Arxiu de la categoria: Amfibis: Antomia i fisiologia

Animals que caminen per la paret: un repte a la gravetat

Com s’ho fan alguns insectes, aranyes o llangardaixos per caminar sobre parets llises o de cap per avall i no caure? ¿Per què, si fos real, l’Spiderman no podria enganxar-se a les parets com ho fan aquests animals?

Científics de diferents àrees encara busquen comprendre els mecanismes que fan servir alguns animals per caminar sobre aquest tipus de superfícies sense relliscar o precipitar-se. A continuació, t’expliquem què sap la comunitat científica sobre aquest fenomen.

Animals que caminen per la paret: un repte a la gravetat

La competència per l’espai i els recursos (nínxol ecològic) ha donat lloc a nombroses i increïbles adaptacions al llarg de l’evolució, com la miniaturització.

Quan una superfície és massa llisa, de manera que les ungles, les urpes o les forces de fricció resulten insuficients per a desplaçar-se sobre ella sense caure, entren en joc mecanismes d’adhesió dinàmica: aquells que permeten a l’animal desplaçar-se sobre superfícies verticals llises o de cap per avall enganxant-se i desenganxant-se ràpidament. L’aparició d’estructures adhesives dinàmiques ha permès a diversos animals explotar nous ambients, podent desplaçar-se per caçar o romandre immòbils el temps necessari per fugir dels seus depredadors allà on la majoria tan sols podria estar estable uns pocs segons.

Gecko sobre una superfície llisa. Imatge de Shutterstock/Papa Bravo.

El desenvolupament d’estructures adhesives dinàmiques en les extremitats és típic d’insectes i d’aranyes, d’alguns rèptils com els geckos i certes sargantanes, i d’amfibis com les granotes arborícoles. Puntualment, també s’ha observat en petits mamífers com ratpenats i pòssums, uns marsupials arborícoles procedents d’Austràlia i de certes regions del sud-est asiàtic.

El fet que grups tan diferents d’animals presentin una adaptació similar s’explica per un procés de convergència evolutiva: davant un mateix problema (competència per l’espai i els recursos, elevada pressió de depredació, etc.), l’evolució tendeix a solucions iguals o similars (estructures adhesives per accedir a altres espais).

Els límits de l’adaptació (o per què l’Spiderman no podria caminar per les parets)

Estudiar el mecanisme mitjançant el qual alguns animals caminen sobre superfícies verticals llises o invertides és clau per al desenvolupament industrial de noves i més potents substàncies adhesives. No és estrany, doncs, que hi hagi molts estudis al respecte.

Podrà l’ésser humà escalar parets com ho fa l’Spiderman algun dia? Labonte et al. (2016) ens explica per què l’Spiderman com a tal no podria existir. O, almenys, com hauria de ser realment per poder adherir-se a les parets com una aranya.

Podrà l’ésser humà escalar com l’Spiderman algun dia? De moment, ens conformem amb aquesta esculptura. Imatge de domini públic.

Sense entrar en les estratègies pròpies de cada organisme (de les quals parlarem després), el principi bàsic pel qual insectes, aranyes o geckos poden caminar sobre superfícies verticals llises o cap per avall és la seva relació superfície/volum: com més petit és l’animal, més gran és la superfície del seu cos respecte al seu volum i menor la quantitat de superfície adhesiva necessària per poder desplaçar-se sense caure a causa del pes. Així doncs, els geckos serien els animals coneguts amb la mida més gran (relació superfície/volum més petita) capaços de caminar sobre superfícies verticals llises o cap per avall sense patir modificacions anatòmiques que farien inviable el seu desenvolupament.

I què vol dir “sense patir modificacions anatòmiques”? Els mateixos autors expliquen que com més gran és l’animal, més gran és la superfície adhesiva necessària per desplaçar-se sense desprendre’s. El creixement de la superfície adhesiva respecte la mida de l’animal segueix un patró d’al·lometria positiva extrema: per un petit increment de la mida de l’animal, es produeix un augment significativament major de la superfície adhesiva. Segons aquest estudi, la superfície adherent respecte a la superfície total pot ser fins a 200 vegades més gran en geckos que en àcars.

Imatge de David Labonte

No obstant això, la mateixa al·lometria es regeix per una sèrie de constriccions (limitacions) anatòmiques. Així, per tal que existís un animal més gran que un gecko capaç de caminar sobre una superfície vertical llisa o invertida, aquest hauria de desenvolupar, per exemple, unes extremitats enormes amb una superfície adherent igualment gran. Si bé podria tenir sentit des d’un punt de vista físic, les constriccions anatòmiques fan inviable l’existència d’animals amb aquestes característiques.

Ara ja podem respondre la pregunta “Per què l’Spiderman no podria adherir-se a les parets?”. Segons aquest estudi, perquè un ésser humà pogués caminar per les parets com una aranya el seu cos hauria d’estar recobert almenys d’un 40% d’estructures adhesives (un 80% si comptem únicament la seva part frontal); o això, o tenir braços o cames absurdament grans i impossibles des d’un punt de vista anatòmic.

Gran diversitat d’estratègies

L’adhesió dinàmica ha de ser prou forta perquè l’animal no caigui estant quiet, però prou feble per poder desenganxar-sense problemes en fer un pas.

Per aconseguir-ho, hi ha diferents estratègies.

Diversitat d’estructures adhesivas. Imatge de David Labonte.

1) Adhesió humida

Hi intervè una substància líquida.

Insectes

Els insectes presenten dos sistemes:

Potes amb coixinets llisos: el trobem, per exemple, en formigues, abelles, paneroles i saltamartins. L’últim segment de les seves potes (pretars), les ungles o les tíbies presenten un o diversos coixinets extremadament tous i deformables (com els arolis al pretars). A petita escala, cap superfície és totalment llisa, de manera que aquests coixinets es deformen fins a ocupar tots els seus espais disponibles.

Tars (part final de les potes dels insectes) d’una panerola. Imatge adaptada a partir de la original de Clemente & Federle, 2008.

Potes amb coixinets peluts: el trobem en escarabats i mosques, entre d’altres. Els coixinets d’aquests insectes estan densament coberts de petites estructures similars a pèls, les setes, gràcies a les quals el contacte amb la superfície augmenta.

Peu d’un escarabat de la família Chrysomelidae. Imatge de Stanislav Gorb et al.

En ambdós casos, intervé un líquid amb una fase hidrofòbica i una altra hidrofílica. Estudis amb formigues han demostrat que les terminacions de les seves potes secreten una fina capa de líquid que incrementa el contacte entre el pretars i la superfície sobre la que caminen, omplint els buits restants i actuant com un adhesiu sota els principis de capil·laritat (tensió superficial) i viscositat.

Si voleu conèixer més a fons aquest mecanisme, no us perdeu aquest increïble vídeo sobre les formigues!:

Granotes arborícoles

Els coixinets dels dits de les granotes arborícoles estan compostos de cèl·lules epitelials columnars separades entre si. Entre elles, nombroses glàndules hi aboquen una substància mucosa. La separació de les cèl·lules permet, d’una banda, que els coixinets es deformin per adaptar-se al terreny i, per altra, que la mucositat circuli entre elles i asseguri l’adhesió. A més a més, en ambients humits (moltes d’aquestes granotes viuen en selves), aquests espais faciliten l’eliminació de l’excés d’aigua que les faria relliscar.

Granota verda d’ulls vermells (Agalychnis callidryas). Fixa’t en els extrems dels dits. Imatge de domini públic.

En el següent vídeo, pots apreciar amb més detall les potes d’una de les granotes arborícoles més conegudes:

Les granotes arborícoles presenten un sistema similar al de coixinets llisos dels insectes. De fet, a molts augments les microestructures adhesives en grills i granotes són pràcticament idèntiques. Això va dur Barnes (2007) a considerar l’adhesió humida com una de les més exitoses.

Diferents granotes (a, b, c) i els seus respectius epitelis (d, e, f). La figura g correspon a la superfície dels coixinets d’un grill. Imatge de Barnes (2007).

Pòssums

Els estudis més detallats s’han realitzat sobre el pòssum pigmeu acròbata (Acrobates pygmaeus), un petit marsupial de la mida d’un ratolí capaç d’escalar superfícies de vidre fent servir els grans coixinets dels palmells de les seves potes. Aquests coixinets estan compostos de múltiples capes de cèl·lules epitelials esquamoses separades per solcs que en faciliten la deformació i pels quals hi circula la suor, que és el líquid que fan servir per adherir-se.

00530622
Acrobates pygmaeus. Imatge de Roland Seitre.
pygmffoot
Palmell del primer parell de potes d’Acrobates pygmaeus. Imatge de Simon Hinkley i Ken Walker.

2) Adhesió seca

No intervenen líquids.

Aranyes i geckos

Tant les aranyes com els geckos es regeixen pel mateix principi d’adhesió: les forces de Van de Waals. A diferència d’insectes, granotes i pòssums, no segreguen líquids adhesius.

Les forces de Van der Waals resulten de la interacció entre molècules o àtoms sense que hi hagi un enllaç químic entre ells, i la seva energia depèn de la distància. Aquestes interaccions apareixen entre els “pèls” o setes dels palmells de les potes dels geckos (les quals estan solcades per plecs, les lamel·les) i les setes de les potes de les aranyes (que estan cobertes de moltes pilositats formant les escòpules), i la superfície sobre la qual caminen.

Pota d’una aranya plena de setes. Imatge de Michael Pankratz.
Diversitat de potes de geckos. Imatge de Kellar Autumn.

Estudis recents, però, suggereixen que les interaccions de Van der Waals no serien les grans determinants de l’adhesió en els geckos, sinó les interaccions electrostàtiques (diferent polaritat entre les setes i la superfície), després de comprovar que la seva capacitat adhesiva minvava sobre materials menys energètics, com el tefló.

Sigui com sigui, l’habilitat dels geckos per enfilar-se és impressionant. Si no, mira aquest vídeo del gran David Attenborough:

3) Succió

Ratpenats

Els ratpenats de ventoses (família Thyropteridae), originaris de l’Amèrica Central i del Sud, presenten unes ventoses en forma de disc als seus polzes i al palmell del segon parell de potes que els permeten desplaçar-se sobre superfícies llises. A l’interior d’aquests discos, la pressió es redueix i el ratpenat queda adherit per succió. De fet, un sol disc pot suportar el pes de tot l’animal.

Ratpenat de la família Thyropteridae. Imatge de Christian Ziegler/ Minden Pictures.

Després de conèxier totes aquestes estratègies, creus que l’Spiderman n’està a l’alçada?

Imatge de portada d’autor desconegut. Font: link.

Anuncis

Metamorfosi i larves d’amfibis

La paraula amfibi prové del grec antic “amphi”, que vol dir “ambdós” i “bios”, que vol dir “vida”. Tot i que el terme amfibi és un adjectiu que serveix per descriure a animals que poden viure tant a terra com a l’aigua, en el cas dels amfibis a més, fa referencia a les dues etapes vitals per les que passen, i és que els amfibis neixen en un estat larvari aquàtic i esdevenen individus adults mitjançant la metamorfosi. En aquesta entrada us explicarem com funciona la metamorfosi a nivell hormonal, quins canvis anatòmics es donen i les diferències d’aquest procés entre els diferents ordres de lissamfibis.

METAMORFOSI LISSAMFÍBIA

La metamorfosi es troba present en els tres ordres de lissamfibis. Aquest procés ja es donava en els primers tetràpodes terrestres, els quals havien de pondre els ous a l’aigua. Tanmateix, no totes les espècies actuals presenten metamorfosi externa, ja que algunes neixen com adults en miniatura (com el 20% d’espècies d’anurs). En aquestes espècies la metamorfosi es dóna igualment a l’interior de l’ou abans de néixer, el que es coneix com metamorfosi interna.

tadpoles_-_agalychnis_callidryas_cutted-min
Ous de granota verda d’ulls vermells (Agalychnis callydryas) just abans d’eclosionar, per Geoff Gallice.

Com a norma general, els lissamfibis ponen els seus ous a l’aigua. En la gran majoria d’espècies, dels ous gelatinosos naixeran larves aquàtiques, tot i que la seva morfología varia molt entre les diferents espècies. Tot i així, les larves de tots els lissamfibis presenten un seguit de característiques comunes:

  • Brànquies externes, mitjançant les quals respiren sota l’aigua.
  • Absència de parpelles i de pigments retinals associats a la visió fora de l’aigua.
  • Presència de la línia lateral (o equivalent), òrgan sensorial característic dels peixos que els permet percebre les vibracions de l’aigua.
  • Pell menys gruixuda.
  • Adaptacions anatòmiques a la vida subaquàtica.
dsc_0061-nef-min
Foto de salamandra comuna (Salamandra salamandra) on s’aprecien les brànquies externes i l’aspecte pisciforme de la larva, per David López.

Durant la metamorfosi, moltes estructures que són útils durant l’estat larvari seran reabsorbides mitjançant l’apoptosi, un procés de mort cel·lular controlada. En molts casos aquest procés està altament condicionat per varis factors ambientals com la densitat de població, la disponibilitat d’aliment i la presència de certes substàncies químiques a l’aigua.

CANVIS HORMONALS

A nivell hormonal, la metamorfosi es caracteritza per la interacción de dos tipus d’hormones diferents: les hormones tiroïdals i la prolactina. Mentre que les hormones tiroïdals, com la tiroxina (segregades per la glàndula tiroide), estimulen el procés de metamorfosi, la prolactina (segregada per la glàndula pituïtària o hipòfisi) l’inhibeix. La concentració d’aquestes dues hormones (regulada per l’eix Hipotàlem→Hipòfisi→Tiroide) és el que controla les diferents fases de la metamorfosi.

thyroid_system-min
Esquema de Mikael Häggström de l’eix hipotàlem (verd), hipòfisi o pituïtària (vermell), tiroide (blau) en éssers humans i l’alliberació d’hormones tiroïdals.

PREMETAMORFOSI

És la fase de creixement de la larva, i dura al voltant dels 20 primers dies de vida (depenent de l’espècie). Aquesta fase es caracteritza per una baixa secreció d’hormones tiroïdals i per una alta concentració de prolactina, que inhibeix el procés de metamorfosi. Això es dèu a que el sistema hipotàlem→hipofisari encara és immadur.

PROMETAMORFOSI

És un període de creixement reduït amb canvis morfològics lents, deguts a l’augment en la concentració de tiroxina en sang a causa del creixement de la glándula tiroides. A més, comença a desenvolupar-se l’eix hipotàlem→hipofisari, el qual farà augmentar encara més la concentració de tiroxina i disminuirà la de prolactina, obrint pas a grans canvis morfològics.

CLÍMAX METAMÒRFIC

És el moment en el que l’eix hipotàlem→hipòfisi→tiroides es troba al màxim rendiment i es dónen grans canvis morfològics en la larva, la qual s’acabarà convertint en un adult en miniatura. Finalment, els nivells de tiroxina es començaran a reestablir per un sistema de retroalimentació negativa d’aquesta sobre l’hipotàlem i l’hipòfisi.

th-graph-min
Esquema extret de Brown & Cai 2007, sobre els nivells generals d’hormones tiroïdals durant les diferents etapes de la metamorfosi.

CANVIS MORFOLÒGICS

Al llarg del procés de metamorfosi, les larves patiran un seguit de canvis anatòmics que els permetran adquirir la forma adulta. Alguns canvis comuns a la majoria d’espècies són l’adquisició de parpelles i nous pigments retinals, la reabsorció de les brànquies i la pèrdua de la línia lateral. Altres canvis morfològics varien entre els diferents ordres. Per exemple en les cecílies (ordre Apoda) les larves s’assemblen a adults en miniatura però amb brànquies externes. A més, la majoria de cecílies presenten metamorfosi interna i al néixer ja no tenen cap rastre de les brànquies.

new-species-burrowing-caecilian-egg-closeup_48946_600x450-min
Foto de Blog do Nurof-UFC de l’ou d’una cecília, dins del qual veiem a la larva branquiada.

En els urodels (ordre Urodela), els canvis metamòrfics externs tampoc són gaire espectaculars. Les larves s’assemblen força als adults a que les seves extremitats es desenvolupen als pocs dies, tot i que tenen brànquies externes filamentoses, no tenen parpelles i la aleta caudal està més desenvolupada. Fins i tot la seva dieta és carnívora com la dels adults. Tanmateix,  la gran diversitat de salamandres i tritons fa que els cicles vitals de les diferents espècies varïin molt; des d’espècies vivípares que pareixen a cries vives, fins a espècies neotèniques que mantenen característiques larvàries durant la vida adulta.

urodela-min
Foto de David Álvarez del part vivípar d’una salamandra comuna (Salamandra salamandra), i foto de Faldrian d’un axolot (Ambystoma mexicanum) una espècie neotènica.

Les granotes i els gripaus (ordre Anura) són el grup en el que els canvis metamòrfics són més dramàtics. La larva dels anurs és tant diferent que s’anomena capgròs, el qual es diferencia de l’adult tant en l’aspecte com en la fisiologia i el comportament. Tot i que els capgrossos nexien amb brànquies externes, aquestes queden cobertes als pocs dies per uns plecs de pell que formen una cambra branquial. A més els capgrossos tenen un cos arrodonit i sense potes i una cua llarga i comprimida que els permet nedar veloçment a l’aigua.

litoria_ewingii_tadpole-min
Foto de J. J. Harrison d’un capgròs de granota arborícola bruna del sud (Litoria ewingii).

Una de les principals diferència entre els anurs adults i els larvaris és la dieta. Mentre que les granotes i els gripaus adults són depredadors, els capgrossos són larves herbívores, alimentant-se o bé filtrant partícules vegetals suspeses a l’aigua, o bé raspant les algues enganxades a les roques amb un seguit de “dents” còrnies que presenten algunes espècies. Això es reflecteix en el seu aparell digestiu en forma d’espiral i extremadament llarg per tal de poder digerir les grans quantitats de materia vegetal de la que s’alimenten. Els capgrossos són màquines de menjar incansables, amb algunes espècies filtradores essent capaces de filtrar fins a vuit vegades el seu volum corporal d’aigua per minut.

developing_internal_organs_of_a_tadpole-min
Foto de Denise Stanley d’un capgròs, on veiem tant les “dents” còrnies, com l’intestí en forma d’espiral.

Després de la metamorfosi, els capgrossos reabsorbiran les brànquies i la cua, reduiran la llargada de l’aparell digestiu, desenvoluparan les potes i els pulmons, convertint-se en metamòrfics preparats per la vida a terra.

dscn1328-bufo-spinosus-min
Gripau espinós just després de la metamorfosi (Bufo spinosus) per David López.

Com hem vist, el procés de la metamorfosi varia molt entre les diferents espècies de cada ordre. Aquest procés fa que la majoria de lissamfibis passin part de les seves vides a l’aigua i part a la terra, fet representatiu de la transició dels primers tetràpodes del medi aquàtic al medi terrestre. A més, la gran diversitat de nínxols ecològics que ocupen tant els adults com les larves de les diferents espècies i l’ampli ventall de factors ambientals que afecten al procés de metamorfosi, converteixen als lissamfibis en grans bioindicadors de l’estat de salut dels ecosistemes.

REFERÈNCIES

S’han consultat les següents fonts durant l’elaboració d’aquesta entrada:

difusio-catala

Concerts a l’aire lliure: el cant de granotes i gripaus

Ben entrada la primavera, quan ja comença a fer bona temperatura a la nit, a les latituds més temperades és quan comencem a sentir els cants de les granotes. Si ens apropem a qualsevol zona humida a l’estiu sentirem els cors de granotes i gripaus que canten per atraure una parella i proclamar els seus territoris. En aquesta entrada explicarem el funcionament i els secrets que amaguen els diferents cants i reclams del món dels anurs.

ANATOMIA DEL CANT

Els anurs són l’ordre d’amfibis amb més capacitats vocals. Pràcticament totes les espècies fan diferents tipus de reclams que utilitzen per a comunicar-se i transmetre informació als seus congèneres. És per això que granotes i gripaus han desenvolupat un sistema vocal força més especialitzat que el de la resta de lissamfibis per a generar els seus famosos cants.

2051850298_88d3937dae_o
Granota arborícola de l’espècie Smilisca phaeota en ple cant. Foto de Santiago Ron.

El cant dels anurs s’origina al passar l’aire des dels pulmons a la laringe on es troben les cordes vocals. Mentre que els urodels i les cecílies no en presenten, els anurs són els únics lissamfibis que tenen cordes vocals autèntiques. Els lissamfibis han de bombejar l’aire als pulmons per a respirar (tot i que també respiren per la pell) i en la majoria de granotes el cant es genera quan l’animal exhala.

Fire Bellied Toad
El gripau de ventre de foc oriental  (Bombina orientalis) difereix de la resta d’anurs en que emet el seu cant tant al exhalar com al inhalar. Foto de Flickpicpete.

La majoria de granotes i gripaus a més, presenten sacs vocals que amplifiquen el so dels seus cants, alguns dels quals arriben a sentir-se fins a un kilòmetre de distància. Els anurs poden tindre un sol sac vocal a la gola, o dos sacs vocals a les comissures de la boca. Per emetre els seus famosos cants han de mantenir la boca i els orificis nasals tancats, per així dirigir l’aire als sacs vocals. Tot i que no totes les espècies presenten sacs vocals, la majoria emeten cants d’una forma o una altra.

Pelophylax_ridibundus_call
La granota comuna (Pelophylax ridibundus) és un exemple de granota amb dos sacs vocals a les comissures de la boca. Foto de Xavier Robin.

EL PERQUÈ DEL CANT

Els gripaus i les granotes fan servir el cant per una raó principal: la reproducció. En els anurs el cant és un mètode per a distingir els individus de la mateixa espècie, per a trobar-se els mascles i les femelles i per a detectar els individus receptius. Normalment són els mascles els que canten per atraure a les femelles i es per això que existeix un dimorfisme sexual en els sacs, amb els mascles tenint sacs més desenvolupats i cants més elaborats.

Oak_toad,_sexual_dimorphism,_eshashoua_pd
Tot i que resulta difícil d’apreciar, aquí veiem com en els gripaus de l’espècie Anaxyrus quercicus els mascles (esquerra) presenten el penjall de pell a la gola corresponent al sac vocal més desenvolupat que les femelles (dreta). Imatge de Eric Shashoua.

Es creu que en l’evolució dels anurs s’ha donat un procés de selecció sexual per part de les femelles per a seleccionar els mascles amb els cants més adequats. Com a norma general les femelles prefereixen els mascles amb cants més greus i potents. Això probablement es dèu a que els mascles més grans (que generalment tenen les veus més greus) són els més forts i els més vells, indicant que han sigut capaços de sobreviure més temps i que per tant tenen millors gens per transmetre a la descendència.

En aquest vídeo de Pocketbattleship podem sentir el cant de la granota toro americana (Lithobates catesbeianus), que és profundament greu i potent.

Tanmateix hi ha espècies amb cants molt aguts en les quals la selecció de les femelles s’ha enfocat cap a altres factors. La majoria de femelles d’anurs prefereixen els cants amb molta freqüència (moltes repeticions del so) i els cants llargs (sons que duren molt). Això es dèu a que el cant és una activitat intensa que requereix molta energia, indicant els mascles que han aconseguit emmagatzemar energia suficient com per a dur a terme aquesta activitat esgotadora.

El cant de la granota punta de fletxa daurada (Phyllobates terribilis) és molt agut i es caracteritza per la seva alta freqüència, com veiem en aquest vídeo de Mavortium.

L’època de reproducció sòl donar-se després de les pluges en els ambients més àrids i en les nits d’estiu en zones més fredes. Els mascles solen formar els anomenats “cors” aprop de cossos d’aigua, ja que és en aquests on es durà a terme l’aparellament. Les espècies d’anurs es poden separar en dos grups segons el mètode de reproducció: el criadors explosius i els criadors continuus.

Els criadors explosius solen viure en hàbitats secs, on la disponibilitat d’aigua sol ser escassa gran part de l’any. Després de les pluges, els mascles es congreguen a les zones d’aigua recentment formades i formen els cors, cantant durant una o dues nits. En aquestes espècies les femelles arriben sincronitzadament. La conseqüència és que en una nit hi ha gran quantitat de mascles i femelles a la mateixa zona fent que, un cop han arribat les femelles, els mascles abandonin els cants i competeixin enèrgicament per assegurar-se l’aparellament.

scouchiiamplextx607
El gripau d’esperons de Couch (Scaphiopus couchii) és un amfibi que viu als deserts del sud dels Estats Units i que es caracteritza per la seva cria explosiva. Imatge de CaliforniaHerps.

Les conductes més complexes es dónen en les espècies de cria contínua (que són la majoria d’anurs). En aquestes la temporada d’aparellament pot durar fins a sis mesos i, mentre que els mascles arriben primer a les zones de cria i comencen a formar els cors, les femelles van arribant esporàdicament, s’aparellen i seguidament abandonen les basses de cria. Això implica que quan arriba una femella hi hagi molts mascles al lloc de cria, fent que hi hagi una forta selecció dels mascles per part d’aquestes.

Bufo_bufo_couple_during_migration(2005)
Els gripaus comuns (Bufo bufo) són un dels exemples més clàssics de criadors continuus. Foto de Janek.

Enlloc de perseguir a les femelles com els criadors explosius, aquests utilitzen diferents cants tant per destacar entre els altres mascles i ser triat per les femelles, com per a advertir als rivals de que no s’apropin al seu territori. Tot i que normalment els mascles que poden mantenir els territoris durant més temps solen ser els que es reproduïran més, existeixen els anomenats “mascles satèl·lits” els quals enlloc de cantar, es queden aprop dels mascles amb els cants més potents per a interceptar a les femelles que arribin atretes per aquests i aparellar-s’hi.

UN CANT PER CADA ESPÈCIE

Òbviament, els cants també serveixen a les femelles per a diferenciar als individus de la seva mateixa espècie de la resta. Això també ens pot servir a nosaltres, ja que els anurs solen ser animals nocturns i discrets i el cant ens permetrà saber quines espècies tenim al nostre voltant, encara que ens envolti la foscor total.

A continuació us posem els cants d’alguns anurs de la Península Ibèrica, perquè si feu una sortida nocturna puguen identificar als gripaus i les granotes més comuns que us podeu trobar a les zones humides.

El tòtil comú (Alytes obstetricans) sol cantar de nit i a terra allunyat de l’aigua, utilitzant refugis subterranis com a càmeres de ressonància ja que, com la resta de tòtils (gènere Alytes), no presenta sacs vocals. El cant és una nota clara i aflautada repetida regularment, com sentim en aquest vídeo de The Nature Box.

El cant del gripau d’esperons (Pelobates cultripes) s’assembla a l’escataineig d’una gallina. El cant profund del gripau d’esperons sol ser difícil de sentir, ja que aquest anur sol cantar sota l’aigua, encara que en aquest vídeo de Versicolora es sent força bé.

Els gripaus espinosos (Bufo spinosus) solen cantar en solitari, de forma esporàdica i sense formar cors, amb el cos submergit i el cap fora de l’aigua. El cant consisteix en una sèrie de sons aspres i força aguts com es sent en aquesta grabació de Martiño Cabana Otero.

Els gripaus corredors (Bufo calamita) canten de nit, en zones d’aigua poc profundes, amb el cos força alçat i inflant molt el seu sac vocal. El cant és pulsàtil, potent i retombant, i es repeteix sense descans com veiem en aquest vídeo de Florian Begou.

La reineta meridional (Hyla meridionalis) sol cantar al vespre o de nit, tant a l’aigua, a terra o, com veiem en aquest vídeo de Pedroluna, enfilada a la vegetació. El cant consisteix en una única nota intensa, nasal, monòtona i que es repeteix en intèrvals llargs i irregulars.

La granota verda (Pelophylax perezi) presenta sons molt variats que van des del típic “croac” fins a un cant sonor semblant a una riallada. Els cors d’aquestes granotes poden ser enormes i molt sorollosos, com sentim en aquest vídeo de Martiño Cabana Otero.

REFERÈNCIES

Per a l’elaboració d’aquesta entrada s’han consultat les següents fonts:

Difusió-català

Com respirar sense pulmons, a l’estil lissamfibi

Tot i que la majoria de vertebrats terrestres depenem dels pulmons per realitzar l’intercanvi de gasos, els lissamfibis presenten a més respiració cutània, respiren a través de la pell. Tot i que això pot semblar un desavantatge, ja que han de mantindre la pell relativament humida, en aquesta entrada veurem els avantatges que els confereix la respiració cutània i com en alguns grups, aquesta ha substituït completament la respiració pulmonar.

RESPIRAR AIGUA O AIRE

Els vertebrats terrestres utilitzem els pulmons per a realitzar l’intercanvi de gasos. Tot i que els nostres avantpassats aquàtics respiraven mitjançant brànquies, aquestes no serveixen en el medi terrestre, ja que la gravetat faria que es colapséssin i perdessin la seva estructura. Els pulmons, com que es troben a l’interior del cos, poden mantindre la seva estructura en un ambient amb força més gravetat. Tant les brànquies com els pulmons presenten estructures molt ramificades per augmentar la superfície de difusió i així, afavorir l’intercanvi de gasos (a major superfície, més intercanvi).

Giant_Mudskipper_(Periophthalmodon_schlosseri)_(15184970133)Espècimen de saltador del fang gegant (Periophthalmodon schlosseri), un peix del sud-est asiàtic que pot sortir de l’aigua gràcies en part, a la respiració cutània. Foto de Bernard Dupont.

Tanmateix, entre els vertebrats existeix una tercera forma d’intercanvi de gasos. Tot i que no està tant extesa com les brànquies o els pulmons, la respiració cutània la trobem en varis grups d’animals, com els peixos pulmonats i alguns rèptils marins (tortugues i serps marines). Tanmateix, els lissamfibis són el grup que ha dut l’especialització en la respiració cutània a l’extrem.

COM RESPIREN ELS LISSAMFIBIS?

Els lissamfibis actuals són el grup de tetràpodes que presenten major diversitat d’estratègies respiratòries. A part de la respiració cutània present en totes les espècies, la majoria de lissamfibis neixen en un estat larvari aquàtic amb brànquies i després de la metamorfosi, desenvolupen pulmons per a respirar a terra ferma.

Les larves dels urodels i els àpodes presenten brànquies externes filamentoses i molt ramificades que els permeten respirar sota l’aigua. Aquestes han d’estar en moviment constant per a que hi hagi intercanvi de gasos. Algunes espècies de salamandres neotèniques mantenen les brànquies durant l’edat adulta. En canvi, els capgrossos dels anurs presenten brànquies internes cobertes per sacs branquials.

Salamander_larva_closeupRetrat d’una larva de salamandra en la que s’aprecien les brànquies ramificades i filamentoses. Foto de Brian Gratwicke.

La majoria de lissamfibis terrestres presenten un parell de pulmons simples amb poques ramificacions i grans alveols. Aquests tenen una baixa taxa de difusió de gasos comparats amb els pulmons dels amniotes. A més, mentres que els amniotes ventilem els pulmons mitjançant l’expansió de la caixa torácica i el diafragma, els lissamfibis han de forçar l’aire als pulmons mitjançant un sistema de bomba bucal.

Four_stroke_buccal_pumpingEsquema del sistema de respiració pulmonar dels lissamfibis. En el sistema de bomba bucal, la cavitat bucal s’omple d’aire i després s’eleva el terra de la boca per forçar l’aire cap als pulmons. Imatge de Mokele.

A més de la respiració branquial o pulmonar, els lissamfibis oxigenen la sang per respiració cutània. La pell dels lissamfibis és molt prima i està molt capil·laritzada (tenen una gran quantiat de vasos sanguinis). Això fa que aquesta tingui una gran capacitat de difusió de molècules gasoses, permetent-los la respiració cutània mitjançant un sistema contracorrent.

600px-ExchangerflowEsquema modificat d’un sistema d’intercanvi contracorrent. En aquest, la sang desoxigenada (amb CO2) circula en direcció contrària a l’aire (carregat d’O2) i entre els dos fluids es dóna un intercanvi de gasos en un intent d’igualar la concentració dels dos gasos. Imatge modificada de Joe.

La pell dels lissamfibis difereix de la dels amniotes en que no presenta escates, plomes o pèl. Això fa que la pell dels lissamfibis sigui molt permeable tant pels gasos com per l’aigua (cosa que els converteix en grans bioindicadors dels ambients on viuen, ja que la seva pell absorbeix molts tipus de substàncies solubles). Per això els lissamfibis han de mantenir la pell relativament humida per a que l’intercanvi es pugui dur a terme.

KammolchmaennchenMascle de tritó crestat (Triturus cristatus) en la fase nupcial. Les amples crestes de la cua incrementen la superfície de pell augmentant la difusió de gasos. Foto de Rainer Theuer.

Els lissamfibis viuen constantment en un delicat equilibri en el que la pell s’ha de mantindre suficientment humida per a permetre l’intercanvi de gasos, però no tant permeable com per a que perdin aigua, es deshidratin i morin. Això ho aconsegueixen vivint en ambients humits, o bé creant capes de pell humida externes per a crear un ambient aquós al seu voltant.

Bombay_caecilianFoto d’una cecília de Bombai (Ichthyophis bombayensis) un lissamfibi que viu en fangars i altres hàbitats humits. Foto de Uajith.

Molts lissamfibis presenten una gran quantitat de pell, cosa que augmenta la superfície respiratòria. Alguns exemples són, les papil·les vasculars de la granota peluda (Trichobatrachus robustus), els plecs de pell de les granotes del gènere Telmatobius o les amples aletes caudals de molts tritons.

TrichobatrachusGreenDibuix de la granota peluda (Trichobatrachus robustus) on es veuen les papil·les que li dónen el nom. Imatge extreta de Proceedings of the Zoological Society of London (1901).

Tot i que la majoria de granotes obtenen gran part de l’oxigen pels pulmons durant l’estiu, durant les èpoques més fredes (quan el seu metabolisme es ralenteix) moltes espècies hivernen al fons de llacs glaçats, realitzant l’intercanvi de gasos exclusivament per via cutània.

6887057816_d68fccf4f4_oMolts lissamfibis de zones subàrtiques hivernen sota l’aigua, utilitzant la pell per extreure oxigen de l’aigua i expulsar diòxid de carboni de la sang. Foto de Ano Lobb.

Els urodels adults presenten molta més diversitat d’estratègies respiratòries i a més, hi trobem un dels únics grups de vertebrats terrestres que no presenten cap rastre de pulmons.

VIURE SENSE PULMONS

Dintre del subordre dels salamandroideus hi trobem la familia Plethodontidae. Aquests animals són coneguts popularment com a salamandres apulmonades ja que, com el seu nom indica, no tenen pulmons i depenen exclusivament de la pell per a realitzar l’intercanvi de gasos.

Kaldari_Batrachoseps_attenuatus_02Salamandra esvelta de Califòrnia (Batrachoseps attenuatus) fotografiada per Kaldari. Aquesta és un perfecte exemple dels cossos allargats i prims dels pletodòntids, que els facilita la difusió de gasos.

Aquests urodels es troben distribuïts principalment per les Amèriques, amb algunes espècies a l’illa de Sardenya i a la Península de Corea. El més sorprenent és que els pletodòntids, com la majoria de salamandroideus, són animals principalment terrestres i no presenten fase larvària aquàtica. Tot i que algunes espècies presenten brànquies durant l’estat embrionàri, aquests les perden abans de néixer i els pulmons mai s’arriben a desenvolupar.

Northern_red_salamander_(Pseudotriton_ruber)Foto de salamandra vermella (Pseudotriton ruber) un pletodòntid endèmic de la costa atlántica dels Estats Units. Foto de Leif Van Laar.

Es creu que aquesta familia va evolucionar en rius d’alta muntanya amb fortes corrents. La presència de pulmons els hauria fet flotar massa, cosa que els hagués dificultat el moviment en aquests hàbitats. Les aigües fredes dels rius alpins són riques en oxigen, fent que la respiració cutània fós suficient per aquests petits animals.

Vídeo de Verticalground100 on se’ns mostren algunes espècies de pletodòntids.

Una pell fina i vascularitzada (facilita la difusió) i l’evolució de cossos llargs i prims (facilita el transport d’O2 per tot el cos) va fer que els pulmons resultéssin inútils pels pletodòntids. Actualment les salamandres apulmonades són la família d’urodels més nombrosa, i representen més de la meitat de la biomassa animal en molts ecosistemes nord-americans. A més, són més actius que la majoria de lissamfibis, amb sistemes nerviosos i sensorials molt desenvolupats, sent depredadors voraços d’artròpodes i altres invertebrats.

3679651745_d678454a1b_oSalamandra zig-zag de Ozark (Plethodon angusticlavius) una curiosa salamandra apulmonada típica de l’estat de Missouri. Imatge de Marshal Hedin.

Com veieu la respiració cutània dels lissamfibis els permet fer coses que pocs tetràpodes poden fer. Passar tot un hivern submergits i viure a terra ferma sense pulmons són gestes increïbles reservades a un petit grup d’animals. Potser els lissamfibis encara depenen dels medi aquàtic per a sobreviure, però com hem vist, poca cosa tenen de lents i primitius, ja que presenten algunes de les adaptacions fisiològiques més impressionants del regne animal.

REFERÈNCIES

S’han utilitzat les següents fonts per a l’elaboració d’aquesta entrada:

Difusió-català

Regeneració d’extremitats, de l’axolot a l’ésser humà

La regeneració de parts del cos perdudes o danyades en els animals es coneix des de fa bastants segles. El 1740 el naturalista Abraham Trembley va observar a un petit cnidari que podia regenerar el seu cap si li tallaven, per això el va anomenar Hydra, fent referència al monstre de la mitologia grega que podia regenerar els seus múltiples caps si li tallaven. Posteriorment, es va descobrir que hi havíen moltes altres espècies animals amb capacitats regeneratives. En aquesta entrada parlarem sobre aquests animals.

Regeneració al regne animal

La regeneració de parts del cos està molt més extesa entre els diferents grups d’invertebrats que de vertebrats. Aquest procés pot ser bidireccional, en el que els dos troços de l’animal regeneren les parts que els falten per a generar dos animals (com a l’hidra, les planàries, els cucs i les estrelles de mar), o unidireccional, en la que l’animal perd una extremitat però només la regenera sense que es formin dos animals (artròpodes, moluscs i vertebrats). Entre els vertebrats, peixos i amfibis són els que presenten més capacitats regeneratives, tot i que molts llangardaixos i alguns mamífers poden regenerar la cua.

ch14f01Imatge de Matthew McClements sobre la regeneració bidireccional en planàries, hidres i estrelles de mar. Extret de Wolbert's Principles of Development.

La regeneració es pot donar de dues maneres diferents:

  • Regeneració sense proliferació cel·lular activa o “morphalaxis”. En aquest tipus, la part del cos que falta és recreada principalment mitjançant la remodelació de cèl·lules preexistens. Això és el que passa en la Hydra, en la que les parts perdudes es regeneren sense la creació de material nou. Per tant, si es secciona una hidra per la meitat, obtindrem dues versions més petites de la hidra original.
Vídeo d'un experiment on s'ha seccionat una Hydra en diferents trossos. Vídeo de Apnea.
  • Regeneració amb proliferació cel·lular o “epimorfosis”. En aquest, la part perduda es regenera mitjançant proliferació cel·luar o sigui, que es crea “de nou”. Aquesta en la majoria de casos es produeix mitjançant la formació d’una estructura especialitzada anomenada blastema, massa de cèl·lules mare sense diferenciar que apareix en fenòmens de regeneració cel·lular.

Quasi tots els grups d’animals amb capacitats regeneratives presenten regeneració amb formació de blastema. Tot i així, l’orígen de les cèl·lules mare del blastema varia segons el grup. Mentre que les planàries presenten cèl·lules mare pluripotents (que poden diferenciar-se a qualsevol tipus cel·lular) repartides per tot el cos, els vertebrats presenten cèl·lules dels teixits on es forma el blastema.

Entre els vertebrats terrestres, les sargantanes i els urodels són els que mostren més habilitats regeneratives. A continuació veurem com ho aconsegueixen i les aplicacions que això té a la medicina actual.

Cues prescindibles

Quan ets un petit animal que està sent perseguit per un gat o un altre depredador, probablement et surti més rentable perdre la teva preciada cua a perdre la vida. Alguns vertebrats terrestres han evolucionat seguint aquesta filosofia, i ells mateixos poden desprendre’s de la seva cua voluntàriament mitjançant un procés anomenat autotomia caudal. Això els permet fugir dels seus depredadors, els quals s’entretenen amb la cua perduda que segueix movent-se.

 Vídeo on es veu com algunes sargantanes com aquest vanzosaure de cua vermella (Vanzosaura rubricauda) tenen cues de colors vius per atraure l'atenció dels depredadors. Vídeo de Jonnytropics.

L’autotomia o autoamputació, es defineix com un comportament en el que l’animal es desprèn d’una o vàries parts del cos. L’autotomia caudal la trobem en moltes espècies de rèptils i en dues espècies de ratolins espinosos del gènere Acomys. Entre els rèptils, trobem autotomia caudal en els lacèrtids, els dragons, els escíncids i les tuatares.

Acomys.cahirinus.cahirinus.6872Foto d'un ratolí espinós del Caire (Acomys cahirinus), un mamífer que és capaç de desprendre's de la seva cua i regenerar-la. Foto de Olaf Leillinger.

En els rèptils, la fractura de la cua es dóna en zones concretes de les vèrtebres caudals que estàn debilitades de per sí. L’autotomia es pot donar de dues formes diferents: l’autotomia intravertebral, en la que les vèrtebres del centre de la cua tenen plans de fractura transversals preparats per trencar-se si es presionen suficient, i l’autotomia intervertebral, en la qual la cua es trenca entre les vèrtebres per constricció muscular.

0001-3765-aabc-201520130298-gf03Model tridimensional de els plans de fractura de la cua d'un llangardaix i la regeneració post-autotomia d'un tub cartilaginós. Imatge extreta de Joana D. C. G. de Amorim et al.

L’autotomia caudal permet fugir a l’animal, però li sortirà car. Molts rèptils utilitzen la cua com a reservori de greixos i perdre aquest magatzem d’energia sol ser perjudicial per l’animal. Per això es sap que molts llangardaixos, un cop ha desaparegut l’amenaça, buscan la seva cua perduda i se la mengen, per almenys recuperar l’energia que teníen acumulada en forma de greix. A més, regenerar una cua nova és un procés costós energèticament.

DSCN9467Foto d'una sargantana iberoprovençal (Podarcis liolepis) que ha perdut la cua. Foto de David López Bosch.

La regeneració de la cua dels rèptiles difereix de la d’amfibis i peixos en que no es forma el blastema, i que en lloc de regenerar-se realment les vèrtebres caudals, es forma un tub de cartílag. La nova cua no és tan mòbil i sol ser més curta que l’original, i sol regenerar-se completament al cap d’unes setmanes. La majoria de llangardaixos poden regenerar la cua vàries vegades, però alguns com el vidriol (Anguis fragilis) només poden fer-ho un cop. En ocasions, la cua original no es trenca del tot però s’activen els mecanismes de regeneració, cosa que pot fer que ens poguem trobar alguna sargantana o algún dragó amb més d’una cua.

056 (2)Detall de la cua d'un dragó comú (Tarentola mauritanica) que ha regenerat la cua sense acabar de perdre la cua original. Foto de Rafael Rodríguez.

Urodels, els reis de la regeneració

De tots els tetràpodes, els amfibis són els que presenten les majors capacitats regeneratives. Durant la fase larvària de la majoria d’espècies, tant la cua com les extremitats (si les presenten) poden ser regenerades si les perden. La comunitat científica creu que això es deu a que en els amfibis el desenvolupament de les extremitats i altres òrgans es retrassen fins al moment de la metamorfosi. Tot i així, les granotes i els gripaus (anurs) només conserven els seus poders regeneratius durant la fase de capgròs, perdent-los al arribar a l’edat adulta.

Wood_frog_tadpoleCapgròs de granota de bosc (Rana sylvatica) que, com en tots els amfibis, posposa el desenvolupament de les extremitats fins al moment de la metamorfosi. Foto de Brian Gratwicke.

En canvi, moltes salamandres i tritons (urodels) conserven els seus poders regeneratius durant tota la vida. Encara que moltes espècies presenten autotomia caudal, a diferència de les sargantanes, els urodels regeneren completament, no només la cua, sinó pràcticament qualsevol teixit corporal perdut. De totes les espècies conegudes, l’axolot (Ambystoma mexicanum), un amfibi neotènic que arriba a l’edat adulta sense patir cap metamorfosi, ha servit com a organisme model per a l’estudi de la formació del blastema que precedeix a la regeneració.

 Vídeo on es parla del axolot, aquest curiós amfibi que està en greu perill d'extinció. Vídeo de Zoomin.TV Animals.

La regeneració que es dóna en les salamandres té fases genèticament similars a les que pateixen la resta de vertebrats al desenvolupar els diferents teixits i òrgans durant el desenvolupament embrionari. En l’axolot (i en la resta d’urodels) la regeneració després de l’amputació d’una extremitat passa per tres fases diferents:

  • Curació de la ferida: Durant la primera hora després de l’amputació, cèl·lules epidèrmiques migren a la zona de la ferida. El tancament de la ferida es produeix més o menys a les dues hores i hi intervenen els mateixos mecanismes que en la resta de vertebrats. Tot i així, la regeneració completa de la pell es retrassa fins al final de la regeneració.
  • Desdiferenciació: Aquesta segona fase comença a les 24 hores de l’amputació i és quan es forma el blastema. Aquest està format per cèl·lules dels teixits especialitzats de la zona d’amputació que perden les seves característiques (obtenen la capacitat de proliferar i diferenciar-se de nou), i de cèl·lules derivades del teixit connectiu que migren a la zona d’amputació. Quan aquestes cèl·lules de diferent origen s’acumulen i formen el blastema, s’inicia la proliferació cel·lular.
  • Remodelació: Per a l’inici de la tercera fase, és imprescindible la formació d’un blastema amb cèl·lules de diversos orígens. Un cop format el blastema de cèl·lules desdiferenciades, la formació de la nova extremitat segueix el mateix patró que en les extremitats de qualsevol vertebrat durant el desenvolupament embrionari (fins i tot hi intervenen els mateixos gens).
A_Stages_of_zebrafish_caudal_fin_regeneration_as_longitudinal_sections.Esquema de la formació del blastema en el peix zebra (Danio rerio) un altre organisme model. Imatge de Kyle A. Gurley i Alejandro Sánchez Alvarado.

Recentment s’han trobat fòssils de diversos grups de tetràpodes primitius que presenten rastres de regeneració. S’han trobat proves de regeneració d’extremitats en fòssils de temnospòndils (Apateon, Micromelerpeton i Sclerocephalus) i de lepospòndils (Microbrachis i Hyloplesion). Aquesta àmplia gamma de gèneres de tetràpodes basals que presenten regeneració i el fet de que molts peixos també la presentin, ha portat a molts científics a plantejar-se si els primers grups de tetràpodes primitius presentaven regeneració i aquesta es va perdre en els avantpassats dels amniotes (rèptils, aus i mamífers).

Axolotl_ganz
Foto d'un axolot, per LoKiLeCh.

Tot i així, es creu que la informació genètica de formació del blastema podria trobar-se en l’ADN dels amniotes tot i que estaria en estat latent. De les tres fases del procés de regeneració, l’única que és exclusiva dels urodels és la fase de desdiferenciació, ja que la fase de curació és igual a la cicatrització en la resta de vertebrats i la de remodelació és igual a la formació de extremitats durant l’embriogènesi. Actualment s’estan portant a terme multitud d’estudis sobre com reactivar els gens latents que promouen la formació del blastema en altres vertebrats, com per exemple els éssers humans.

Alguns òrgans humans com el ronyó i el fetge ja tenen certa capacitat de regeneració, però gràcies a l’investigació amb cèl·lules mare en animals com les salamandres i les sargantanes, actualment és possible regenerar dits, genitals i parts de la bufeta, el cor i els pulmons. Com hem vist, els diferents animals capaços de regenerar membres seccionats amaguen el secret que podria salvar a milers de persones. Recordem això la pròxima vegada que escoltem que centenars d’espècies d’amfibis i rèptiles es troben en perill per culpa de la mà de l’home.

Difusió-català

Referències

Per a l’elaboració d’aquesta entrada s’han utilitzat les següents fonts:

Paracaigudisme herpetològic: amfibis i rèptils planadors

Actualment els únics rèptils voladors són les aus, descendents directes dels dinosaures teròpodes. Tot i que l’època dels grans rèptils voladors ja ha passat, avui en dia vàries espècies de rèptils i algunes d’amfibis han adquirit l’habilitat de planar per a escapar dels seus depredadors. Planar es defineix com a caure en un angle de menys de 45o respecte l’horitzontal amb l’ajuda de membranes que creen resistència a l’aire. En aquesta entrada explicaré algunes de les espècies d’herpetos planadors que existeixen al voltant del món avui en dia.

Granotes planadores

Les granotes planadores (també anomenades “granotes voladores”) inclouen espècies dels gèneres Polypedates, Rhacophorus (família Rhacophoridae) i Ecnomiohyla (família Hylidae). Aquests han adquirit caràcters similars per un procés d’evolució convergent.

Ecnomiohyla_rabborumFoto de Ecnomiohyla rabborum per Brian Gratwicke.

Tant els hílids com el racofòrids són popularment coneguts com granotes d’arbre. Els seus membres s’han especialitzat a una vida arborícola amb llargues potes i dits amb ventoses per a una millor adherència.

 Mascle i femella de falsa granota de Malabar (Rhacophorus pseudomalabaricus) durant l’aparellament. Vídeo de Sandesh Kadur.

A més, els gèneres planadors han adquirit àmplies membranes a les potes i entre els dits per poder planar i  d’aquesta manera, fugir de forma més eficaç dels depredadors.

frog_m_1804347aGranota voladora de Wallace (Rhacophorus nigropalmatus) planant.

Geckos planadors

Entre els membres de la família Gekkonidae existeixen dos gèneres del sud-est asiàtic que han adquirit adaptacions per planar: el gènere Ptychozoon i el gènere Luperosaurus.

P1100785Foto d'un gecko volador de Kuhl (Ptychozoon kuhli) per Bernard Dupont.

Els geckos són un grup de llangardaixos que han evolucionat per una vida arborícola que els permet adherir-se pràcticament a qualsevol superfície. Les seves potes presenten diminuts filaments que els permeten desplaçar-se inclús cap per avall.

Ptychozoon_kuhli_mâleDetall de la part ventral d'un gecko volador de Kuhl (Ptychozoon kuhli) en el que es poden apreciar les membranes de pell. Foto de Fenchurch.

A més, els gèneres Ptychozoon i Luperosaurus presenten membranes al coll, cos, potes i cua que els ajuden a camuflar-se millor contra la superfície dels arbres i també, planar lleugerament d’arbre a arbre per fugir dels possibles depredadors.

Serps voladores

Parlant de depredadors, les colobres del gènere Chrysopelea també han desenvolupat un mètode eficaç per desplaçar-se pel dosser arbori. Les serps d’aquest gènere són diürnes, s’alimenten de llangardaixos, granotes, ocells i ratpenats, i es troben distribuïdes pel sud-est asiàtic.

Chrysopelea_paradisi_(6032067972)Parella de serps voladores del Paradís (Chrysopelea paradisi) en el Zoo de Singapur, per Alan Couch.

A diferencia dels planadors anteriors les serps voladores no tenen membranes per frenar el seu descens sinó que el seu sistema és una mica més complex. Al arribar a l’extrem d’una branca, les serps es deixen caure. Després d’un lleu descens, retrauen els seus òrgans interns apretant-los contra la caixa toràcica i estenen les seves costelles cap als costats, adquirint d’aquesta manera una forma semi còncava, semblant a la d’un avió.

biomechanics_1Imatge explicativa del mecanisme de planament de les serps voladores. Imatge de Biomechanics.

Amb aquest mètode i juntament amb moviments serpentins, les serps del gènere Chrysopelea poden controlar amb molta precisió la direcció del seu descens. Aquestes colobres planen d’una manera molt més controlada que molts mamífers planadors com els esquirols voladors i arriben a recórrer una distancia horitzontal de fins a 100 metres.

 Grup de científics estudiant les habilitats voladores d’una serp voladora del Paradís (Chrysopelea paradisi). Vídeo de All of These Videos.

Dragons voladors

Finalment arribem als més espectaculars dels herpetos planadors, els anomenats dragons voladors. Aquests agàmids (família Agamidae) del gènere Draco es troben a les zones tropicals d’Àsia on sobreviuen caçant insectes entre els arbres selvàtics.

Sans nom-399Foto d'un dragó volador de cinc línies (Draco quinquefasciatus) de Sarawak, Malàisia. Imatge de Bernard Dupont.

La principal característica dels dragons voladors son les seves costelles, algunes de les quals estan extremadament allargades i presenten membranes de pell entre elles adquirint la funció d’ales. Aquestes “ales” solen estar retretes contra el cos i les poden estirar tant per planar com per enviar senyals visuals a altres membres de la seva espècie (les ales solen tenir colors llampants).

Flying_Dragon_MivartDibujo del libro On The Genesis of Species del esqueleto de un Draco volans.

Els dragons voladors utilitzen les seves ales per desplaçar-se d’arbre a arbre, caçar, fugir dels depredadors, perseguir als seus congèneres en disputes territorials i durant l’aparellament. A part de les seves ales acolorides, moltes espècies presenten papades acolorides (especialment els mascles) per indicar el seu estat reproductor a altres membres de la seva espècie.

Draco_spilonotusFoto d'un dragó volador liniat de Sulawesi (Draco spilonotus) per A. S. Kono.

El rècord de vol d’aquests agàmids es de 60 metres de distancia amb un descens vertical de només 10 metres. Els dragons voladors són animals petits, molt ràpids i actius, i pocs animals són capaços de capturar-los. A més, són totalment arborícoles, només descendeixen a terra les femelles per pondre els ous sota terra.

 Serp voladora perseguint a un dragó volador. Vídeo de Venomous Animals.

Tal com hem vist, la majoria d’espècies d’amfibis i rèptils planadors viuen en climes tropicals. Això és degut a que són hàbitats amb una cobertura vegetal molt densa i els arbres creixen molt junts, permetent a aquests animals planar d’una arbre a un altre amb facilitat. La major amenaça per aquestes criatures són la desforestació i la pèrdua del seu hàbitat, ja que sense una cobertura arbòria òptima, aquests animals són presa fàcil per a molts depredadors terrestres.

Referències

S’han consultat les següents fonts durant l’elaboració d’aquesta entrada:

Difusió-català