans, sinó que Amèrica va ser colonitzada per diferents grups humans que portaven paràsits diferents. En aquest cas, E. vermicularis si hauria pogut arribar per l’Estret de Bering ja que el seu cicle biològic no està determinat per les condicions climàtiques.

·

“Els paràsits, així com els seus hostatgers, sofreixen els fenòmens de l’evolució com la selecció, extinció i colonització. Per això, aquests paràsits específics de l’home són proves excel·lents sobre els moviments i migracions dels nostres avantpassats”. Adauto Aráujo (2008).

REFERÈNCIES

Comprova l’evolució en el teu propi cos

El 42% de la població nord-americana i l’11,5 de l’espanyola no creu que l’evolució sigui certa. Tot i això, hi ha diferents proves de que el genial Darwin tenia raó, algunes d’elles en el teu propi cos. T’han operat de l’apèndix o tret els queixals del seny? Descobreix en aquest article quins òrgans vestigials vas heretar dels teus avantpassats.

¿QUÈ SÓN LES ESTRUCTURES VESTIGIALS?

Les estructures vestigials (sovint anomenades òrgans, encara que no ho siguin pròpiament dit) són parts del cos que han vist reduïda o perduda la seva funció original durant l’evolució d’una espècie. Es troben en molts animals, inclosos per descomptat els humans.

Esqueleto de orca en el que se observan vestigios de las extremidades traseras. Foto: Patrick Gries
Esquelet  d’orca en el que s’observen vestigis de les extremitats posteriors, prova del seu origen terrestre. Foto: Patrick Gries

Les estructures vestigials eren plenament funcionals en els avantpassats d’aquestes espècies (i ho són en les estructures homòlogues d’altres espècies actuals), però actualment la seva funció és pràcticament nul·la o ha canviat. Per exemple, en alguns insectes com les mosques el segon parell d’ales ha perdut la seva funció voladora i ha quedat reduït a òrgans de l’equilibri (halteris). Si vols saber més sobre l’evolució del vol en els insectes entra aquí.

A més d’estructures físiques, les característiques vestigials també poden manifestar-se en comportaments o processos bioquímics.

¿PER QUÈ SÓN PROVES DE L’EVOLUCIÓ?

La selecció natural actua sobre les espècies afavorint característiques que augmentin la seva supervivència i eliminant les que no, per exemple quan apareixen canvis en l’hàbitat. Els individus amb característiques poc favorables moriran o es reproduiran menys i aquesta característica es veurà eliminada a la llarga, mentre que les favorables es mantindran ja que els seus portadors la podran passar a la següent generació.

De vegades hi ha característiques que no són ni favorables ni desfavorables, pel que seguiran passant a les següents generacions. Però tota estructura té un cost (energètic, perill a que s’infecti, desenvolupi tumors…), de manera que la pressió selectiva segueix actuant per eliminar una cosa que no afavoreix l’èxit de l’espècie. És el cas de les estructures vestigials, que “trigarien més” a desaparèixer al llarg de l’evolució. El fet que n’hi hagi revelen que en el passat aquestes estructures sí tenien una funció important en els nostres avantpassats.

TROBA ELS TEUS ÒRGANS VESTIGIALS

LA MEMBRANA NICTITANT

Ja vam parlar d’ella a Com veuen el món els animals. Es tracta d’una membrana transparent o translúcida que serveix per protegir l’ull i humitejar-lo sense perdre visibilitat. És comú en amfibis, rèptils i aus. Entre els primats, només la posseeixen completa lèmurs i loris.

membrana nictitante, nictitating membrane
Membrana nictitant o tercera parpella d’un fredeluga militar (Vanellus miles). Foto: Toby Hudson

En humans la plica semilunaris és un vestigi de la membrana nictitant. Òbviament no la podem moure però encara té certa funció de drenatge del lacrimal i ajuda al moviment de l’ull (Dartt, 2006).

Plica semilunaris (pliegue semilunar). Foto: desconocido
Plica semilunaris (plec semilunar). Foto: desconegut

EL TUBERCLE DE DARWIN I ELS MÚSCULS DE L’ORELLA

El 10% de la població té un engrossiment a l’orella, vestigi de l’orella punxeguda comú en els primats. Aquesta estructura es diu tubercle de Darwin i no té cap funció.

Variabilidad del Tubérculo de Darwin en la punta de la oreja (0= ausente). Puede presentarse en otras zonas del pabellón auditivo: ver publicación.
Variabilitat del Tubercle de Darwin a la punta de l’orella (0 = absent).  Font.
Comparación entre la oreja de un macaco y la nuestra. Fuente
Comparació entre l’orella d’un babuí groc (Papio cynocephalus) i la nostra. Font

Els primats (i altres mamífers) tenen orelles mòbils per dirigir els pavellons auditius cap a la font de so: segurament ho hauràs observat en el teu gos o gat. Els humans (i ximpanzés) ja no tenim aquesta gran mobilitat, encara que algunes persones poden moure lleugerament els pavellons auditius a voluntat. S’ha comprovat mitjançant elèctrodes que aquests músculs s’exciten quan percebem un so que ve d’una direcció concreta (2002).

Músculs auriculars responsables del moviment del pavelló auditiu. Font

El múscul occipitofrontal també ha perdut la seva funció d’evitar que caigui el cap, encara que participa en l’expressió facial.

MÚSCUL PALMAR LLARG

El 16% de les persones caucàsiques no posseeix aquest múscul al canell, tampoc un 31% de les nigerianes ni un 4,6% de les xineses. Fins i tot pot aparèixer en un braç i no en l’altre o ser doble segons les persones.

Es creu que aquest múscul participaria activament en la locomoció arborícola dels nostres avantpassats, però actualment no té cap funció necessària, ja que no proporciona més força d’agafada. Aquest múscul és més llarg en primats completament arborícoles (lèmurs) i més curt en els més terrestres, com els goril·les (referència).

I tu, el tens o no? Fes la prova: junta els dits polze i dit petit i aixeca lleugerament la mà.

mireia querol, mireia querol rovira, palmaris longus, musculo palmar largo, tendon
Jo tinc dos al braç esquerre i un al dret. Foto: Mireia Querol Rovira

QUEIXALS DEL SENY

El 35% de les persones no posseeixen queixals del seny o tercer molar. A la resta, la seva aparició sol ser dolorosa i és necessària l’extirpació.

Yo no tengo el tercer molar. Foto: Mireia Querol Rovira
Jo no tinc el tercer molar. Foto: Mireia Querol Rovira

Els nostres ancestres hominins sí en tenien, força més grans que els nostres. Un recent estudi explica que quan una dent es desenvolupa, emet senyals que determinen la mida de les dents veïnes. La reducció de la mandíbula i la resta de dentadura al llarg de l’evolució ha provocat la reducció dels molars (i fins i tot la desaparició del tercer).

Comparativa entre la dentición de un chimpancé, Australopithecus afarensis y Homo sapiens. Fuente
Comparativa entre la dentició d’un ximpanzé, Australopithecus afarensis i Homo sapiens. Observa la reducció dels tres últims molars entre afarensis i sapiens, Font

EL CÒCCIX

Si et toques la columna vertebral fins al final, arribaràs al còccix. Es tracta de 3 a 5 vèrtebres fusionades vestigi de la cua dels nostres avantpassats primats. De fet, quan estàvem a l’úter matern, en els primers estadis de desenvolupament de l’embrió s’observa una cua amb 10-12 vèrtebres en formació.

Distintos estados en el desarrollo embrionmario humano y comparación con otras especies. Créditos en la imagen
Diferents estadis en el desenvolupament embrionari humà (1 a 8) i comparació amb altres espècies. Crèdits a la imatge

Posteriorment es reabsorbeix, però no en tots els casos: hi ha reportats 40 naixements de nadons amb cua.

Neonato nacido con cola. Una mutación ha evitado la inhibición del crecimiento de la cola durante la gestación. Fuente
Nounat nascut amb cua. Una mutació ha evitat la inhibició del creixement de la cua durant la gestació. Font

Encara que no tinguem cua, actualment aquests ossos serveixen d’ancoratge d’alguns músculs pèlvics.

mireia querol, mireia querol rovira, coxis, sacro, sacrum, tailbone, rabadilla
Situació del coxis. Foto: Mireia Querol Rovira

MUGRONS SUPERNUMERARIS (POLITÈLIA)

S’estima que fins a un 5% de la població mundial presenta més de dos mugrons. Aquests mugrons “extra”, poden presentar-se en diferents formes (complets o no) pel que de vegades es confonen amb pigues. Se situen en la línia mamilar (de l’engonal a l’aixella), exactament en la mateixa posició que la resta de mamífers amb més de dues mames (observa el teu gos, per exemple).

Línea mamilar. Foto: MedicineNet
Línia mamilar. Foto: MedicineNet

Habitualment el número de mames correspon amb la mitjana de cries que pot tenir un mamífer, de manera que els mugrons extra serien un vestigi de quan els nostres avantpassats tenien més cries per part. L’habitual són 3 mugrons, però s’ha documentat un cas de fins a 8 mugrons en una persona.

Pezón suplementario debajo del principal. Fuente
Mugró suplementari sota del principal. Font

TROBA ELS TEUS REFLEXOS I COMPORTAMENTS VESTIGIALS

EL REFLEXE DE PRENSIÓ PALMAR I PLANTAR

Alguna vegada hauràs experimentat que a l’acostar qualsevol cosa a les mans d’un nadó, automàticament ho agafa amb una força tal que seria capaç d’aguantar el seu propi pes. Desapareix cap als 3-4 mesos i és un romanent del nostre passat arborícola i de la manera d’agafar-se al pèl de la mare, igual que succeeix amb els altres primats actuals. Observa el següent vídeo de 1934 sobre un estudi de dos bessons (minut 0:34):

En els peus també hi ha el reflex d’intentar agafar alguna cosa quan es toca la planta del peu d’un nadó. Desapareix cap als 9 mesos d’edat.

Per cert, t’has fixat en l’afició i facilitat que tenen els nens i nenes per pujar a qualsevol barana o part elevada en un parc infantil?

LA PELL DE GALLINA

El fred, l’estrès o una emoció intensa (per exemple, l’escoltar certa música) provoca que el múscul piloerector ens erici el pèl donant-li a la pell l’aspecte d’una gallina sense plomes. És un reflex involuntari en què algunes hormones, com l’adrenalina (que s’allibera en les situacions esmentades), estan implicades. Quina utilitat tenia això per als nostres ancestres i té en els mamífers actuals?

  • Augmentar l’espai entre la pell i l’exterior, de manera que l’aire calent atrapat entre el pèl ajuda a mantenir la temperatura.
  • Semblar més grans per espantar possibles depredadors o competidors.

    Chimpancé con el pelo erizado durante un display antes de un conflicto. Foto: Chimpanzee Sanctuary Northwest
    Ximpanzé amb els cabells estarrufats durant un display abans d’un conflicte. Foto: Chimpanzee Sanctuary Northwest

Òbviament nosaltres hem perdut el pèl en la major part del cos, de manera que encara conservem el reflex, no ens serveix ni per escalfar-nos ni per espantar depredadors. El pèl s’ha conservat més abundantment en zones on és necessària protecció o a causa de la selecció sexual (cap, celles, pestanyes, barba, pubis…), però en general, també pot ser considerat una estructura vestigial.

Hi ha més estructures vestigials tot i que en aquest article ens hem centrat en les més observables. En futurs articles parlarem d’altres internes, com el famós apèndix o l’òrgan vomeronasal.

REFERÈNCIES

Cuinar també ens va fer humans

Cuinar és un tret distintiu i únic de la nostra espècie. Després de l’èxit de l’article Menjar carn ens va fer humans, continuem aprofundint en la nutrició dels nostres avantpassats com un dels múltiples factors que ens ha portat fins Homo sapiens. Analitzarem les aportacions dels nostres lectors en l’article anterior sobre la importància dels carbohidrats i l’ús del foc.

L’OMNÍVOR OPORTUNISTA

En l’article anterior vam veure que un dels factors que va contribuir al ràpid creixement del cervell va ser l’augment de la ingesta de carn per part d’H. habilis, que li va permetre estalviar energia en la digestió (Aiello, L. i Wheeler, P, 1995). Un altre factor que va permetre estalviar energia per dedicar-la al creixement del cervell, ja des Lucy, va ser el bipedisme (Adrienne L. Zihlman i Debra R. Bolter, 2015).

Una de les coses que ens ha donat èxit evolutiu és la nostra capacitat d’aprofitar gairebé qualsevol aliment, permetent la nostra expansió per tot el planeta. Les dietes actuals són molt variades i tradicionalment lligades a la disponibilitat de la zona geogràfica o època de l’any, cosa que va canviar amb l’agricultura i ramaderia. Els grups humans estudiats en època històrica sense agricultura ni ramaderia, cacen, pesquen i recol·lecten aliments molt diversos, però no s’han trobat grups exclusivament carnívors o exclusivament vegetarians (exceptuant els esquimals, que tradicionalment s’han alimentat de caça i pesca degut a les característiques del seu medi, gelat gran part de l’any).

Hazdas volviendo de caza. Los hazdas son una pequeña tribu africana de 1.500 cazadores-recolectores. Foto: Andreas Lederer
Hazdes tornant de caça. Els hazda són una petita tribu africana de 1.500 caçadors-recolectors. Foto: Andreas Lederer

Les primeres eines, ja utilitzades possiblement per australopitecs però evidents a partir d’H. habilis, van permetre als nostres avantpassats obtenir aliments que d’altra manera hagués estat impossible aconseguir: perforar i esquinçar carn, trencar les dures closques dels fruits secs, i més endavant triturar i moldre el gra. Així, la base de la nostra alimentació actual són les llavors dures dels cereals (per exemple, arròs, blat…) i les llavors seques de les lleguminoses (llegums, per exemple, llenties), ja que l’aportació proteica que necessitem és baixa, encara que la carn sigui consumida en excés  als països del Primer Món.

Però abans de l’aparició de l’agricultura i ramaderia, els nostres avantpassats s’alimentaven del que trobaven: neandertals en zones més hostils havien de basar la dieta en la carn i complementar-la amb vegetals quan estiguessin disponibles, mentre que en zones de clima més suau, com el mediterrani, explotaven recursos aquàtics com mol·luscs, tortugues i peixos. A més, pel seu cos robust i major musculatura necessitaven major aportació proteica.

Neandertales recogiendo mejillones en Gibraltar, uno de los últimos asentamientos de esta especie. Foto: DK Discover
Neandertals collint musclos a Gibraltar, un dels últims assentaments d’aquesta espècie. Foto: DK Discover

ELS ORÍGENS DE LA CUINA

Com hem vist, les llavors són molt nutritives ja que són riques en hidrats de carboni (sobretot midó), però pobres en proteïnes; a més, els llegums han de ser cuinats per ser assimilables. Cap animal, a excepció de nosaltres i els nostres avantpassats, prepara ni cuina els aliments. La cuina és un tret exclusivament humà que va obrir un infinit nombre de possibilitats en la nostra alimentació.

EL DOMINI DEL FOC

Els primers indicis de l’ús del foc es remunten fa 1,6 milions d’anys a l’Àfrica, encara que la primera evidència segura és una llar de fa 0,79 milions d’anys. El responsable: Homo erectus, encara que els que van utilitzar el foc de manera continuada, sobretot per cuinar, van ser una espècie posterior: els neandertals.

Homo erectus, AMNH, American Museun natural history, mireia querol, mireia querol rovira
Reproducció d’Homo erectus. American Museum of Natural History. Foto: Mireia Querol

Els avantatges que va suposar el control del foc van ser nombrosos i molt importants, però en aquest article aprofundirem en el primer:

  • Cocció i conservació dels aliments
  • Millor caça: el foc els permetia cobrar preses caçades per grans carnívors o dirigir les seves cap a trampes naturals.
  • Protecció contra depredadors
  • Calor: augment de la supervivència quan baixaven les temperatures.
  • Llum: podien allargar les seves tasques quan ja havia caigut la nit, afavorint llaços socials i posteriorment, el desenvolupament del llenguatge. A més, el canviar el cicle circadià (rellotge intern dia-nit) podria haver ampliat el període reproductiu.
  • Accés a nous territoris: cremant zones de vegetació densa per aprofitar animals morts i trobar noves zones per explotar i afavorint les migracions a llocs més freds.
  • Millora de les eines: treballant al foc eines de fusta, s’augmenta la seva resistència.
  • Higiene de la llar: cremant les deixalles s’evitaven infeccions.
  • Medicina: posteriorment a H. erectus, el foc s’ha utilitzat com esterilitzador de ferides i instruments i per a la preparació de remeis a base de plantes medicinals, com la inhalació de vapors i preparació de beuratges i infusions.
Homo erectus, Daynes, CosmoCaixa, mireia querol mireia querol rovira
Homo erectus sorprès per la resistència de la seva llança treballada al foc. Reproducció d’Elisabeth Daynès, CosmoCaixa. Foto de Mireia Querol

AVANTATGES DE CUINAR ELS ALIMENTS

  • Varietat en la dieta: certs aliments són indigeribles crus o de difícil masticació (sobretot per a individus amb problemes dentals). Cuits són més tous i de més fàcil digestió, el que va permetre a H. erectus ampliar la seva dieta respecte els seus avantpassats, accedint a menjar de més valor nutritiu (Richard Wrangham, 2009). El fet de cuinar, millora el sabor i augmenta la disponibilitat assimilable dels carbohidrats en tubercles, vegetals… i per tant, els dota de més valor energètic. Segons Wrangham i altres experts, el crudivorisme pot ser perjudicial per a la salut, ja que el nostre cos està adaptat a aquesta “pre-digestió” als fogons, que ens permet ser el primat amb el sistema digestiu més curt en relació al cos.
  • Reducció de les dents: els ullals i queixals es podrien haver reduït a causa del consum d’aliments cuinats. Una dent que hagi de mossegar una patata bullida en lloc d’una crua pot ser un 82% més petita. Tampoc es necessitava tant espai per la musculatura de masticació al crani, per la qual cosa es va reduir la boca i la cara. Aquest espai sobrant pot dedicar-se a allotjar un cervell cada vegada més gran. H. erectus presentava un cervell un 42% més gran que H. habilis.
  • Menor consum energètic: l’energia i temps dedicats a mastegar i digerir aliments cuinats és menor, de manera que s’incrementa el nombre de calories finals obtingudes. Aquesta energia de més, pot dedicar-se al desenvolupament del cervell en lloc de a l’alimentació.
comida neandertal, dieta neandertal, neanderthal, diet
Possible dieta neandertal. Foto de Kent Lacin LLC/The Food Passionates/Corbis
  • Menys malalties: els aliments crus, especialment la carn, poden contenir bacteris o paràsits potencialment patògens i eventualment mortals. Però a partir de certes temperatures, molts d’aquests bacteris moren, per la qual cosa menjant cuinat en lloc de cru, els nostres avantpassats van augmentar la seva supervivència de manera significativa.
  • Menys intoxicacions: algunes plantes, fongs i tubercles són tòxiques si es consumeixen crus, com per exemple, alguns bolets comestibles, el moniato o les patates amb zones verdes.
  • Conservació dels aliments: mitjançant el fumat, la carn podia conservar-se en bones condicions durant més temps i aprofitar-la en èpoques d’escassetat. A més, els aliments cuinats duren més dies en bon estat que els crus.

CONCLUSIÓ

En resum, cuinar va ser un altre factor que va participar en l’augment del cervell i les capacitats cognitives dels nostres avantpassats: va permetre un estalvi d’energia a l’hora de digerir i mastegar els aliments, va disminuir l’aparell masticatori, va permetre a les cries independitzar-se abans de l’alletament de les mares (que es podien reproduir amb més freqüència), va millorar el sistema immunitari… Fins i tot va millorar les habilitats socials: va deixar més hores lliures perquè es poguessin dedicar a altres tasques, com la cooperació per mantenir el foc, planificar la recollida o captura de l’aliment, distribuir-lo dins del grup segons el rang o estat de salut… la intel·ligència va potenciar les tècniques de cuina, que al seu torn van potenciar la intel·ligència, en una roda sense fi que perdura encara fins els nostres dies.

REFERÈNCIES

mireia querol rovira

Menjar carn ens va fer humans

Actualment una part de la població mundial es pot permetre el luxe de triar la seva dieta: omnívora, vegetariana, vegana, crudívora, carnívora, paleodieta… però què menjaven els nostres avantpassats? Quina dieta s’ajusta més a la dels nostres avantpassats? Sense voler entrar en polèmica, parlarem sobre un dels fets crucials del pas de Australopitechus a Homo : la ingesta de carn.

QUÈ MENGEN ELS NOSTRES PARENTS?

Una de les raons que s’esgrimeixen per seguir una dieta vegana o vegetariana estricta és que com som micos, aquests s’alimenten de fruites i plantes, i a més, així s’aconsegueix una dieta més natural . Actualment i tradicionalment la base de l’alimentació mundial són les llavors de cereals (arròs, blat, blat de moro, etc.) i llegums (mongetes, llenties…), que moltes vegades necessiten elaboració (la farina, per exemple) i no tenen res a veure amb els seus avantpassats silvestres. Des de que es va inventar l’agricultura i ramaderia i s’han seleccionat les millors varietats per a consum humà, l’etiqueta de “natural” perd tot el seu sentit. Tot i que ara els transgènics estan en boca de tots, en realitat la modificació genètica la venim fent des de fa milers d’anys.

A la fila de dalt, avantpassats silvestres de l’enciam, pastanaga i blat de moro. A sota, les varietats domèstiques. Font

Que siguem micos i per això el natural és menjar vegetals, tampoc és del tot cert. Com els primats hem evolucionat als arbres, els homínids tenen una dieta estricta o principalment folívora -fulles- i frugívora -fruita- (goril·les , orangutans), mentre que els gibons , a més, completen la dieta amb invertebrats. Els nostres parents més propers però (bonobos, ximpanzés), són omnívors, ja que s’alimenten de vegetals, fruita, invertebrats i fins a petits mamífers i altres primats, encara que això sí, en menor quantitat que de vegetals.

Ximpanzé menjant carn. S’han descrit poblacions de ximpanzés que cacen amb llances construïdes per ells mateixos. Foto de Cristina M.Gomes, Institut Max Planck.

No és d’estranyar doncs, que els nostres ancestres directes llunyans, australopitecs com Lucy, tinguessin les fulles, fruites, arrels i tubercles com a base de la seva dieta. Algunes espècies, a més de vegetals, també s’alimentaven d’invertebrats i petits vertebrats, de manera similar als actuals ximpanzés.

HERBÍVORS I CARNÍVORS

Els fruits tenen més sucres, encara que no són molt abundants en comparació amb les fulles i tiges. Per contra, les fulles tenen menys valor nutritiu, ja que contenen moltes fibres que no podem assimilar, com la cel·lulosa. Els llegums contenen més proteïnes que els cereals, però alguns aminoàcids essencials i vitamines (com la B12) són inexistents en alguns vegetals o es troben en molt poca quantitat, o d’altres com el ferro de fàcil assimilació (ferro hemo) només es troben en aliments d’origen animal.

En resum, els vegetals són més difícils d’assimilar comparat amb la carn, de manera que mamífers herbívors presenten sistemes digestius més llargs, o amb estómacs compartimentats, masteguen durant llargs períodes de temps i alguns són remugants, mentre que els carnívors tenen sistemes digestius amb menor superfície d’absorció i necessiten poca masticació de l’aliment.

Sistemes digestius de herbívors no remugants, remugants, insectívors i carnívors. Autor desconegut

PER QUÈ ELS NOSTRES AVANTPASSATS VAN COMENÇAR A MENJAR MÉS CARN?

Fa 2,6 milions d’anys, un canvi climàtic va fer el nostre planeta més fred i sec. A l’Àfrica la sabana dominava gran part del territori, de manera que els homínids s’havien de conformar amb fulles dures, recobertes de ceres, tiges durs o amb espines, arrels… aquests recursos difícils de digerir van ser explotats pels paràntrops (Paranthropus), amb grans dents i potents musculatures a la mandíbula per poder triturar-los, encara que amb un cervell semblant al dels australopitecs. Es van extingir fa un milió d’anys.

Paranthropus boisei. Reconstrucció de John Gurche, foto de Xip Clark.

Però un altre grup d’hominins va trobar un tipus de recurs que els oferia més energia en menys quantitat, i eren més fàcils de mastegar: la carn. Homo habilis va ser el primer a menjar carn en major proporció que la resta de parents i a més, carns amb més quantitat de greix. Es tractava d’un oportunista: gairebé qualsevol cosa comestible l’aprofitava. Per contra els Paranthropus eren especialistes, de manera que si escassejava el seu aliment, el més probable era que morissin.

CERVELLS GRANS …

Mentre que Australophitecus i Paranthropus tenien una capacitat craniana de 400-500 cm3, Homo habilis va arribar a tenir fins a 700 cm3. Aquesta major grandària cerebral li permetia una major capacitat d’improvisació i versatilitat per trobar aliment.

Una de les coses que ens diferencia clarament de la resta de primats i animals és la gran mida del nostre cervell. Com haureu observat, H. habilis ja es classifica dins del gènere Homo, el nostre, per aquest gran salt de grandària cerebral, entre altres coses.

Comparació dels cranis d’Australophitecus, Paranthropus i Homo habilis. Crèdit: Peter S. Ungar et al, 2011.

Però un cervell gran també té inconvenients: el 25% d’energia del nostre cos el consumeix el cervell en repòs, H . habilis consumia el 15% i Australopithecus només el 10%. A més de quantitat, aquesta energia també ha de ser de qualitat: alguns àcids grassos per a un correcte funcionament del cervell només es troben en alguns fruits secs, però sobretot, en greix d’origen animal, més fàcil d’aconseguir si escassejaven els vegetals.

homo habilis, cosmocaixa, daynes, museu de la ciencia de barcelona
Reconstrucció d’Homo habilis d’Elisabeth Daynès, Cosmocaixa (Barcelona). Foto de Mireia Querol

… BUDELLS PETITS …

L’única manera de poder dedicar més energia al funcionament del cervell és reduir la mida d’altres òrgans que consumeixin molta energia (Aiello, L. i Wheeler, P, 1995). Cor, ronyons, fetge, són grans consumidors d’energia però vitals, de manera que la solució és reduir el tub digestiu i això només va ser possible amb el pas d’una dieta gairebé exclusivament vegetariana dels Australophitecus a una altra de més fàcil assimilació amb més contingut de proteïnes i greix animal d’H. habilis .

Comparació entre els òrgans consumidors d’energia entre humans i altres primats. Imatge de J. Rodríguez

… I EINES

Un cervell gran va donar a més un altre avantatge a H. habilis. Malgrat el seu físic (mida petita, sense urpes ni grans ullals) va poder explotar gran varietat de carn (primer com carronyers i després cada vegada més com a caçadors) per l’ús d’eines. Probablement els australopitecs van utilitzar algun tipus d’eina senzilla, majoritàriament de fusta, però les primeres proves segures que disposem de fabricació d’eines de pedra (lítiques) pertanyen a H. habilis. Això fins i tot els va permetre aprofitar el moll interior de l’os de grans preses abatudes per carnívors quan tota la carn ja havia estat consumida per altres animals. Actualment només les hienes i trencalosos poden accedir sense eines a aquest recurs. En no necessitar unes dents i mandíbules tan grans, el crani pot allotjar un cervell més gran.

habilis, carronyer, carroñero, habilis, herramientas ,eines
Grup d’H. habilis aprofitant la carronya d’un rinoceront. Font: DK FindOut

CONCLUSIÓ

En resum, l’augment del cervell de Homo va ser possible gràcies al canvi de dieta, que va permetre un tub digestiu més curt i un aparell mastegador més petit. Al seu torn, per obtenir aquests aliments més energètics es necessita més intel·ligència, que va donar com a resultat comportaments més complexos com l’ús d’eines treballades (tecnologia lítica Olduvaiana, Mode 1).

El nostre aparell digestiu és el resultat de milions d’anys d’evolució com omnívors oportunistes. Algunes dietes actuals estrictes (ja siguin vegetarianes o gairebé carnívores) entren en contradicció amb aquesta herència biològica i l’abús i accés a tota mena d’aliments ens porten tot tipus d’al·lèrgies i problemes alimentaris. El secret segueix sent una dieta equilibrada i variada.

REFERÈNCIES

Koko, la goril·la que parla amb les mans

L’origen del llenguatge és una de les incògnites que més debat crea entre els antropòlegs. ¿Som els únics animals amb un llenguatge amb gramàtica? Parlaven nostres avantpassats? Els animals només es comuniquen per imitació de sons simples? En aquest article intentarem donar resposta a aquestes qüestions i coneixerem Koko, la goril·la que va aprendre el llenguatge de signes.

PODEN PARLAR ELS ANIMALS?

Clarament la majoria d’éssers vius es comuniquen d’alguna manera, ja sigui mitjançant senyals visuals, olfactives o químiques, acústiques… El cas més clar i proper el tenim en alguns animals: lladrucs, miols… però també les plantes es comuniquen.

Segurament hauràs sentit alguna vegada algun lloro o periquito dir paraules, fins i tot els corbs són fantàstics imitadors. Però no deixa de ser això, imitació de poques paraules. Són incapaços de construir frases o utilitzar les paraules que coneixen per expressar nous conceptes. O mantenir una conversa. En algunes ocasions els científics han educat a cries de simis com humans, en un intent que aprenguessin a parlar. Mai ho van aconseguir.

QUÈ CAL PER PARLAR?

Atesa la profunditat del tema, podem resumir que per parlar és indispensable tenir les capacitats cognitives necessàries i un aparell fonador amb un físic que permeti controlar l’entrada i sortida de l’aire de manera determinada. Ja que alguns animals com cetacis, aus o simis superiors posseeixen elevades capacitats cognitives, per què no es posen a parlar de la mateixa manera que nosaltres? Tot i així, comencem a comprendre la seva manera de comunicar-se, pel que és possible que alguns tinguin algun tipus de gramàtica, és a dir, un llenguatge, com els dofins o alguns ocells. O potser hauríem de matisar què és el llenguatge. En l’article que ens ocupa ens centrarem en el cas dels primats, especialment goril·les i ximpanzés.

APARELL FONADOR

La laringe alberga les cordes vocals. Observa la diferència entre un humà i un ximpanzé:

Aparell fonador d'un ximpanzé i un humà. Autor desconegut. foto presa de UOC.
Aparell fonador d’un ximpanzé i un humà. Autor desconegut. Foto presa de UOC.

Els humans, a més de tenir les cordes vocals més baixes, tenim la cavitat bucal i nasal més curta. A grans trets, per poder produir vocals de manera clara, nucli de la comunicació oral, la laringe ha d’estar en una posició baixa. És per això que els ximpanzés, degut a les seves limitacions físiques per a la parla, no poden fer-ho.

Mòdul amb les diferents posicions de l’aparell fonador necessàries per emetre vocals. Foto de Mireia Querol, Cosmocaixa, Barcelona.

Per investigar si els nostres avantpassats podien parlar, els estudis se centren principalment en la morfologia de l’os hioide, la posició de la faringe, la base del crani i les impressions del cervell a l’interior del crani. Les últimes investigacions amb el Crani 5 (neandertal) de la Sima de los Huesos, juntament amb altres estudis d’altres fòssils, semblen indicar que fa 500.000 anys ja existia un aparell fonador com el nostre. Parlaven els neandertals si en principi tenien el físic necessari?

CAPACITAT CEREBRAL

Els humans som els mamífers amb el cervell més gran en relació al nostre cos. Es compara la intel·ligència d’un ximpanzé amb la d’un nen o nena de 4 anys. Si no poden parlar per limitacions físiques, podrien fer-ho d’una altra manera?

Cerebro humano señalando las áreas de Broca y Wernicke, responsables del lenguaje. Foto de dominio público tomada de NIH
Cervell humà amb les àrees de Broca i Wernicke, responsables del llenguatge. Foto de domini públic presa de NIH

Segons un estudi publicat a Nature, el gen FOXP2 sembla ser el responsable de la nostra capacitat de control precís del moviment que permet la parla. Persones amb alguna còpia inactiva d’aquest gen, tenen greus problemes de parla i llenguatge. El gen FOXP2 només és diferent en dos aminoàcids entre ximpanzés i humans, i pel que sembla seria el responsable que ni ells, ni la resta de vertebrats puguin parlar. Aquesta diferència, aquesta mutació, es creu que va aparèixer fa 500.000 anys. Pääbo Svante i el seu equip van descobrir que aquest gen ja era igual que el nostre en els neandertals. Si això és cert, unit al que s’ha vist en l’apartat anterior, podem gairebé assegurar que els neandertals podien parlar.

ENSENYANT A PARLAR A ALTRES SIMIS

Ja que no poden parlar, s’ha ensenyat a altres simis a comunicar-se amb humans mitjançant lexigrames (dibuixos que respresenten paraules) i llengua de signes. Washoe va ser la primera simi no humana en comunicar-se en la llengua de signes americana (ASL). Era un ximpanzé, va aprendre unes 350 paraules i va ensenyar algunes al seu fill Loulis. Altres ximpanzés han estat capaços d’això, però el més fascinant és el descobriment d’aquest comportament de comunicació per signes en ximpanzés salvatges (òbviament, signes propis dels ximpanzés, no de l’ASL). El bonobo Kanzhi es comunicava amb lexigrames, i Koko s’ha convertit en una goril·la mediàtica gràcies al seu domini de l’ASL.

LA GORIL·LA KOKO

Koko (diminutiu de Hanabiko, en japonès, “focs artificials”) és un goril·la occidental de les terres baixes. Els goril·les són els simis i homínids actuals més grans que existeixen, amb fins a 180 kg de pes en els mascles.

Koko en 2010. Foto de Ron Cohn, Koko.org.
Koko el 2010. Foto de Ron Cohn, Koko.org.

Després dels ximpanzés i bonobos, són els que més s’assemblen genèticament als humans (compartim més del 98% de l’ADN ). Hi ha dues espècies de goril·les:

  • Goril·la occidental (Gorilla gorilla): inclou dues subespècies, el goril·la occidental de les terres baixes (Gorilla gorilla gorilla) i el Goril·la del riu Cross (Gorilla gorilla diehli). Està críticament amenaçada segons la IUCN .
  • Goril·la oriental (Gorilla beringei): inclou el goril·la de muntanya (Gorilla beringei beringei) i el goril·la oriental de les terres baixes (Gorilla beringei graueri ). Està amenaçada segons la IUCN.
Distribución gorila, bonobo, chimpance, orangutan, distribution, gorilla, chimpanzee,
Distribució dels grans simis. Mapa pres de Great Apes Survival Partnership

APRENENTATGE DE KOKO

Koko va néixer el 1971 al Zoo de San Francisco i actualment viu a la Gorilla Foundation de Redwood City, Califòrnia. A partir dels 6 mesos d’edat la doctora Francine (Penny) Patterson (llavors estudiant de doctorat) i el Dr. Ron Cohn li van ensenyar la llengua americana de signes (ASL). Altres goril·les que van ser units al projecte van ser Michael (el 1976) i Ndume (1991).

Penny enseñando a Koko (derecha) y Michael la ASL. Foto tomada de Koko.org
Penny ensenyant a Koko (dreta) i Michael la ASL. Foto presa de Koko.org

Des de llavors, Koko ha après a signar 1.000 signes de l’ASL i entén aproximadament unes 2.000 paraules en anglès. És fins i tot capaç de combinar diferents signes per explicar conceptes si no coneix la paraula. Michael i Ndume també van aconseguir comunicar-se mitjançant signes: Ndume va aprendre alguns de  Koko, el que podria demostrar que el cas de Koko no és únic sinó que la comunicació gestual és intrínseca en els goril·les.

En aquest vídeo Penny pregunta a Koko que li agradaria fer amb el seu temps lliure. Ella respon que li agradaria tenir un fill i li agraeix quan Penny li diu que ho estan intentant:

ALTRES CAPACITATS DE KOKO

Koko, en viure en un ambient humanitzat, realitza actes per imitació, segons els seus investigadors, sense que hagi estat forçada a això. Mirar llibres, pel·lícules, pintar, mirar-se al mirall, fer-se càrrec de mascotes… fins i tot tocar la flauta. Això últim és especialment important ja que és capaç de posar els llavis en la posició adequada i controlar la respiració. També pot tossir a voluntat, el que requereix un control sobre la laringe. Contràriament al que es pensava, el control sobre les vies respiratòries i per tant, sobre les futures capacitats de parlar en els nostres ancestres, potser es van donar milions d’anys abans del que es creia.

Vídeo de Koko tocant flautes i una harmònica (Koko.org):

Un altre tema digne d’estudi és la capacitat artística de Koko i Michael. Si altres simis creen eines i tenen un llenguatge, serà l’art el que ens diferencia d’ells i els nostres ancestres? Atès que Koko pot comunicar-se amb un llenguatge comú al nostre i posa nom a les seves creacions, és això certa capacitat simbòlica? La línia entre la resta de simis i H. sapiens , i per tant també entre H. sapiens i altres Homo, és cada vegada més prima.

Koko pintando un cuadro. Foto de Koko.org
Koko pintant un quadre. Foto de Koko.org

FITES DEL PROJECTE KOKO

Per finalitzar, us deixem amb les fites més importants després de 40 anys d’estudi amb Koko:

    • Els goril·les poden aprendre l’ASL (1.000 signes), ho fan més ràpidament durant la infància i saben modular aquests signes per donar-los diferent èmfasi.
    • Entenen l’anglès parlat (2.000 paraules).
    • Koko no és un cas únic, com Michael i Ndume testifiquen.
    • Inventiva: poden ampliar els signes apresos combinant d’altres (per exemple: braçalet i dit per expressar anell), o afegint gestos propis.
    • Emocions: expressen una gran varietat d’emocions, des de la més simples a les més complexes. És coneguda la reacció de Koko després de la mort de un dels seus gats, la d’en Robin Williams, o una escena trista en una pel·lícula.
    • Hipòtesi de l’empatia: els goril·les potser tinguin empatia, atenent a com tracta Koko altres animals indefensos o persones.
    • Ús d’un llenguatge gramatical
    • Altres maneres de comunicar-se: incloent creació de dibuixos, fotografies, assenyalant paraules, cartes amb frases …
    • Autoidentitat: Koko es defineix davant d’un mirall com a “bon animal / persona goril·la”. Observa el vídeo:

REFERÈNCIES

mireia querol rovira

Avantpassats teus que no et van ensenyar a l’escola

Segur que et sonaran algun dels noms següents, ja que són els ancestres clàssics que vam aprendre a l’escola: Lucy, Homo habilis, Homo erectus, l’home de Neandertal… però la nostra història té molts més protagonistes, i de tant en tant es fan nous descobriments que modifiquen l’arbre del nostre llinatge. Descobreix en aquest article les últimes troballes que no van poder explicar-te els teus professors.

HOMO NALEDI

Reconstrucción facial de Homo naledi por John Gurche. Foto de Mark Thiessen.
Reconstrucció facial de Homo naledi per John Gurche. Foto de Mark Thiessen.

És gairebé obligat començar amb un dels descobriments més recents que està animant les discussions dins de la paleoantropologia per guanyar-se un lloc clau en el nostre arbre genealògic. El descobriment d’una nova espècie, Homo naledi, es va publicar el 10 de setembre de 2015 amb Lee Berger al capdavant. Es va descobrir en un sistema de coves de Sud-àfrica anomenat Rising Star, a la cambra Dinaledi (naledi significa “estrella” en la llengua local, el sesotho). És especialment interessant per diversos motius:

  • Al jaciment de moment s’han trobat més de 1.700 fòssils humans acumulats, convertint-lo en el més gran de Sud-Àfrica, per darrere de la famosa Sima de los Huesos (Atapuerca, Espanya), el més gran que existeix, amb més de 6.000 fòssils.
  • La cova és de molt difícil accés, amb passadissos de 19 cm d’ample, pel que va ser un equip seleccionat de 6 paleoantropòlogues primes qui va arribar fins a ells.
Esquema del sistema de cuevas de la cámara Dinaledi. Imagen de Jason Treat, NGM Staff, NGM maps, fuente: Lee Berger, Wits. Tomada de National Geographic.
Esquema del sistema de coves de la cambra Dinaledi. Imatge de Jason Treat, NGM Staff, NGM maps. Font: Lee Berger, Wits. Adaptada de National Geographic.
  • Els ossos van pertànyer a 15 individus de totes les edats, mascles i femelles, de manera que es pot obtenir extensa informació sobre aquesta nova espècie. Alguns fins i tot estaven a simple vista al terra de la cova i sense mineralitzar.
  • Les característiques físiques de H. naledi són una barreja de trets d’Homo (alçada, peus) i Australophitecus (espatlles, pit, pelvis), el gènere a partir del qual la majoria de científics creu que apareix Homo fa 2,8-2, 5 milions d’anys. Això pot suggerir que H. naledi podria ser el primer Homo, la baula perduda entre els australopitecs i nosaltres.

    Una parte de la impresionante cantidad de huesos de Homo naledi descubiertos. Foto de John Hawks
    Una part de la impressionant quantitat d’ossos d’Homo naledi descoberts. Foto de John Hawks
  • El més intrigant d’aquest descobriment és que es creu que els ossos van ser posats deliberadament allà. Per la geografia del lloc, l’accés a la cova era el mateix que l’actual, no van poder caure a la fossa, els ossos no va poder portar-los un torrent d’aigua ni cap animal, no presenten marques de violència… Podria tractar-se d’un ritual funerari? Fins ara, els primers ritus s’atribueixen a H. neanderthalensis, de característiques físiques més modernes i gran capacitat craniana comparada amb H. naledi (1.475 cm3 versus 560 cm3 com a màxim).

La resta d’Homo més antic conegut, amb 2,8 milions d’anys, correspon a una mandíbula trobada a Afar al març de 2015 que no s’ha associat a cap espècie. Va ser H. naledi el primer Homo? És realment una espècie molt antiga? És possible que tingués autoconsciència tan aviat i es preocupés pels seus morts? Malauradament, els investigadors encara no han pogut datar les restes, de manera que encara queden moltes preguntes sense respondre i caldrà esperar a futures interpretacions sobre una de les troballes més importants dels darrers temps.

ELS DENISOVANS

A la cova de Denisova (Sibèria) es va trobar el 2008 un fòssil gens espectacular: un tros d’un os de dit que es va datar en 30.000 anys d’antiguitat i es va atribuir a un individu d’uns 8 anys. Però quan es va extreure l’ADN, es va concloure que no pertanyia ni a H. sapiens ni a H. neanderthalensis, sinó a una espècie nova. Més tard es trobarien dos queixals d’un individu diferent de la mateixa població que el del dit, que va resultar ser una nena. En la mateixa cova a més, es van trobar restes neandertals i de sapiens.

Diente, muela, denisova, denisovanos, teeth, tooth, denisova
Els molars denisovans. Foto de l’Institut Max Planck.

És possible que els denisovans s’hibridessin amb sapiens? Estudis d’ADN en les poblacions actuals, indiquen que un 5% de l’ADN dels aborígens australians, papús i altres pobles de Melanèsia és denisovà. D’altra banda sabem que el 20% acumulat de les poblacions europees és Neandertal.

ON ELS SITUEM EN EL NOSTRE LLINATGE?

Es baralla que neandertals i denisovans van tenir un ancestre comú (H. heidelbergensis), que va emigrar cap a l’oest d’Europa i Àsia central donant lloc a H. neanderthalensis, que posteriorment es va hibridar amb nosaltres, i cap al sud-est asiàtic on donaria lloc al hominí de Denisova que també es va aparellar amb H. sapiens, el que explicaria la presència d’ADN en les poblacions actuals d’Australàsia.

¿COM EREN?

La inexistència de més fòssils o restes d’objectes i eines ens impedeixen saber quin aspecte tenien i quines eren les seves habilitats. Tampoc s’ha trobat explicació a la mancança d’ADN denisovà a les poblacions russes o xineses, tan properes geogràficament a la cova de Denisova. Els denisovans segueixen sent un gran misteri per a la ciència.

LA DONA DE FLORES

Homo floresiensis. Reconstrucción de John Gurche
Homo floresiensis. Reconstrucció de John Gurche. Foto de Chip Clark

Homo floresiensis, com el seu nom indica, va habitar a l’illa de Flores (Indonèsia) fa només entre 95.000 i 12.000 anys. Es va descobrir fa 12 anys. És l’únic jaciment on s’ha trobat aquesta espècie.

Com en els fòssils anteriors, la barreja de característiques va cridar l’atenció de la comunitat científica, sobretot per la seva petita capacitat craniana i la seva poca alçada, el que li va valer el sobrenom de hobbit. Primer es va pensar que es tractava d’un individu amb alguna patologia, o un pigmeu d’una espècie coneguda, ja que la seva morfologia era molt estranya tractant-se de fòssils tan moderns. Però actualment es disposa de restes d’almenys 12 individus amb les mateixes característiques, el que inclina la balança cap al seu rang d’espècie.

COM EREN?

  • Poca alçada: l’esquelet més complet pertany a una femella de només un metre d’alçada i 25 kg de pes.
  • Crani petit: la seva capacitat craniana (380-420 cm3) era semblant a la dels australopitecs o un ximpanzé actual, però el cervell tenia una anatomia més semblant a Homo. Les dents eren grans en relació al crani.
Reproducción de cráneo de Homo floresiensis. American Museum of National History. Foto de Mireia Querol
Reproducció del crani LB1 de Homo floresiensis. American Museum of National History. Foto de Mireia Querol
  • Peus llargs i cames curtes: els peus eren molt llargs en relació a les cames, que eren curtes i robustes. Això i més característiques suggereixen que la locomoció era diferent a la nostra i eren mals corredors.
  • Braços llargs: a més d’una proporció de braços més propera als australopitecs i H. habilis que a sapiens, eren robustos i tenien una musculatura poderosa.
  • Indústria lítica i foc: a més de trobar eines d’hominins anteriors, s’han associat eines a H. floresiensis amb una tecnologia semblant a la Olduvaiana africana, la primera que es va inventar. També dominava el foc.

PER QUÈ EREN TAN PETITS?

La controvèrsia continua: ¿era un descendent directe d’Australophitecus (¿com hauria viatjat tan lluny, des d’Àfrica?), o un membre recent del nostre arbre genealògic que es va quedar petit per manca de recursos?

El nanisme insular és un procés evolutiu conseqüència d’un aïllament a llarg termini en una zona petita amb recursos limitats i absència de depredadors. A Flores també es van trobar elefants pigmeus (Stegodon) que H. floresiensis caçava  amb aquesta adaptació. El procés contrari seria el gegantisme insular, en què animals que solen ser petits en el continent són gegants a les illes, com per exemple, les tortugues de les Galápagos o rates i llangardaixos extingits de Flores.

Un lagarto gigante se enfrenta al hombre de Flores. Imagen de National Geographic
Un llangardaix gegant s’enfronta a l’home de Flores que ha caçat una rata. Imatge de National Geographic

H. floresiensis podria ser resultat d’aquest nanisme, i alguns científics creuen que podria tractar-se en realitat d’Homo erectus reduïts. L’opinió majoritària en l’actualitat és que ja eren petits en arribar a Flores (com l’australopitec del que provenia), i que els trets moderns es deuen a una evolució convergent amb H. sapiens. Malauradament no s’ha pogut extreure ADN en bon estat per posicionar-lo a l’arbre filogenètic de manera segura.

Com va arribar a Flores? ¿Tenien llenguatge, feien art o tenien expressions culturals? ¿Van entrar en contacte amb la nostra espècie? Es van extingir a causa d’una erupció volcànica? Qui va fer les eines anteriors a H. floresiensis? El debat i les incògnites continuen obertes.

REFERÈNCIES

 

Ets una mica Neandertal

Els neandertals són potser, juntament amb Australophitecus afarensis (Lucy), els avantpassats més coneguts pel públic en general. La visió clàssica d’ells, uns éssers rudes, maldestres, bèsties, poc intel·ligents, encara segueix viva en l’imaginari popular (fins i tot s’utilitza com a insult), però en els últims anys les investigacions indiquen que no eren així. Descobreix en aquest article qui eren i per què ets una mica Neandertal.

COM ERA UN NEANDERTAL?

Homo neanderthalensis va ser el primer hominí fòssil descobert i actualment disposem de centenars de fòssils d’espècimens de totes les edats, amb el que és el millor conegut. Va obtenir el seu nom de la vall de Neander (Neanderthal en alemany), una vall propera a Düsseldorf.

distribución geográfica neandertal
Distribució geogràfica de l’home de Neandertal. Imatge de Ryulong

Van viure a tota Europa (fins a Sibèria) i a Àsia sud-occidental, fa uns 350.000-28.000 anys (40.000 segons les fonts), una època marcada per cicles glacials. Van estar doncs en el món més temps del que portem nosaltres, els Homo sapiens.

Els neandertals presentaven diverses adaptacions al fred, com la seva robustesa i alçada menor a H. sapiens, així com una cavitat nasal ampla.

Comparación del cráneo de sapiens i neanderthalensis. Cleveland Museum of Natural History. Foto de Matt Celeskey.
Comparació del crani de sapiens i neanderthalensis. Cleveland Museum of Natural History. Foto de Matt Celeskey.

Del crani destaca la seva grandària, amb una capacitat mitjana de 1.475 cm3, una mica més gran que la dels humans moderns i més allargat cap endarrere (protusió o monyo occipital). També s’observa fàcilment un poderós torus supraorbitari (os sobre de les conques oculars). La seva pelvis era més ampla que la nostra i les cames més curtes.

homo neanderthalensis, hombre de neandertal, neanderthal, american museum of natural history, amnh
Reproducció d’esquelet de H. neanderthalensis. American Museum of Natural History. Foto de Mireia Querol

COM VIVIEN?

ALIMENTACIÓ

Els neandertals eren caçadors hàbils i selectius que s’enfrontaven a grans animals (així ho testifiquen les seves lesions, algunes mortals) i utilitzaven estratègies de caça igual que les poblacions d’Homo sapiens que van arribar a Europa després d’ells. Eren caçadors estacionals a causa del clima (bàsicament rens a l’hivern, cérvols i senglars a l’estiu). La seva dieta doncs estava basada en la carn, però a prop de la costa també menjaven mol·luscs com musclos, que bullien per obrir-los. És probable que practiquessin el canibalisme. També capturaven mamífers marins com foques monjo i dofins, probablement encallats a la platja, i a més consumien cereals cuinats.

ESTRIS

Homo neanderthalensis posseïa una indústria lítica (treball de la pedra per a la construcció d’eines) anomenada mosteriana, associada també a altres espècies com H. heidelbergensis i fins i tot Homo sapiens, que requeria una gran habilitat i planificació. En alguns jaciments s’han trobat eines compostes usant adhesius.

Neandertal con ornamentación de plumas. Reconstrucción de Fabio Fogliazza.
Neandertal amb ornamentació de plomes. Reconstrucció de Fabio Fogliazza.

No s’han trobat restes de roba, però és probable que usessin pells per cobrir-se atesos els canvis climatològics als quals es van enfrontar.

En coves espanyoles s’han trobat petxines perforades amb restes de pigments, el que suggereix que van ser usades com a platerets per a tints per a pintura corporal o de pells. Es suggereix que potser van ser els primers en fer pintures rupestres, en contra de la creença que som els únics que ho fèiem. També van tallar ossos i van usar plomes com a decoració personal. Tot això suggereix algun tipus de pensament simbòlic, associat fins fa poc com un tret exclusiu d’Homo sapiens.

pintura rupestre, manos, arte rupestre, pinturas rupestres más antiguas, pinturas neandertales
Pintures rupestres de mans (“Grup de les mans”) i discs vermells a la cova de El Castillo, Espanya. Són les més antigues d’Europa (41.000 anys) i pot ser que les fessin els neandertals, en lloc dels sapiens com es creia fins ara. Foto de Science.

SOCIETAT

Els neandertals es creu que vivien en grups familiars, encara que els últims estudis suggereixen que les femelles en arribar a l’edat adulta es traslladarien a d’altres famílies, mentre que els homes adults romanien amb la família original.

entierro, neandertal, neanderthal, compasion, autoconciencia
Neandertal mostrant compassió cap a un company mort. Reproduccions de Elisabeth Daynès , CosmoCaixa Barcelona. Foto de Mireia Querol

Un dels trets més importants dels neandertals és que van ser probablement els primers ancestres humans que enterraven als seus morts, el que evidencia una consciència pròpia de l’individu i dels seus companys, a més de cert pensament simbòlic o abstracte com hem esmentat anteriorment. Això augmentava la supervivència dels individus i feia més forts els llaços socials, ja que també ajudaven a altres congèneres dependents com ancians i malalts (com el vell de la Chapelle-Aux-Saints). La seva esperança de vida era d’uns 40 anys.

PARLAVEN ELS NEANDERTALS?

Una altra pregunta sense resposta, encara que cobren força opinions d’alguns científics com Juan Luis Arsuaga, que gràcies a les restes del jaciment amb més fòssils d’Homo del món, La Sima de los Huesos (Burgos), són partidaris que posseïen un llenguatge oral, en contra del pensament generalitzat fins ara de comunicació a base de grunyits. A més de les adaptacions anatòmiques al llenguatge, l’ADN neandertal conté el gen FoxP2, relacionat amb la parla en H. sapiens.

neanderthal
Recreació d’un campament neandertal. Neanderthal Museum a Krapina, Croàcia.

EXTINCIÓ DELS NEANDERTALS

L’extinció dels neandertals és un dels debats més controvertits de la paleoantropologia. Van desaparèixer fa 28.000 anys, després de l’arribada dels humans anatòmicament moderns a Europa, fa uns 60.000 anys. Durant molt temps la seva extinció es va associar a la seva menor capacitat intel·lectual, però ja hem vist que no va tenir perquè ser així, atès que s’assemblaven molt a nosaltres. Incapacitat d’adaptar-se a canvis climàtics? Menys capacitat reproductora? Major mortalitat infantil? Menys eficiència per aconseguir recursos o caçar? Guerres directes? Importació de malalties? O … potser el sexe?

HIBRIDACIÓ ENTRE H. SAPIENS  I H. NEANDERTHALENSIS

Negat durant molt de temps, avui sabem que la nostra espècie es va reproduir amb els neandertals quan estaven a punt de ser incompatibles genèticament (fa uns 100.000 anys), ja que van conviure entre 2.600 i 5.400 anys i van deixar descendència fèrtil. Tal és així, que la quantitat de genoma neandertal acumulada per tots els éssers humans actuals és del 20%, tot i que el percentatge per individu -sense arrels africanes- és de l’1 al 3%.

El 22 de juny es va publicar a Nature la troballa d’una mandíbula a Romania d’Homo sapiens anatòmicament modern (de fa 40.000 anys) que contenia entre el 6 i 9% d’ADN neandertal, la qual cosa implica que la seva ascendència neanderthalensis va ser de només 4 o 6 generacions enrere en el seu arbre genealògic.

pelirrojo, redhead, neanderthal
Homo sapiens pèl-roig i recreació de H. neanderthalensis. Foto de Science

Així que una altra possible explicació de la seva extinció, és la deguda a aquests creuaments reproductius. Homo sapiens eren molt més nombrosos, el que podria haver provocat que els gens neandertals es diluïssin” amb el pas de milers de generacions. Això es coneix com exterminació per hibridació.

QUINES IMPLICACIONS TÉ QUE SIGUEM UNA MICA NEANDERTALS?

Es creu que els gens neandertals ens van aportar alguns avantatges, com algunes característiques a la pell i cabell, com el color i gruix, que van poder ajudar a la nostra espècie a colonitzar zones més fredes. De fet alguns neandertals, segurament eren pèl-rojos i de pell clara.

Per contra algunes malalties es poden associar a aquesta herència: més risc de patir cirrosi biliar, lupus, diabetis, malaltia de Crohn i fins i tot dificultat per deixar de fumar (fumadors: no val fer-ho servir com a excusa).

En definitiva, resulta apassionant pensar que vam conviure i fins i tot ens vam aparellar amb una espècie tan semblant a la nostra i que d’alguna manera, encara perduren en cadascun de nosaltres. Potser no som tan especials com pensem.

Actualment som els únics representants del gènere Homo, però en l’antiguitat no va ser així. Us imagineu un món on us creuéssieu pel carrer amb un neandertal i us diguéssiu “bon dia“?

neanderthal, suit, traje, camisa, nenadertal
Neandertal vestit d’etiqueta. Foto: Neanderthal Museum/H. Neumann

REFERÈNCIES

mireia querol rovira