Arxiu de la categoria: ARTRÒPODES

El fenotip estès: la genètica més enllà del propi cos

Els gens determinen el nostre color d’ulls, la nostra alçada, guien el nostre desenvolupament al llarg de la vida i, fins i tot, el nostre comportament. Tots els éssers vius tenen gens que, un cop s’expressen, es manifesten d’una manera més o menys explícita en el seu cos, modelant-lo i atorgant-li tota una sèrie de trets i funcions. És possible, però, que l’expressió d’alguns gens tingui efectes més enllà del propi cos?

Descobreix algunes idees bàsiques sobre la teoria del fenotip estès.

El fenotip estès: la genètica més enllà del propi cos

Primer de tot, necessitem aclarir dos conceptes bàsics que us ajudaran a entendre millor el concepte de fenotip estès: genotip i fenotip.

Genotip

El genotip és la col·lecció de gens o informació genètica que posseeix un organisme en particular en forma d’ADN. També pot referir-se als dos al·lels d’un gen (o formes alternatives d’un gen) que hereta un organisme dels seus progenitors, un per progenitor.

La informació genètica que poseeix un organisme en particular en forma d’ADN constitueix el seu genotip. Imatge de domini públic.

No s’ha de confondre amb el genoma: mentre que el genoma fa referència al conjunt de gens continguts en l’ADN d’una espècie sense tenir en compte la seva diversitat (polimorfismes) entre individus, el genotip sí que contempla aquestes variacions. Per exemple: el genoma humà (de tota l’espècie Homo sapiens sapiens) i el genotip d’una única persona (conjunt de gens i les seves variacions en un únic individu).

Fenotip

El genotip, o com a mínim una part, s’expressa dins l’organisme contribuint als seus trets observables. Aquesta expressió té lloc quan la informació codificada en l’ADN dels gens s’utilitza per sintetitzar proteïnes o molècules d’ARN, el precursor de les proteïnes. El conjunt de trets observables que s’expressen a partir del genotip rep el nom de fenotip.

El color dels ulls (fenotip) es manifesta a partir de l’expressió dels gens de cada organisme particular (genotip); és a dir, dels seus al·lels. Imatge de cocoparisienne a Pixabay (domini públic).

Tanmateix, els gens no ho són sempre tot a l’hora de definir els trets d’un organisme: l’entorn també pot influir sobre la seva expressió. Així doncs, una definició més completa de fenotip seria el conjunt d’atributs que es manifesten en un organisme en particular com la suma de l’expressió dels seus gens i de les pressions de l’entorn sobre aquests. Alguns gens únicament expressen un fenotip concret donades certes condicions ambientals.

La teoria del fenotip estès

El concepte de fenotip estès va ser proposat per Richard Dawkins en el seu llibre “El Fenotip Estès” (1982). Dawkins es va fer famós després de la publicació de la que seria la seva obra divulgativa més polèmica, “El gen egoista” (1976), la qual li serví de base per a l’elaboració de la seva teoria sobre el fenotip estès.

Segons el propi Dawkins, un fenotip estès és aquell que no es limita al cos individual en el qual s’allotja un gen; és a dir, són “tots els efectes que un gen causa sobre el món”. Així doncs, un gen pot influir en el medi ambient en què viu un organisme per mitjà del comportament d’aquest organisme.

Dawkins també considera que un fenotip que va més enllà del propi organisme podria arribar a influir en el comportament d’altres organismes al seu voltant, beneficiant així a tots ells o únicament a un… i no necessàriament a l’organisme que expressa el fenotip. Això ens duria a escenaris a priori estranys com, per exemple, que el fenotip d’un organisme fora avantatjós per a un paràsit que l’ataqués en lloc de per a ell mateix. Aquesta idea es resumeix en el que Dawkins anomena el “Teorema central del fenotip estès”: “el comportament d’un animal tendeix a maximitzar la supervivència dels gens ‘per’ aquest comportament, independentment que aquests gens estiguin o no dins del cos de l’animal que manifesta aquest comportament”.

Aquesta idea tan complexa adquireix sentit si tenim en compte la premissa bàsica de la qual parteix Dawkins, la qual tracta en la seva obra “El gen egoista”: la unitat bàsica de l’evolució i únic motor de la selecció natural, més enllà dels individus i les poblacions, són els gens, sent els cossos dels organismes meres “màquines de supervivència” millorades per assegurar la perpetuació dels gens.

Exemples de fenotip estès

Potser tots aquests conceptes semblen molt complicats, però ho entendreu tot molt millor amb alguns exemples. Segons Dawkins, hi ha tres tipus bàsics de fenotip estès.

1) Arquitectura animal

Els castors construeixen dics i modifiquen el seu entorn, de la mateixa manera que una colònia de tèrmits construeix un termiter i altera el terreny, com a part del seu estil de vida.

Dic construït per castors. Imatge de Hugo.arg (CC 4.0)
Termiters a Austràlia. Imatge de domini públic.

D’altra banda, les cases o estoigs que construeixen els tricòpters al seu voltant a partir de material disponible en el medi milloren la seva supervivència.

Larva de tricòpter dins del seu estoig fet de material vegetal. Imatge de Matt Reinbold (CC 2.0)

Tots aquests són exemples del tipus de fenotip estès més simple: l’arquitectura animal. El fenotip és, en aquest cas, una expressió física o material del comportament de l’animal que contribueix a millorar la supervivència dels gens que expressen aquest comportament.

2) Manipulació del comportament de l’hoste per part del paràsit

En aquest tipus de fenotip estès, el paràsit expressa uns gens que controlen el comportament del seu hoste. Dit d’una altra manera, el genotip del paràsit manipula el fenotip (en aquest cas, el comportament) del parasitat.

Un exemple clàssic és el de grills sent controlats per nematomorfs o gordiacis, un grup de “cucs” parasitoides (en anglès, “hair worms”), com s’explica en aquest vídeo:

En resum: les larves d’aquests cucs es desenvolupen dins d’hostes aquàtics, com les larves de les efímeres. Quan les efímeres assoleixen l’edat adulta un cop feta la metamorfosi, es desplacen volant a terra ferma, on moren; i és aquí on els grills entren en escena: un grill adult s’alimenta de les restes de les efímeres i adquireix els parasitoides, els quals es desenvolupen a l’interior del grill alimentant-se del seu greix corporal. Els cucs adults han de tornar al medi aquàtic per a completar el seu cicle vital i, per fer-ho, controlen el cervell del grill per “obligar-lo” a anar fins a una font d’aigua. Un cop a l’aigua, els cucs deixen enrere el cos del grill, el qual mor ofegat.

Altres exemples són el de les femelles de mosquit portadores del protozou de la malària (Plasmodium), el qual fa que les femelles de mosquit (Anopheles) se sentin més atretes per l’alè humà que les no infectades, i el de les gales induïdes en plantes per diversos insectes, com els cinípids (petites vespes).

3) Acció a distància

Un exemple recurrent d’aquest tipus de fenotip estès és la manipulació del comportament de l’hoste per part dels pollets de cucut (grup d’aus de la família Cuculidae). Moltes espècies de cucuts, com el cucut comú (Cuculus canorus), ponen els ous en els nius d’altres aus perquè aquestes els criïn enlloc seu; al mateix temps, els pollets de cucut eliminen la competència desfent-se dels ous de l’altra espècie.

Mireu com el pollet de cucut es desfà dels ous d’una boscarla de canyar (Acrocephalus scirpaceus)!

En aquest cas de parasitisme, el pollet no està físicament associat a l’hoste, però influeix en l’expressió del seu fenotip conductual.

Boscarla de canyar alimentant un pollet de cucut comú. Imatge de Per Harald Olsen (CC 3.0).

.            .            .

Hi ha molts més exemples i estudis sobre aquest concepte. Si us interessa molt el tema, us recomano la lectura del gen egoista (sempre des d’una mirada crítica i oberta). Si, a més a més, teniu uns bons coneixements en biologia, us animo a llegir-vos també el fenotip estès.

Imatge de portada: Alandmanson / Wikimedia Commons (CC BY-SA 4.0)

La vespa asiàtica gegant (Vespa mandarinia): què en sabem?

D’entre els nombrosos organismes exòtics invasors que han arribat a Europa, les vespes asiàtiques es troben dins dels més comentats en xarxes socials i fòrums naturalistes. La vespa asiàtica (Vespa velutina) es va instal·lar a Europa i, posteriorment, a la Península Ibèrica, esdevenint un mal de cap per apicultors i administració en tractar-se d’una espècie molt voraç. Tanmateix, existeix un insecte que preocupa els apicultors occidentals fins i tot més que la vespa asiàtica: la vespa asiàtica gegant (Vespa mandarinia).

Què en sabem, d’aquesta espècie? La seva presència a Occident és real o tan sols el fruit d’identificacions errònies? T’ho expliquem en aquest post.

La vespa asiàtica gegant (Vespa mandarinia): què en sabem?

Durant el meu darrer viatge al Japó el passat mes de setembre, vaig trobar-me cara a cara amb un insecte espectacular: la vespa asiàtica gegant (Vespa mandarinia). Veure-la en directe em va impressionar fins el punt de motivar-me a escriure aquest post.

La vespa asiàtica gegant (Vespa mandarinia) és una espècie d’himenòpter nativa de l’est i sud-est d’Àsia especialment abundant a les zones rurals del Japó. Fins fa poc temps, es considerava que la varietat japonesa pertanyia a una subespècie endèmica pròpia d’aquest país (Vespa mandarinia japonica); aquesta classificació, però, actualment no es considera vàlida.

Es tracta de la vespa (espècie dins del gènere Vespa) més gran del món. Les obreres mesuren entre 3.5 i 4.0 cm, mentre que les reines solen mesurar al voltant de 5.0 o 6.0 cm, fins i tot més en alguns casos puntuals, i presentar una longitud d’ala a ala d’entre 3.5 i 7.5 cm; un monstre en comparació a les vespes asiàtiques (Vespa velutina), que mesuren d’entre 2.0 a 3.0 cm (3.5 cm les reines).

Vespa mandarinia Natural Museum of Natural Science Tokyo
Exemplar de Vespa mandarinia (esquerra) dipositada a l’exposició general del Museu Nacional d’Història Natural de Tokyo, Japó. Imatge de Irene Lobato Vila.

Al Japó, de fet, se les coneix com a オオスズメバチ (oosuzumebachi), el que pot traduir-se com “vespa pardal”.

Com les diferenciem d’altres espècies similars?

La vespa gegant asiàtica és fàcilment recognoscible, i es diferencia d’altres espècies dins del gènere Vespa, per la seva gran mida, presentar un cap completament groc-ataronjat molt fàcil de distingir fins i tot en moviment (el qual contrasta amb la resta del cos, de color més fosc), un clipi ben desenvolupat i una cara en visió frontal molt eixamplada pels costats.

Cara de Vespa mandarinia. Imatge modificada a partir de la original de Gary Alpert, CC 3.0.

A més a més, i a diferència de la vespa asiàtica (V. velutina), presenta les potes més fosques (grogues en V. velutina) i el metasoma o abdomen generalment amb ratlles groc-ataronjades i negres alternades (gairebé negre, amb el quart segment groc, en V. velutina).

Vespa mandarinia male
Vespa mandarinia. Imatge de Yasunori Koide, CC 4.0.
Vespa velutina
Vespa velutina. Imatge de Francis ITHURBURU, CC 3.0.

La vespa asiàtica gegant és molt semblant a la nostra vespa terrera, carnissera o xana (Vespa crabro), present a Europa i introduïda a Amèrica. Tanmateix, es diferencia fàcilment d’aquesta espècie pels trets mencionats anteriorment.

Comparisson Vespa
Vespa mandarinia (adalt), Vespa crabro (abaix a l’esquerra), Vespa vulgaris (abaix al centre) i Vespa germanica (abaix a la dreta). Imatge de @carim_nahaboo a picbear.org.

Al marge del gènere Vespa, tampoc l’hem de confondre amb Megascolia maculata, freqüent a Europa i Pròxim Orient i amb una mida d’entre 2 i 4 cm.

Megascolia maculata. Imatge de gailhampshire, CC 2.0.

Comportament i biologia

Nidificació

La vespa asiàtica gegant és una espècie eusocial (organisme colonial i jeràrquic, amb formes sexuals i asexuals que conviuen alhora i amb una forta cura parental) que nidifica principalment en muntanyes i boscos situats a poca alçada. A més a més, i a diferència de la resta d’espècies dins del gènere Vespa, V. mandarinia construeix els seus nius gairebé exclusivament en cavitats sota terra, rarament en edificis. Aquestes cavitats poden ser excavades per la pròpia vespa, procedir d’espais situats a prop d’arrels putrefactes o bé tractar-se de caus abandonats de rosegadors, serps o altres organismes.

En èpoques de reproducció i nidificació, V. mandarinia es presenta especialment agressiva i territorial, de manera que les obreres no dubtaran a atacar en cas de sentir-se amenaçades. El període de còpula d’aquesta espècie sol tenir lloc a la tardor, de manera que és en aquesta època quan, en cas d’endinsar-nos en territoris de nidificació, hem d’anar amb més cura (durant el nostre ascens al Misen, a l’illa d’Itsukushima (al sud d’Hiroshima), vam trobar una bona quantitat d’aquests vespes… i no semblaven pas gaire contentes de veure’ns allà).

Mount Misen
Camí d’ascens al Misen (Itsukushima, Japó), hàbitat de V. mandarinia. Imatge de Irene Lobato Vila.

Les obreres solen allunyar-se del niu entre 1 i 2 km, podent arribar fins i tot als 8 km. No dubtaran, doncs, en perseguir una possible amenaça diversos quilòmetres en cas de ser necessari.

Alimentació

Vespa mandarinia és molt voraç, més fins i tot que la seva parent V. velutina: s’alimenta d’altres insectes, entre els quals abelles mel·líferes. És, d’altra banda, una espècie dominant en els hàbitats en què es troba, de manera que gairebé no presenta amenaces (excepte el propi ésser humà) i actualment no es tem pel seu estat de conservació.

La seva voracitat és la que la converteix en una espècie especialment problemàtica per a l’apicultura, ja que una sola vespa pot acabar tranquil·lament amb 40 o 50 abelles en un minut. A més a més, és l’única vespa eusocial que realitza atacs grupals contra ruscs d’abelles i altres nius de vespes. Aquests atacs solen dividir-se en tres fases:

  • Fase de caça: obreres solitàries esperen fora del rusc o niu i capturen les preses al vol, les quals són portades per la vespa al seu niu per alimentar les seves pròpies larves. Fase de durabilitat indefinida.
  • Fase de “matança”: entre 2 i 50 vespes es reuneixen davant d’un rusc o niu prèviament marcat químicament per una obrera, i inicien una matança massiva d’abelles o vespes. A diferència de la fase anterior, en aquesta les vespes ignoren els cadàvers de les preses, que es van acumulant. Rarament es produeixen baixes en les files de les vespes, però si els atacs es perllonguen molt en el temps és possible que morin exhaustes o bé de fam.
  • Fase d’ocupació: les vespes passen a defensar el rusc o niu “conquerit”, del qual en capturen les larves per donar de menjar a la seva pròpia progènie i a la reina. Durant l’ocupació, les  vespes passen a ser molt territorials i agressives.

L’abella de la mel europea (Apis mellifera) ha estat àmpliament importada al Japó degut a què la seva espècie nativa (Apis cerana) no és tan productiva. Malauradament, l’abella de la mel europea es troba indefensa davant V. mandarinia en no haver desenvolupat cap sistema defensiu contra aquest voraç depredador, cosa que sí ha fet A. cerana.

Si no, mireu aquest vídeo, el qual ja vam comentar en aquest post:

Picada

Les femelles de V. mandarinia presenten un fibló d’entre 6 mm i 1 cm amb el qual poden injectar una gran quantitat de verí. I és precisament la quantitat injectada de verí i no tant la seva composició el que les fa especialment perilloses.

Anualment, entre 30 i 50 persones moren per picades d’aquesta espècie al Japó, convertint-se en l’organisme més mortífer d’aquest país seguit d’óssos i serps verinoses. Una sola picada pot requerir d’atenció mèdica primària o d’hospitalització, i fins i tot en persones no al·lèrgiques pot arribar a causar xocs anafilàctics si la dosi de verí injectada (resultat d’una única picada o per la suma d’unes quantes) és prou elevada.

Warning
Senyal per alertar sobre la presència de V. mandarinia a Enoshima (Kanagawa, Japó). Imatge de Irene Lobato-Vila.

Es troba actualment a Occident?

Vespa mandarinia NO es troba a Occident. Recentment es va confirmar la troballa d’un únic niu d’aquesta espècie a l’illa de Vancouver, Canadà, el qual va ser eradicat segons fonts del Ministeri d’Agricultura. Llevat d’aquest cas aïllat, avui dia no s’han registrat més albiraments de la vespa asiàtica gegant a Occident, de manera que totes les suposades cites d’aquesta espècie han estat fruit d’identificacions errònies.

Malgrat això, les administracions es troben en alerta, ja que de la mateixa manera que V. velutina es va introduir a Europa el 2004, també podria fer-ho V. mandarinia. A causa del seu potencial colonitzador i pel fet de constituir una amenaça greu per a les espècies autòctones i la producció apícola, aquesta espècie va ser inclosa en el Catàleg espanyol d’espècies exòtiques invasores tot i no trobar-se encara (i esperem que mai) a la Península Ibèrica.

.          .          .

Veurem algun cop V. mandarinia a Occident? Esperem que no…

Imatge de portada de Yasunori Koide, CC 3.0.

Animals que caminen per la paret: un repte a la gravetat

Com s’ho fan alguns insectes, aranyes o llangardaixos per caminar sobre parets llises o de cap per avall i no caure? ¿Per què, si fos real, l’Spiderman no podria enganxar-se a les parets com ho fan aquests animals?

Científics de diferents àrees encara busquen comprendre els mecanismes que fan servir alguns animals per caminar sobre aquest tipus de superfícies sense relliscar o precipitar-se. A continuació, t’expliquem què sap la comunitat científica sobre aquest fenomen.

Animals que caminen per la paret: un repte a la gravetat

La competència per l’espai i els recursos (nínxol ecològic) ha donat lloc a nombroses i increïbles adaptacions al llarg de l’evolució, com la miniaturització.

Quan una superfície és massa llisa, de manera que les ungles, les urpes o les forces de fricció resulten insuficients per a desplaçar-se sobre ella sense caure, entren en joc mecanismes d’adhesió dinàmica: aquells que permeten a l’animal desplaçar-se sobre superfícies verticals llises o de cap per avall enganxant-se i desenganxant-se ràpidament. L’aparició d’estructures adhesives dinàmiques ha permès a diversos animals explotar nous ambients, podent desplaçar-se per caçar o romandre immòbils el temps necessari per fugir dels seus depredadors allà on la majoria tan sols podria estar estable uns pocs segons.

Gecko sobre una superfície llisa. Imatge de Shutterstock/Papa Bravo.

El desenvolupament d’estructures adhesives dinàmiques en les extremitats és típic d’insectes i d’aranyes, d’alguns rèptils com els geckos i certes sargantanes, i d’amfibis com les granotes arborícoles. Puntualment, també s’ha observat en petits mamífers com ratpenats i pòssums, uns marsupials arborícoles procedents d’Austràlia i de certes regions del sud-est asiàtic.

El fet que grups tan diferents d’animals presentin una adaptació similar s’explica per un procés de convergència evolutiva: davant un mateix problema (competència per l’espai i els recursos, elevada pressió de depredació, etc.), l’evolució tendeix a solucions iguals o similars (estructures adhesives per accedir a altres espais).

Els límits de l’adaptació (o per què l’Spiderman no podria caminar per les parets)

Estudiar el mecanisme mitjançant el qual alguns animals caminen sobre superfícies verticals llises o invertides és clau per al desenvolupament industrial de noves i més potents substàncies adhesives. No és estrany, doncs, que hi hagi molts estudis al respecte.

Podrà l’ésser humà escalar parets com ho fa l’Spiderman algun dia? Labonte et al. (2016) ens explica per què l’Spiderman com a tal no podria existir. O, almenys, com hauria de ser realment per poder adherir-se a les parets com una aranya.

Podrà l’ésser humà escalar com l’Spiderman algun dia? De moment, ens conformem amb aquesta esculptura. Imatge de domini públic.

Sense entrar en les estratègies pròpies de cada organisme (de les quals parlarem després), el principi bàsic pel qual insectes, aranyes o geckos poden caminar sobre superfícies verticals llises o cap per avall és la seva relació superfície/volum: com més petit és l’animal, més gran és la superfície del seu cos respecte al seu volum i menor la quantitat de superfície adhesiva necessària per poder desplaçar-se sense caure a causa del pes. Així doncs, els geckos serien els animals coneguts amb la mida més gran (relació superfície/volum més petita) capaços de caminar sobre superfícies verticals llises o cap per avall sense patir modificacions anatòmiques que farien inviable el seu desenvolupament.

I què vol dir “sense patir modificacions anatòmiques”? Els mateixos autors expliquen que com més gran és l’animal, més gran és la superfície adhesiva necessària per desplaçar-se sense desprendre’s. El creixement de la superfície adhesiva respecte la mida de l’animal segueix un patró d’al·lometria positiva extrema: per un petit increment de la mida de l’animal, es produeix un augment significativament major de la superfície adhesiva. Segons aquest estudi, la superfície adherent respecte a la superfície total pot ser fins a 200 vegades més gran en geckos que en àcars.

Imatge de David Labonte

No obstant això, la mateixa al·lometria es regeix per una sèrie de constriccions (limitacions) anatòmiques. Així, per tal que existís un animal més gran que un gecko capaç de caminar sobre una superfície vertical llisa o invertida, aquest hauria de desenvolupar, per exemple, unes extremitats enormes amb una superfície adherent igualment gran. Si bé podria tenir sentit des d’un punt de vista físic, les constriccions anatòmiques fan inviable l’existència d’animals amb aquestes característiques.

Ara ja podem respondre la pregunta “Per què l’Spiderman no podria adherir-se a les parets?”. Segons aquest estudi, perquè un ésser humà pogués caminar per les parets com una aranya el seu cos hauria d’estar recobert almenys d’un 40% d’estructures adhesives (un 80% si comptem únicament la seva part frontal); o això, o tenir braços o cames absurdament grans i impossibles des d’un punt de vista anatòmic.

Gran diversitat d’estratègies

L’adhesió dinàmica ha de ser prou forta perquè l’animal no caigui estant quiet, però prou feble per poder desenganxar-sense problemes en fer un pas.

Per aconseguir-ho, hi ha diferents estratègies.

Diversitat d’estructures adhesivas. Imatge de David Labonte.

1) Adhesió humida

Hi intervè una substància líquida.

Insectes

Els insectes presenten dos sistemes:

Potes amb coixinets llisos: el trobem, per exemple, en formigues, abelles, paneroles i saltamartins. L’últim segment de les seves potes (pretars), les ungles o les tíbies presenten un o diversos coixinets extremadament tous i deformables (com els arolis al pretars). A petita escala, cap superfície és totalment llisa, de manera que aquests coixinets es deformen fins a ocupar tots els seus espais disponibles.

Tars (part final de les potes dels insectes) d’una panerola. Imatge adaptada a partir de la original de Clemente & Federle, 2008.

Potes amb coixinets peluts: el trobem en escarabats i mosques, entre d’altres. Els coixinets d’aquests insectes estan densament coberts de petites estructures similars a pèls, les setes, gràcies a les quals el contacte amb la superfície augmenta.

Peu d’un escarabat de la família Chrysomelidae. Imatge de Stanislav Gorb et al.

En ambdós casos, intervé un líquid amb una fase hidrofòbica i una altra hidrofílica. Estudis amb formigues han demostrat que les terminacions de les seves potes secreten una fina capa de líquid que incrementa el contacte entre el pretars i la superfície sobre la que caminen, omplint els buits restants i actuant com un adhesiu sota els principis de capil·laritat (tensió superficial) i viscositat.

Si voleu conèixer més a fons aquest mecanisme, no us perdeu aquest increïble vídeo sobre les formigues!:

Granotes arborícoles

Els coixinets dels dits de les granotes arborícoles estan compostos de cèl·lules epitelials columnars separades entre si. Entre elles, nombroses glàndules hi aboquen una substància mucosa. La separació de les cèl·lules permet, d’una banda, que els coixinets es deformin per adaptar-se al terreny i, per altra, que la mucositat circuli entre elles i asseguri l’adhesió. A més a més, en ambients humits (moltes d’aquestes granotes viuen en selves), aquests espais faciliten l’eliminació de l’excés d’aigua que les faria relliscar.

Granota verda d’ulls vermells (Agalychnis callidryas). Fixa’t en els extrems dels dits. Imatge de domini públic.

En el següent vídeo, pots apreciar amb més detall les potes d’una de les granotes arborícoles més conegudes:

Les granotes arborícoles presenten un sistema similar al de coixinets llisos dels insectes. De fet, a molts augments les microestructures adhesives en grills i granotes són pràcticament idèntiques. Això va dur Barnes (2007) a considerar l’adhesió humida com una de les més exitoses.

Diferents granotes (a, b, c) i els seus respectius epitelis (d, e, f). La figura g correspon a la superfície dels coixinets d’un grill. Imatge de Barnes (2007).

Pòssums

Els estudis més detallats s’han realitzat sobre el pòssum pigmeu acròbata (Acrobates pygmaeus), un petit marsupial de la mida d’un ratolí capaç d’escalar superfícies de vidre fent servir els grans coixinets dels palmells de les seves potes. Aquests coixinets estan compostos de múltiples capes de cèl·lules epitelials esquamoses separades per solcs que en faciliten la deformació i pels quals hi circula la suor, que és el líquid que fan servir per adherir-se.

00530622
Acrobates pygmaeus. Imatge de Roland Seitre.
pygmffoot
Palmell del primer parell de potes d’Acrobates pygmaeus. Imatge de Simon Hinkley i Ken Walker.

2) Adhesió seca

No intervenen líquids.

Aranyes i geckos

Tant les aranyes com els geckos es regeixen pel mateix principi d’adhesió: les forces de Van de Waals. A diferència d’insectes, granotes i pòssums, no segreguen líquids adhesius.

Les forces de Van der Waals resulten de la interacció entre molècules o àtoms sense que hi hagi un enllaç químic entre ells, i la seva energia depèn de la distància. Aquestes interaccions apareixen entre els “pèls” o setes dels palmells de les potes dels geckos (les quals estan solcades per plecs, les lamel·les) i les setes de les potes de les aranyes (que estan cobertes de moltes pilositats formant les escòpules), i la superfície sobre la qual caminen.

Pota d’una aranya plena de setes. Imatge de Michael Pankratz.
Diversitat de potes de geckos. Imatge de Kellar Autumn.

Estudis recents, però, suggereixen que les interaccions de Van der Waals no serien les grans determinants de l’adhesió en els geckos, sinó les interaccions electrostàtiques (diferent polaritat entre les setes i la superfície), després de comprovar que la seva capacitat adhesiva minvava sobre materials menys energètics, com el tefló.

Sigui com sigui, l’habilitat dels geckos per enfilar-se és impressionant. Si no, mira aquest vídeo del gran David Attenborough:

3) Succió

Ratpenats

Els ratpenats de ventoses (família Thyropteridae), originaris de l’Amèrica Central i del Sud, presenten unes ventoses en forma de disc als seus polzes i al palmell del segon parell de potes que els permeten desplaçar-se sobre superfícies llises. A l’interior d’aquests discos, la pressió es redueix i el ratpenat queda adherit per succió. De fet, un sol disc pot suportar el pes de tot l’animal.

Ratpenat de la família Thyropteridae. Imatge de Christian Ziegler/ Minden Pictures.

Després de conèxier totes aquestes estratègies, creus que l’Spiderman n’està a l’alçada?

Imatge de portada d’autor desconegut. Font: link.

Insectes cada cop més petits: el fenòmen de la miniaturització

Segons alguns estudis, els organismes multicel·lulars tendeixen a fer-se cada vegada més petits. Aquest procés, conegut com miniaturització, és una de les principals tendències evolutives dels insectes. La miniaturització és un motor per a la diversitat i les innovacions evolutives; tanmateix, també dóna lloc a certes limitacions.

T’expliquem en què consisteix aquest fenomen i et presentem alguns dels casos més extrems de miniaturització entre els insectes.

Per què els animals són cada cop més petits?

Des de fa anys, múltiples estudis apunten que entre els animals multicel·lulars (tots aquells formats per més d’una cèl·lula) hi ha una tendència força estesa a la miniaturització.

La miniaturització és el procés evolutiu encaminat a l’adquisició de cossos extremadament petits. El fenomen de la miniaturització s’ha observat en grups animals molt diversos, per exemple:

  • Musaranyes (Soricomorpha: Soricidae), mamífers.
  • Colibrís (Apodiformes: Trochilidae), aus.
  • Diversos grups d’insectes i d’aràcnids.

Per saber més sobre insectes gegants, pots llegir “La mida sí que importa (pels insectes)!

Al llarg de l’evolució, la diversificació i els fenòmens d’especiació han donat lloc a moltíssimes noves espècies, totes competint per un espai i uns nínxols ecològics cada vegada més limitats. Aquesta situació és encara més extrema en les regions tropicals, on les taxes de diversificació són increïblement altes.

Aprèn més sobre el concepte de nínxol ecològic llegint “L’espai vital dels éssers vius“.

Davant d’una necessitat creixent de recursos i espai, l’evolució ha donat lloc a fenòmens tan curiosos com la miniaturització: fent-se més petits, els organismes (ja siguin de vida lliure o paràsits) poden accedir a nous nínxols ecològics, adquirir noves fonts d’aliment i evitar la depredació.

Si bé existeixen diversos grups d’animals que tendeixen a la miniaturització, aquest fenomen es manifesta en major proporció entre els artròpodes, sent una de les seves tendències evolutives més significatives. D’altra banda, els artròpodes ostenten el rècord a presentar alguns dels animals multicel·lulars més petits coneguts fins a dia d’avui; alguns, fins i tot tan petits com … una ameba!

El Rècord Guinness dels insectes més petits del món

Els artròpodes més petits pertanyen a la subclasse de crustacis Tantulocarida, coneguts per ser ectoparàsits d’altres crustacis de major mida, com copèpodes o amfípodes. L’espècie Tantulacus dieteri és considerada fins a dia d’avui l’espècie d’artròpode més petita del món, amb només 85 micròmetres (0,085 mil·límetres), molt més petit que alguns éssers unicel·lulars.

Tanmateix, els insectes no es queden enrere.

Mymaridae

Els mimàrids són una família de vespes de la superfamília Chalcidoidea pròpies de regions temperades i tropicals. Els adults, usualment de 0,5 a 1 mil·límetre de longitud, viuen com a paràsits d’ous d’altres insectes (p. ex. xinxes). Com a conseqüència del seu estil de vida, se’ls considera de gran importància en el control biològic de plagues. A més a més, es troben entre els insectes més petits del món.

Actualment, el rècord als insectes més petits del món l’ostenten els mascles adults àpters (sense ales) de l’espècie de mimàrid Dicopomorpha echmepterygis, de Costa Rica, amb una mida mínima registrada de 0,139 mil·límetres. A banda de no presentar ales, tampoc tenen ulls ni peces bucals, i les seves potes acaben en una mena de ventoses que els permeten adherir-se a les femelles (més grans i alades) el temps suficient per fecundar-les. Són més petits que un parameci, un organisme unicel·lular!

Pots llegir “Microbiologia bàsica (I): el món invisible” per saber més sobre organismes unicel·lulars.

Mascle de D. echmepterygis; sense ulls ni peces bucals, el mascle d’aquesta espècie viu adherit a la femella. Link.

Els mimàrids també inclouen l’insecte volador més petit del món: l’espècie Kikiki huna de Hawaii, d’una mida aproximada de 0,15 mil·límetres.

Trichogrammatidae

Igual que els mimàrids, els tricogrammàtids són petits calcidoïdeus paràsits d’ous d’altres insectes, especialment de lepidòpters (papallones i arnes). Els adults de la majoria de les espècies mesuren menys d’1 mil·límetre i es distribueixen mundialment. Els mascles d’algunes espècies són àpters i s’aparellen amb les seves germanes dins dels ous parasitats on neixen, morint poc després sense ni tan sols abandonar aquest espai.

El gènere Megaphragma conté dos dels insectes més petits del món després dels mimàrids: Megaphragma caribea (0,17 mil·límetres) i Megaphragma mymaripenne (0,2 mil·límetres), de Hawaii.

A) M. mymaripenne; B) Paramecium caudatum. Link.

Els tricogrammàtids presenten un dels sistemes nerviosos més petits coneguts, i el de l’espècie M. mymaripenne és, fins a dia d’avui, un dels més reduïts i especials del món animal: està format per tan sols 7400 neurones sense nucli, un fet únic. Durant la fase de pupa, aquesta espècie desenvolupa neurones amb nuclis plenament funcionals que sintetitzen proteïnes suficients per a tota l’etapa adulta de l’insecte. Un cop assolida l’adultesa, les neurones perden el nucli i esdevenen petites, fet que estalvia molt d’espai.

Ptiliidae

Els ptílids són una família cosmopolita de petits escarabats caracteritzada per incloure els insectes no paràsits més petits del món, pertanyents als gèneres Nanosella i Scydosella.

Els ous dels ptílids són molt grans en comparació amb la mida de les femelles adultes, de manera que aquestes només desenvolupen i posen un únic ou cada vegada. D’altra banda, moltes espècies experimenten partenogènesi.

Coneix el fenomen de la partenogènesi llegint “Immaculada Concepció … en rèptils i insectes“.

Actualment, l’espècie d’escarabat més petita coneguda i, per tant, l’espècie d’insecte no paràsit (de vida lliure) més petita del món, és Scydosella musawasensis (0,3 mil·límetres), citada de Nicaragua i Colòmbia.

Scydosella musawasensis. Link (imatge original: Polilov, A (2015) How small is the smallest? New record and remeasuring of Scydosella musawasensis Hall, 1999 (Coleoptera, Ptiliidae), the smallest known free-living insect).

Conseqüències de la miniaturització

La miniaturització comporta tot un seguit de modificacions anatòmiques i fisiològiques, generalment adreçades a la simplificació d’estructures. Segons Gorodkov (1984), el límit de la miniaturització es trobava en 1 mil·límetre, per sota del qual es produirien grans simplificacions que farien inviable la vida multicel·lular.

Si bé aquesta simplificació ocorre en certs grups d’invertebrats, els insectes han demostrat que poden superar aquest llindar sense massa signes de simplificació (conservant un gran número de cèl·lules i presentant una major complexitat anatòmica que altres organismes de mida similar) i, fins i tot, donar lloc a estructures noves (com el cas de les neurones sense nucli de M. mymaripenne).

Tot i que els insectes porten molt bé això de la miniaturització, fer-se tan petit no sempre surt gratis:

  • Simplificació o pèrdua de certes funcions fisiològiques: pèrdua d’ales (i, conseqüentment, de la capacitat de vol), potes (o modificacions extremes de les mateixes), peces bucals, òrgans sensorials.
  • Canvis considerables en els efectes associats a certes forces físiques o a paràmetres ambientals: forces capil·lars, viscositat de l’aire o taxa de difusió, tots ells associats a la reducció extrema dels sistemes circulatori i traqueal (o respiratori). És a dir, ser més petit altera els moviments interns de gasos i líquids.

Així doncs, la miniaturització té un límit?

La resposta és . Tot i que els insectes s’hi resisteixen.

Existeixen diverses hipòtesis sobre aquest tema, cadascuna amb un òrgan diferent com a element limitant. De tots ells, el sistema nerviós i el reproductiu, a més dels òrgans sensorials, són força intolerants a la miniaturització; han de ser prou grans perquè siguin funcionals. Per sota d’una mida crítica, les seves funcions es veurien compromeses i, amb elles, la vida multicel·lular.

.             .            .

La vida animal multicel·lular sembla no tenir fre a l’hora de reduir-se. Descobrirem algun insecte encara més petit? Les investigacions i el temps ens ho diran.

Imatge de portada: link.

Coneix la vespa asiàtica o “vespa assassina” en 5 punts

En els darrers anys, els informes sobre espècies exòtiques invasores a la Península Ibèrica han augmentat de forma alarmant. Un dels casos més recents és el de vespa asiàtica, també coneguda com la “vespa assassina”, la qual es troba ben establerta en gairebé tot el nord de la península i la presència de la qual a la ciutat de Barcelona va ser confirmada fa pocs dies.

Què en sabem, sobre aquesta espècie? Per què rep el sobrenom d'”assassina”?

1. Quin és el seu origen i com va arribar fins aquí?

La vespa asiàtica (Vespa velutina) és una vespa social originària del sud-est asiàtic. La seva presència a Europa va ser notificada per primera cop l’any 2004 al sud-oest de França, país en el qual es troba àmpliament estesa actualment. Segons la majoria de fonts, és molt probable que la seva entrada al país tingués lloc de forma accidental mitjançant un vaixell de càrrega procedent de la Xina, en el qual haurien arribat vespes reines hivernants.

Les associacions d’apicultors de Guipúscoa van confirmar la seva arribada a la Península Ibèrica a través dels Pirineus l’any 2010. I així va començar el periple d’aquesta espècie pel nord de la península: va ser detectada a Galícia l’any 2011, al nord de Catalunya i algunes zones aïllades d’Aragó el 2012, en zones molt concretes de la Rioja ia Cantàbria el 2014 ia Mallorca, el 2015.

Mapa dinàmic de José Luis Ordóñez – CREAF (Centre de Recerca Ecològica i Aplicacions Forestals, Catalunya)

Paral·lelament, la vespa asiàtica va anar estenent-se per Itàlia, Portugal, Alemanya, Bèlgica, Suïssa i, puntualment, el Regne Unit. La seva presència al Japó i Corea, on també és invasora, ja havia estat confirmada anys enrere.

Va ser detectada per primer cop a Catalunya a les comarques situades més al nord-est de la comunitat, concretament a l’Alt Empordà, i l’any 2015 ja se n’havien detectat gairebé 100 nius en tota la seva franja nord. Actualment, la vespa asiàtica es troba ben estesa per les comarques de les províncies de Girona i, en els últims anys, de Barcelona.

El 13 de juliol d’aquest mateix any (2018), va ser corroborada per la Generalitat de Catalunya la presència del primer niu d’aquesta espècie detectat en ple centre de la ciutat de Barcelona, prop de l’edifici històric de la Universitat de Barcelona; prèviament, també s’havien detectat nius al Vallès Oriental i al Baix Llobregat.

2. Com la identifiquem?

Es tracta de vespes d’entre 2-3,5 cm. Reines i obreres presenten un aspecte idèntic excepte per la grandària, sent les obreres una mica més petites que les reines.

La vespa asiàtica es caracteritza pels següents trets:

  • Tòrax totalment negre.
  • Abdomen principalment fosc, excepte pel 4t segment, que és sobretot groc.
  • Meitat anterior de les potes, negra, i meitat posterior, groga.
  • Part superior del cap, fosca; cara groc-rogenca.
Imatge dorsal i ventral de Vespa velutina. Imatge de Didier Descouens, Muséum de Toulouse, CC 3.0.

Si sospites que pugui tractar-se d’una vespa asiàtica i vols avisar les autoritats, primer has d’assegurar-te que compleix totes aquestes característiques. Això és especialment important de cara a preservar espècies autòctones amb les que la vespa asiàtica és fàcilment confusible, com la vespa terrera (Vespa crabro), entre d’altres.

Vespa crabro. Imatge de Ernie, CC 3.0.

3. I per què assassina?

La vespa asiàtica no és ni més perillosa, ni més verinosa ni més agressiva que altres vespes europees. Així doncs, per què se la coneix com la “vespa assassina”?

Aquesta espècie caça principalment abelles mel·líferes com a aliment per les seves larves, les quals poden arribar a configurar més del 80% de la seva dieta; el percentatge restant estaria compost d’altres insectes. Les vespes adultes se situen en les entrades de les arnes i cacen les abelles que queden exposades, fins i tot al vol. Una sola vespa pot capturar entre 25 i 50 abelles per dia, a les que habitualment esquarteren per quedar-se únicament amb el seu tòrax, que és la part més nutritiva; és per això pel que també se les sol denominar “vespes carnisseres“, igual que a les seves parents europees.

A Àsia, algunes abelles colonials han desenvolupat mecanismes defensius sorprenents per deslliurar-se dels seus depredadors: entre ells, la formació d’eixams al voltant de la vespa per causar-li un xoc tèrmic mitjançant vibracions.

En aquest vídeo, pots veure com funciona aquest mecanisme (cas d’abelles japoneses i vespa japonesa):

A Europa, en canvi, aquests mecanismes defensius no han estat citats o bé utilitzen altres que no són tan efectius contra la vespa asiàtica com sí ho són contra la vespa terrera, la qual és menys voraç que el seu parent asiàtic i els seus nius, més petits. A més a més, la inexistència de depredadors naturals que regulin les poblacions de la vespa asiàtica a Europa fa més fàcil la seva expansió.

Durant anys, diferents associacions d’apicultors i científics europeus han denunciat aquesta situació, ja que les pèrdues econòmiques (producció de mel, cultius, etc.), ecològiques i ambientals (pèrdua de biodiversitat d’insectes i plantes) a causa de la mort de les abelles han estat enormes.

4. Com són els seus nius i què he de fer si en veig un?

Els nius de la vespa asiàtica solen localitzar-se en arbres a gran alçada (a diferència del vespa terrera, que mai els construeix en les capçades), encara que també se n’han trobat alguns en edificis de zones poc pertorbades i, rares vegades, a terra. Es tracta de nius esfèrics o amb forma de pera amb un creixement continu al llarg de l’any, un únic orifici d’entrada i sortida en el seu terç superior des del qual no s’aprecien les cel·les internes (amb un orifici inferior des del qual s’aprecien les cel·les internes en els de vespa terrera), i que poden assolir fins a 1 m d’alçada i 80 cm de diàmetre. Estan construïts amb un material similar al paper maixé que les vespes fabriquen barrejant fibres de fusta o fulles mastegades i saliva.

Niu de vespa asiàtica. Imatge de Fredciel, CC 3.0.

En cas de detectar un niu, primer de tot es recomana precaució i no precipitar-se en les conclusions: no t’acostis massa (una distància mínima de 5 m), estudia la forma del niu i observa si hi ha individus sobrevolant-lo. Si trobes algun exemplar mort (sempre sense acostar-te al niu!), pots mirar d’identificar-lo. En qualsevol cas, el més recomanable és ser prudent i trucar al servei de control de plagues de l’ajuntament del teu municipi o al 112 perquè vinguin a retirar-lo.

5. Existeixen mètodos de prevenció i control?

Actualment, els mètodes de prevenció i control proposats són, en essència, els següents:

  • Protocols per a una detecció de nius més eficient.
  • Detecció precoç de la vespa mitjançant la col·locació de trampes.
  • Xarxa eficaç per comunicar la presència de la vespa entre comunitats.
  • Destrucció de nius.
  • Captura de reines.
  • Millorar el tractament de l’hàbitat per limitar l’assentament de la vespa i per millorar els espais per a l’assentament d’abelles autòctones.
  • Estudis per introduir possibles enemics naturals.

En el següent enllaç pots descarregar-te el PDF elaborat pel Gobierno (2014) en el qual es detallen aquestes estratègies i més dades sobre la biologia d’aquesta espècie.

En els casos d’espècies invasores, també és essencial la participació ciutadana. És el cas d’algunes associacions d’apicultors, com l’associació Gallega d’Apicultura (AGA) i la seva campanya Stop Vespa velutina, que realitzen xerrades divulgatives sobre aquesta espècie i col·loquen trampes per controlar les seves poblacions; o els estudiants de la Universitat de les Illes Balears, que han desenvolupat una aplicació mòbil para controlar la seva expansió.

.          .          .

Encara que poc a poc es va tenint més coneixement sobre aquesta espècie, encara queda molta feina per fer. Veurem com evolucionen les seves poblacions en els propers anys.

Imatge de portada de Danel Solabarrieta a Flickr, CC 2.0.

Els insectes senten a través de les antenes

Els insectes perceben el seu entorn a través de diferents òrgans; entre ells, les antenes. N’hi ha de diferents formes i mides, i cada grup en presenta uns determinats models (alguns amb formes realment sorprenents). Us convidem a conèixer el seu origen, funcions i diversitat a través d’aquest article.

L’origen de les antenes

Les antenes són apèndixs parells amb funció sensorial situats a la part anterior del cos dels artròpodes. A excepció dels quelicerats (aranyes, escorpins …) i dels proturs (grup dins dels hexàpodes no-insectes), tots els artròpodes, ja siguin crustacis, hexàpodes (diplurs, col·lèmbols i insectes), miriàpodes (centpeus, milpeus) i els extints trilòbits, presenten antenes en la seva fase adulta.

En els crustacis, les antenes apareixen en els dos primers segments del cap: un primer parell, conegudes com antenes primàries o antènules, i un segon parell més llargues conegudes com antenes secundàries o simplement antenes. En general, les antenes secundàries són birràmies (es divideixen en dues branques principals), encara que alguns grups de crustacis han patit modificacions i les tenen unirràmies (una sola branca) o reduïdes.

Tipus d’antenes en els crustacis. Imatge extreta de Wikipedia (link).

En canvi, la resta d’artròpodes tan sols presenta un parell d’antenes unirràmies. Els hexàpodes (com els insectes), els quals estarien emparentats amb els crustacis formant el grup dels pancrustacis segons recolzen diversos estudis moleculars, només haurien conservat el parell secundari d’antenes propi dels crustacis.

Segons alguns autors, les antenes són veritables apèndixs; és a dir, es formarien durant el desenvolupament embrionari a partir d’un segment corporal d’igual manera que les potes. Tanmateix, aquest segment situat al cap hauria evolucionat fins a quedar reduït i desplaçat, essent ara indetectable. A més a més, i d’igual forma que les potes, les antenes també poden regenerar-se.

Com senten els insectes a través de les antenes?

Què vol dir exactament aquest títol?

Microscòpicament parlant, les antenes estan cobertes de petits pèls anomenats sensil·les, les quals no tenen res a veure amb els pèl que cobreixen el cos dels mamífers atès que es componen de quitina (i no de queratina) d’igual manera que la resta del cos de l’insecte.

Imatge de dalt: antena sota microscopi electrònic. Imatge de baix: detall dels diferents tipus de sensil·les. Ambdues imatges extretes de cronodon.com.

Malgrat que a primer cop d’ull puguin semblar idèntiques, existeixen diferents tipus de sensil·les: les quimioreceptores presenten un canal al seu interior a través del qual capten molècules que es troben en suspensió (olor, gust, i fins i tot feromones), mentre que les mecanoreceptores són retràctils i s’enfonsen davant qualsevol contacte o fregament (xocar amb un obstacle, vent, etc.) o en canviar de posició respecte al terra (en aquest cas, reben el nom de propioceptors).

És a dir, els insectes assaboreixen, oloren, senten el tacte i es comuniquen en part a través de les antenes, fet que els permet obtenir informació sobre fonts d’aliment, potencials parelles (feromones), enemics, substàncies perilloses (per exemple, una planta tòxica), llocs on niar o rutes migratòries (com en el cas de la papallona monarca, la qual obté molta informació sobre la ruta a seguir a través de les antenes). Altres òrgans, com les potes, els palps i fins i tot de vegades l’ovopositor (òrgan per dipositar els ous), també contenen cèl·lules sensorials.

A l’interior i a la base d’aquestes sensilas, hi ha neurones sensorials que connecten amb el cervell; concretament, amb una part coneguda com deutocervell. En el cas de les sensil·les quimioreceptores, les molècules s’uneixen a uns receptors específics que envien senyals nerviosos a través d’aquestes neurones al centre cerebral encarregat de processar aquesta informació: el lòbul antenal. Aquest lòbul seria similar al bulb olfactori dels vertebrats.

Tipus d’antenes en els hexàpodes

A excepció dels proturs, que no presenten antenes, els diplurs, els col·lèmbols i els insectes (hexàpodes) tenen diferents tipus d’antenes. Aquestes es divideixen en dos grups:

  • Antenes de tipus segmentat: col·lèmbols i diplurs. Cada segment de l’antena presenta un joc muscular que el mou de forma independent.
  • Antenes de tipus anellat o flagel·lat: insectes. Únicament el primer segment situat a la base en unió amb el cap (l’escap) presenta musculatura pròpia, de manera que el moviment de tota l’antena depèn completament d’aquesta peça.

Parts de les antenes dels insectes

Els tres elements bàsics que formen les antenes dels insectes són:

Antena d’una vespa inquilina del gènere Synergus (Hymenoptera). Imatge de Irene Lobato.

1) Escap: segment basal que s’articula amb el cap i l’únic amb musculatura pròpia. L’espai al cap on s’articula l’escap rep el nom de torulus.

2) Pedicel: segon segment antenal després de l’escap. Aquest segment és de vital importància en els insectes atès que en el seu interior es localitza l’òrgan de Johnston, un conjunt de cèl·lules sensorials. Aquest òrgan és absent en els hexàpodes no-insectes (col·lèmbols, diplurs).

3) Flagel: conjunt de la resta de segments que formen l’antena, i que individualment reben el nom de flagelòmers. Aquests flagelòmers estan connectats per membranes que permeten el seu moviment tot i no tenir musculatura pròpia.

Mil i una formes d’antenes!

A partir d’aquest patró base (escap + pedicel + flagel), cada grup d’insectes ha desenvolupat una o més formes d’antenes en funció de la seva forma de vida:

  • Aristades

Antenes molt reduïdes en forma de sac i una aresta plomosa que neix del seu segment terminal.

Exemple: model molt estès entre les mosques (Diptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: imatge d’una mosca de la família Sarcophagidae de JJ Harrison, CC 1.0.
  • Aserrades

Cada segment presenta un lateral angulós o punxegut que dóna a l’antena un aspecte de serra.

Exemple: alguns escarabats (Coleoptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: imatge d’un escarabat de la família Chrysomelidae de John Flannery, CC 2.0.
  • Capitades

Les antenes capitades s’eixamplen abruptament en el seu extrem.

Exemple: papallones (Lepidoptera), alguns escarabats (Coleoptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; centre: imatge d’un escarabat de l’espècie Platysoma moluccanum de Udo Schmidt, CC 2.0; esquerra: papallona, domini públic.
  • Claviformes

A diferència de les anteriors, les antenes claviformes es fan progressivament més gruixudes en el seu extrem.

Exemple: arnes (Lepidoptera), escarabats enterradors (coleòpters carronyers de la família Silphidae).

Esquerra: imatge de M. A. Broussard, CC 4.0; esquerra: escarabat de l’espècie Thanatophilus sinuatus (Silphidae) de Wim Rubers, CC 3.0.
  • Estilades

Similar a les antenes filiformes (veure més a baix), però amb la diferència que els segments terminals s’estrenyen sobtadament en forma de fil, el qual pot alhora tenir setes (pèls) o no.

Exemple: mosques braquíceres (Diptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: imatge d’un dípter braquícer de la família Asilidae de Opoterser, CC 3.0.
  • Filiformes

És la forma més simple d’antenes: allargades, primes i amb segments de mida i forma pràcticament idèntiques.

Exemple: paneroles (Blattodea), llagostes i grills (Orthoptera), escarabats longicornes (Cerambycidae, Coleoptera), xinxes (Heteroptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: panerola de l’espècie Periplaneta americana de Gary Alpert, CC 3.0.
  • Flabelades

D’aspecte similar a les antenes pectinades i a les lamelades (veure més endavant), però amb la diferència que les projeccions laterals dels segments són molt més fines i aplanades, amb un aspecte similar a un ventall de paper, i ocupen tota l’antena (no només els últims segments com en les lamelades). Els mascles presenten aquest tipus d’antenes per augmentar la superfície que capta feromones.

Exemple: escarabats (Coleoptera), vespes (Hymenoptera) i arnes (Lepidoptera).

Mascle de coleòpter del gènere Rhipicera. Imatge de Jean and Fred, CC 2.0.
  • Geniculades

Presenten una articulació, fet que dóna a l’antena un aspecte de genoll. El primer segment antenal (escap) sol estar abans de l’articulació, després de la qual vindrien la resta de segments que, en aquest cas, reben en conjunt el nom de funicle.

Exemple: algunes abelles i vespes, molt marcat en parasitoides (Hymenoptera), escarabats curculiònids (Curculionidae, Coleoptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: imatge d’una vespa parasitoide de l’espècie Trissolcus mitsukurii, domini públic.
  • Lamelades

Els segments terminals s’allarguen cap a un dels laterals formant unes projeccions aplanades que encaixen les unes amb les altres, el que dóna a aquestes antenes un aspecte de ventall.

Exemple: escarabats de la família Scarabaeidae (Coleoptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; imatge d’un coleòpter de la família Scarabeidae, domini públic.
  • Moniliformes

A diferència de les antenes filiformes, els segments antenals són més o menys rodons i de mida similar, el que dóna a l’antena un aspecte de collaret de perles.

Exemple: tèrmits (Isoptera), alguns escarabats (Coleoptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: imatge d’un tèrmit de Sanjay Acharya, CC 4.0.
  • Pectinades

Els segments són allargats en un lateral, fet que dóna a l’antena un aspecte de pinta.

Exemple: sínfits (Hymenoptera), vespes parasitoides (Hymenoptera), alguns escarabats (Coleoptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: imatgen d’un coleòpter de la família Lycidae de John Flannery, CC 2.0.
  • Plomoses

Com el seu nom indica, aquestes antenes semblen plomes, doncs els segments presenten ramificacions fines. En augmentar la superfície antenal, augmenta la capacitat per detectar molècules en suspensió, com és el cas de les feromones.

Exemple: mascles de mosquit (Diptera) i d’arna (Lepidoptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: mascle d’arna del gènere Polyphemus de Megan McCarty, CC 3.0.
  • Setiformes

Aquestes antenes tenen forma de setes, sent allargades i més estretes cap al seu extrem. Similars a les filiformes, però més fines.

Exemple: efemeròpters (Ephemeroptera), espiadimonis i cavallets del diable (Odonata).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: imatge d’un espiadimoni, domini públic.

Pots llegir més sobre elles en aquest i aquest enllaç, o veure la galeria de fotografies d’antenes de John Flannery.

Imatge de portada de Jean and Fred, CC 2.0.

.         .         .

Si coneixes més tipus d’antenes o alguna curiositat sobre les seves funcions, no dubtis a deixar un comentari!

Què passaria en un món sense abelles?

En els darrers anys, la idea d’un món sense abelles ha transcendit nombroses esferes socials; així, el que abans preocupava únicament els científics ha passat a ocupar un lloc de rellevància entre els temes d’actualitat. Tant és així, que a finals del 2017 la Unió Europea va decidir intervenir per tal d’evitar aquest tràgic desenllaç.

Per què seria problemàtic que desapareguessin les abelles? I quines mesures ha pres la Unió Europea envers aquesta problemàtica?

Sobre el DDT i Rachel Carson

L’ús de pesticides ha format part de les pràctiques agrícoles des de fa milers d’anys. Inicialment, era comú l’ús de substàncies orgàniques i inorgàniques sense adulterar, com els compostos de sulfurs, mercuri o arsènic. Tanmateix, la seva elevada toxicitat els va dur al desús. A mitjans del segle XX, concretament en la dècada de 1950, es disparà l’aplicació de pesticides sintètics, essent el DDT la màxima expressió de l’ús indiscriminat d’un insecticida fins a dia d’avui. Donada la seva acció generalista i la seva suposada baixa toxicitat directa en plantes i mamífers, es feia servir en tot tipus d’àmbits: per eliminar els insectes a la llar, fumigar jardins o controlar plagues agrícoles.

Adalt, portada d’un tríptic sobre el DDT publicat l’any 1947 pel Departament d’Agricultura dels EUA (font). A sota, nens en una piscina ruixats amb DDT com a estratègia per combatre la pòlio, la qual es creia que era trasmessa per un mosquit (font).

El DDT resultava molt efectiu envers insectes vectors de malalties mortals com la malària, la febre groga o el tifus, fet que el va convertir en un membre més de la família.

L’ús indiscriminat d’aquest i d’altres pesticides, però, va començar a generar problemes greus de salut en humans i en el medi ambient, ja que molts d’ells es bioacumulaven i contaminaven el sòl, les plantes i les seves llavors, i impactaven finalment a nivells superiors de les xarxes tròfiques (mamífers, aus, peixos, etc.). L’ús indiscriminat de pesticides i les seves terribles conseqüències van ser denunciats per Rachel Carson en la seva publicació “Silent Spring” (Primavera Silenciosa), distribuïda l’any 1962.

Silent Spring, de Rachel Carson (font).

Des de Carson als neonicotinoides

Des què Rachel Carson denunciés l’ús abusiu de pesticides, el món ha presenciat el naixement de noves substàncies per combatre les plagues agrícoles. Des d’aleshores, el rumb de les investigacions ha estat obtenir productes menys tòxics i més selectius per tal de minimitzar els impactes sobre la salut humana i ambiental. Podríem dir que ha estat un èxit?

Sí … i no. Si bé el seu ús va deixar de ser tan indiscriminat i s’apostava per l’ús de productes més selectius, encara hi havia alguns fronts oberts. Fronts que seguirien presents fins a l’actualitat.

Entre 1980 i 1990, les empreses Shell i Bayer van començar a treballar en la síntesi d’un nou assortit de pesticides per donar solució a les resistències que els insectes havien generat a certes substàncies emprades fins al moment: els neonicotinoides. Els neonicotinoides són una família d’insecticides amb una estructura molecular similar a la nicotina que actuen directament sobre el sistema nerviós central dels insectes, revolucionaris per la seva elevada especificitat sobre aquests organismes i la seva baixa toxicitat en mamífers i aus en comparació als seus predecessors més famosos (organoclorats, com el DDT, i carbamats). El neonicotinoide més usat a nivell mundial és l’imidacloprid, sent a més a més un dels pesticides més emprats actualment.

Tanmateix, més enllà de fer-se famosos per la seva efectivitat, els neonicotinoides van començar a aixecar polseguera per la seva suposada relació amb la desaparició de les abelles.

Com afecten aquests pesticides a les abelles?

Des de fa ja alguns anys (aprox. 2006 fins a l’actualitat) que els neonicotinoides es troben en el punt de mira dels científics en tractar-se d’uns dels principals sospitosos de la desaparició de les abelles. No obstant això, no ha estat fins a l’actualitat que s’ha  reconegut un fet que la comunitat científica portava denunciant des de fa anys: que els neonicotinoides causen un impacte major del que es creia.

Abelles mortes davant d’un rusc. Imatge de domini públic.

A diferència d’altres pesticides que romanen en la superfície de les plantes, diversos estudis afirmen que els neonicotinoides són assimilats pels seus teixits, acumulant-se en arrels, fulles, flors, pol·len i nèctar; d’altra banda, les llavors tractades amb aquests productes alliberen residus en forma de pols que es dispersen per l’aire i les plantes que deriven d’aquestes acumulen una major quantitat de pesticida (tal com comenta Nature en aquesta publicació). Això fa que les abelles (entre d’altres insectes pol·linitzadors) estiguin exposades a elevats nivells de residus, tant en els propis camps com en les zones circumdants on s’alimenten. Aquests mateixos estudis han revelat, encara que amb menys suport, que aquests productes poden arribar a persistir i acumular-se en el sòl, podent afectar futures generacions de cultius.

Els efectes negatius sobre les abelles que s’han associat als neonicotinoides són, entre altres:

  • Alteració del sistema immune, menor capacitat per sobreviure a l’hivern i menor capacitat reproductiva (tant individual como colonial), afectant especialment l’èxit reproductiu en abelles solitàries (segons aquest estudi recent publicat a Science).
  • Possible alteració sobre els hàbits i les rutes de cerca d’aliment (desorientació) tant en abelles solitàries com colonials, així com sobre la comunicació entre membres d’abelles colonials.
  • Efectes negatius potenciats per interacció amb altres pesticides.
  • Contribució al CCD (Colony Collapse Disorder). Aquest fenònem es caracteritza por la desaparició massiva de les abelles obreres d’una colònia, les quals deixen enrere la reina juntament amb aliment, les seves larves i algunes abelles que cuiden d’elles. Aquest fenòmen ha estat registrat nombrosos cops al llarg de la història, l’últim dels quals als EUA l’any 2006, quan una gran quantitat de colònies d’abelles de la mel (Apis mellifera) van començar a col·lapsar (fins el 2013, s’estima la pèrdua de fins a 10 milions de ruscs, quasi 2 cops més del que és considerat normal). El CCD és un fenòmen multifactorial, en el que l’acció dels pesticides només seria un de tants.

Als efectes negatius dels pesticides se li uneixen el canvi climàtic (canvis en els règims hídrics i de temperatura), menor quantitat d’aliment i els canvis en l’ús del sòl.

Què passaria si desapareguessin les abelles?

Les abelles colonials són les més famoses entre les abelles; tanmateix, només suposen un modest percentatge dins de la gran diversitat d’abelles conegudes, moltes de les quals són formes solitàries que construeixen nius en petites cavitats. La importància ecològica de les abelles solitàries és igual o més gran que la de les abelles de la mel i, no obstant això, l’efecte dels neonicotinoides sobre elles està molt poc estudiat. En conjunt, les abelles es troben entre els organismes pol·linitzadors més eficients.

Abella solitària entrant al seu seu niu. Imatge de domini público.

Segons aquest estudi realitzat en territori alemany i publicat en PLOS One a la fi del 2017, gran part de la diversitat i fins a un 75% de la biomassa d’insectes voladors (incloent nombrosos pol·linitzadors) hauria disminuït en les últimes tres dècades a causa de la interacció de nombrosos factors, valors que podrien extrapolar-se a nivell mundial.

Què passaria si les abelles, tant colonials com solitàries, desapareguessin?

  • Desaparició de cultius. La producció de molts cultius, como la d’arbres fruiters, fruits secs, espècies i alguns olis, depèn completament dels pol·linitzadors. Dins d’aquests, les abelles en serien els més importants.
  • Disminució de la diversitat i biomassa de plantes salvatges. Fins a un 80% de plantes salvatges depenen de la pol·linització per insectes per reproduir-se, com és el cas de moltes aromàtiques. La disminució de la superfície vegetal conduiria a greus problemes d’erosió i desertització.
  • Menor reciclatge de nutrients del sòl. Amb la desaparició de les plantes, el rentat i deposició de nutrients del sòl aniria a la baixa.
  • Menor control biològic de plagues. Algunes abelles solitàries són parasitoids d’altres abelles solitàries i d’altres grups d’insectes (enemics naturals); la seva absència podria disparar la recurrència de certes plagues.
  • Efectes negatius sobre nivells tròfics superiors. Possiblement, la desaparició de les abelles es traduiria en una disminució de la diversitat i biomassa d’algunes aus que inclouen les abelles dins la seva dieta. Això sense comptar amb el consegüents efectes en cadena dins les xarxes tròfiques.
  • Desaparició de productes derivats, com la mel o la cera.

La UE prohibeix l’ús de neonicotinoides

Donada aquesta situació, diferents governs han intentat limitar des de fa alguns anys l’ús de pesticides com a part de les accions per frenar el declivi de les poblacions d’abelles i les consegüents pèrdues econòmiques. Per posar alguns exemples, des de l’any 2006 la biomassa d’abelles de la mel ha disminuït un 40% als EUA, un 25% a Europa des de l’any 1985 i un 45% al ​​Regne Unit des de l’any 2010, segons dades publicades per Greenpeace.

Fins a l’actualitat, les mesures més restrictives simplement limitaven l’ús dels neonicotinoides en certes situacions o èpoques de l’any. Però a principis de 2018, la UE, després de l’elaboració d’un minuciós informe basat en més de 1.500 estudis científics realitzat per l’EFSA (Autoritat Europea de Seguretat Alimentària), va decidir prohibir definitivament l’ús dels tres neonicotinoides més usats en un període màxim de 6 mesos en tots els seus estats membres després de demostrar que afectaven a les abelles: imidacloprid, clotianidina i tiametoxam.

S’assoliran els objectius d’aquest informe? Caldrà esperar…

.           .           .

Tot i que lentament, la lluita contra l’ús abusiu dels pesticides va donant els seus fruits. Tanmateix, caldrà veure si el buit deixat per alguns productes és omplert per d’altres o si s’aposta per adoptar models agrícoles més amistosos amb el medi ambient.

Imatge de portada obtinguda de [link].

Alguns insectes i altres artròpodes que no hauries de confondre

A través de les xarxes socials es comparteixen amb massa freqüència notícies i articles poc contrastats o sensacionalistes sobre insectes i altres artròpodes. Molts d’aquests enllaços donen informació poc ajustada i generen confusió entre els usuaris aficionats, fet que condueix a males identificacions, a confondre uns organismes amb altres de semblants i a generar rebuig o alarmismes innecessaris.

A continuació, et presentem un petit llistat d’insectes i altres artròpodes fàcils de confondre i t’expliquem com diferenciar-los. Que no et donin gat per llebre!

Aranyes VS “quelcom que se’ls assembli”

Molt probablement, les aranyes (Ordre Araneae) siguin dels artròpodes que més inquietuds desperten per dos motius: piquen i hi ha molts organismes que se’ls semblen. Així doncs, és bastant comprensible que la gent tingui dubtes de qualsevol organisme que presenti vuit potes llargues i cara de pocs amics.

No obstant això, la majoria d’organismes similars a les aranyes no són verinosos ni construeixen teranyines:

Opilions: a diferència d’altres aràcnids, els opiliones (Ordre Opiliones) no presenten un estrenyiment o cintura que divideixi el seu cos en dues parts (prosoma i opistosoma), de manera que a simple vista semblen “una bola amb potes”. A més, només presenten un parell d’ulls centrals molt propers entre si. Tampoc presenten glàndules verinoses ni fileres per a la síntesi de seda, motiu pel qual no piquen ni construeixen teranyines. Són habituals en llocs humits, coves i zones pròximes a rierols, així com en cultius. Se’ls sol confondre amb aranyes de la família Pholcidae per la longitud de les seves potes.

Aranya de l’espècie Pholcus phalangioides (Pholcidae) (Imatge de Olaf Leillinger, CC 2.5)
Opilió (Imatge de Dalavich, CC 3.0)

Solífugs: també coneguts com aranyes camell, els solífugs (Ordre Solifugae) són uns aràcnids tropicals una mica particulars, ja que presenten el cos clarament segmentat i uns grans quelícers projectats cap endavant. Tanmateix, i malgrat l’amenaçadora aparença dels seus quelícers, no són verinosos (encara que la seva mossegada pot ser dolorosa). Tampoc construeixen teranyines. Habiten llocs àrids o desèrtics; molts són nocturns, i els diürns es mouen activament a la recerca d’ombres per fugir del sol (d’aquí el seu nom).

Aranya camell o solífug (Imatge de Swen Langel, CC 2.0).

Amblipigi: els amblipigis (Ordre Amblypygy) són típicament tropicals. Malgrat la seva aparent agressivitat, són inofensius atès que no tenen glàndules verinoses. Els seus pedipalps són grans, plens d’espines i acaben en pinça, mentre que el primer parell de potes és extremadament llarg, molt fi i articulat. No construeixen teranyines i són nocturns.

Amblipigi (Imatge de José Eugenio Gómez Rodríguez a Flickr, CC 2.0)

Porquets de Sant Antoni VS Milpeus

Ets un nen i estàs jugant al camp o un parc i, de sobte, sota una pedra o un tronc humit et pares a mirar un petit animal amb moltes potes i que es fa una bola quan el toques. Segur que a més d’un li resulta familiar aquesta escena.

Probablement es tractés d’un porquet de Sant Antoni. Els porquets de Sant Antoni pertanyen al subordre Oniscidea, format per crustacis terrestres (Ordre Isopoda). El seu exosquelet és rígid, segmentat i calcari, i habiten llocs humits.

Armadillidium vulgare, Oniscidea (Imatge de Franco Folini, CC 2.5)

Els oniscídis de la família Armadillidae, com els porquets, es confonen fàcilment amb els Oniscomorpha, un superordre de milpeus (Subfilo Myriapoda, Classe Diplopoda) de cos curt i d’aparença externa molt similar fruit d’una evolució convergent. De la mateixa manera que els Armadillidae, també es fan una bola per protegir-se.

Glomeris marginata, Oniscomorpha (Imatge de Stemonitis, CC 2.5).

Per diferenciar-los, només cal comptar les potes que tenen a cada segment: si en té un parell (una a cada costat), és un porquet de Sant Antoni; si en presenta dos parells (dos a cada costat), és un milpeus.

Abelles i vespes VS Sírfids

En aquest article vam parlar en detall sobre les diferències més rellevants entre abelles i vespes (Ordre Hymenoptera). En aquesta ocasió, us presentem als sírfids (Ordre Diptera, Subordre Brachycera, Família Syrphidae), unes mosques que guarden una semblança raonable amb aquests himenòpters.

La semblança dels sírfids amb abelles, vespes i borinots constitueix un exemple clar de mimetisme batesià, del qual parlàrem àmpliament en aquesta entrada sobre el mimetisme animal. En aquest cas, a més, el seu mimetisme vas més enllà de la coloració, ja que alguns imiten el vol i el brunzit d’aquests himenòpters.

Sírfid (Imagen de domini públic, CC0).
Abella de la mel (Imatge de Andy Murray a Flickr, CC 2.0)

Per diferenciar-los, només cal fixar-se en els ulls, les antenes i les ales: els sírfids, com mosques que són, presenten uns ulls molt grans que ocupen gran part del cap, unes antenes molt curtes de vuit o menys segments (de vegades gairebé inapreciables) i un sol parell d’ales per volar (el segon parell està reduït formant uns òrgans d’equilibri diminuts, els halteris), mentre que en abelles i vespes, els ulls són més petits i tan sols ocupen els laterals del cap, les antenes són més llargues, amb deu o més segments i presenten dos parells d’ales funcionals. A més a més, les femelles de sírfid no presenten l’abdomen acabat en agulló, així que són inofensives.

Marietes VS Pyrrhocoris apterus

Si busqueu a Internet imatges de marietes, segur que alguna vegada us heu trobat amb fotografies d’aquest insecte:

Imatge de domini públic (CC0)

Aquest petit insecte és Pyrrhocoris apterus, molt freqüent al Paleàrtic (des d’Europa fins a la Xina), i citat també als EUA, Amèrica Central i a l’Índia. És fàcil d’observar sobre les malves (Malva sylvestris), de les quals n’ingereix la saba i les llavors, i normalment apareix en grans grups degut al seu comportament gregari (especialment les seves formes immadures).

Les marietes són escarabats (Ordre Coleoptera) de cos globós, la seva alimentació és essencialment carnívora (pugons) i poden volar. El seu primer parell d’ales està endurit (èlitres) formant una espècie de closca que amaga el segon parell d’ales membranós.

Marieta de l’espècie Coccinella septempunctata (Imatge de domini públic, CC0)

En canvi, Pyrrhocoris apterus és una xinxa (Ordre Heteroptera) de cos deprimit, fitòfaga i, al contrari que les marietes i altres xinxes, no pot volar. D’altra banda, no presenta una closca endurida.

Mantis VS Mantíspids

En aquesta entrada vam parlar àmpliament sobre les mantis (Ordre Dyctioptera), les quals són a primera vista molt similars a aquest insecte:

Mantispa styriaca (Imatge de Gilles San Martin a Flickr, CC 2.0)

Aquest insecte pertany a la família dels mantíspids (Ordre Neuroptera, Família Mantispidae), la qual està molt ben representada en països tropicals i subtropicals, i amb tan sols algunes espècies conegudes d’Europa. Presenten unes potes anteriors raptores que recorden a les de les mantis i amb les que subjecten les preses, les quals solen ser insectes de cos tou.

Els neuròpters, com els mantíspids, les crisopes o les formigues lleó, presenten dos parells d’ales de mida similar amb una venació molt complexa i ramificada. En els mantodeus, en canvi, les primeres són més petites i endurides que les segones, les quals són grans i membranoses; a més, no presenten una venació tan complexa.

Mantis (Imatge de Shiva shankar, CC 2.0)

Els mantíspids dels gèneres Climaciella i Entanoneura tenen una coloració i un aspecte similar a una vespa, però són totalment inofensius.

Climaciella brunnea (Imatge de Judy Gallagher a Flickr, CC 2.0)

Mosquits VS Típules

De ben segur que alguna vegada has vist una mena de mosquit gegant, de diversos centímetres de longitud, i t’has espantat pensant en la seva picada. Doncs bé, no cal que t’espantis més.

Aquests grans “mosquits” (Ordre Diptera) reben el nom de típules (Família Tipulidae) i són totalment inofensives (i una mica maldestres). Es distribueixen per tot el món i solen habitar llocs humits, com prats i rierols. En la seva forma adulta, s’alimenten de nèctar o no s’alimenten (no succionen sang!) i es dediquen exclusivament a la recerca de parella. Les femelles presenten l’abdomen amb una terminació que recorda un fibló, fet que els dóna un aspecte amenaçador; tanmateix, tan sols es tracta de l’ovopositor amb el que realitzen la posta.

Típula (Imatge de Irene Lobato Vila)

Libèl·lules VS Cavallets del diable

Ambdós dos grups pertanyen a l’Ordre Odonata i tenen un aspecte i uns hàbits força similars, sent freqüents en zones amb aigües estancades o poc mòbils.

Unes 2/3 parts dels Odonata són libèl·lules, també conegudes com espiadimonis (subordre Anisoptera), mentre que quasi tota la resta són cavallets del diable (subordre Zygoptera). Una manera ràpida i eficaç de diferenciar-los és mitjançant l’observació de les seves ales en repòs: a les libèl·lules, aquestes queden esteses en posició horitzontal (no les pleguen), mentre que en els cavallets del diable aquestes queden plegades en posició vertical.

D’altra banda, els ulls de les libèl·lules són grans i es toquen en el vèrtex del cap, del que n’ocupen una gran superfície, mentre que els dels cavallets del diable són més petits i laterals.

Libèl·lula o espiadimonis (Imatge de domini públic, CC0)
Cavallet del diable (Imatge de Xosema, CC 4.0)

.         .         .

Si coneixes més insectes o altres artròpodes que generin confusió, no dubtis en comentar-nos-ho!

Referències

 

Artròpodes verinosos i tòxics: quins són i en què es diferencien?

Després dels posts sobre mamífers, peixos i llangardaixos verinosos, des d’All you need is Biology us portem un article sobre artròpodes verinosos i tòxics. Intentarem explicar en què es diferencien i quins d’ells generen aquest tipus de substàncies (i com ho fan). Et sorprendrà!

Animal verinós vs tòxic

Tot i que normalment fem servir aquests dos termes com a sinònims, ¿realment volen dir el mateix? La resposta és NO.

Un animal verinós presenta òrgans o elements (ullals, dents, fiblons) per inocular verí activament com a mecanisme ofensiu o per defensar-se; en canvi, un animal tòxic no presenta òrgans per a la inoculació directa, sinó que la substància tòxica és generada en certs teixits o glàndules especialitzades (o bé adquirida a través de la dieta) i alliberada passivament com a defensa; de vegades, la toxina simplement és present dins el cos de l’organisme, actuant com a mecanisme contra la depredació.

Malgrat aquestes diferències, verins i toxines poden causar efectes força similars, fet que depèn del seu mode d’acció, de la quantitat assimilada i de les característiques de la víctima. Els seus efectes en humans poden anar des d’una simple irritació o envermelliment de la pell (substàncies irritants) a greus afectacions sistèmiques en cas de verins potents.

Artròpodes verinosos i tòxics

Aràcnids

Els aràcnids (subfílum Cheliceromorpha) inclouen a dos dels grups d’artròpodes verinosos per excel·lència: les aranyes i els escorpins. Tots dos presenten òrgans especialitzats per a la injecció del verí, el qual fan servir tant per caçar com per defensar-se.

  • Aranyes

Els òrgans responsables de la inoculació del verí a les aranyes són els quelícers, uns apèndixs bucals propis dels queliceromorfs situats per davant de la boca que fan servir per agafar l’aliment. Els quelícers de les aranyes tenen associada una glàndula verinosa i finalitzen en forma d’ullal. Els ullals de les aranyes presenten un canal intern que s’obre en un orifici terminal, permetent que el verí procedent de les glàndules viatgi a través seu i sigui inoculat en el cos de la víctima de manera similar a com ho faria una agulla hipodèrmica.

Les aranyes presenten la forma més evolucionada de quelícers: els quelícers en navalla. Quan amenacen amb picar, el quelícers es separen del cos i els ullals s’eleven i obren com una navalla plegable.

Detall dels quelícers d’una aranya. Imatge de domini públic (CC0) extreta de pixabay.

Entre les més verinoses per a l’ésser humà es troben les aranyes australianes dels gèneres Atrax, Hadronyche i Illawarra (conegudes com “funnel-web spiders” per la forma d’embut de les seves teranyines), el verí de les quals afecta els canals de sodi cel·lulars donant lloc a un alliberament massiu de neurotransmissors.

“Funnel web spider”de l’espècie Hadronyche cerberea. T’has fixat en la gota de verí que penja de l’extrem del seu quelícer?. Imatge de Alan Couch a Flickr (CC 2.0).
  • Escorpins

L’òrgan inoculador en els escorpins és el tèlson, una peça situada al final de l’abdomen de molts artròpodes que, en aquest cas, està transformat en un aparell verinós acabat en fibló. Igual que els quelícers de les aranyes, el tèlson dels escorpins està associat a glàndules verinoses i la inoculació del verí té lloc mitjançant la injecció del fibló.

Escorpí de l’espècie Centruroides vittatus, comuna al centre de EUA i del nord de Mèxic. En vermell, el tèlson acabat en fibló. Imatge de domini públic (CC0).

Els escorpins fan servir el verí per caçar, el qual sol ser ric en neurotoxines que provoquen alteracions severes del sistema nerviós central i perifèric de la presa per dissociació dels sistemes simpàtic i parasimpàtic. En humans, el verí pot causar des de dolor local intens fins arítmies cardíaques o edemes pulmonars, com en el cas de l’espècie índia Hottentotta tamulus, considerada una de les més verinoses.

ALERTA!: No tots els aràcnids i grups relacionats presenten glàndules verinoses; p. ex. opilions, solífugs o aranyes camell i amblipigis NO són verinosos.

D’esquerra a dreta: opilió (imatge de Daniel Jolivet a Flickr, CC2 .0), solífug (CC 3.0) i amblipigi (imatge de Geoff Gallice a Flickr).

Miriàpodes

Els miriàpodes (subfílum Myriapoda) es divideixen en milpeus (classe Diplopoda) i centpeus (classe Chilopoda), i tots dos generen substàncies verinoses.

  • Milpeus

Els milpeus, caracteritzats per presentar un cos dividit en molts segments amb dos parells de potes en quasi tots ells, són essencialment detritívors i inofensius. Tanmateix, generen substàncies irritants o tòxiques (alcaloides, benzoquinonas, fenols) com a mecanisme defensiu. Aquestes substàncies poden ser càustiques, cremant l’exosquelet d’insectes depredadors o causant cremades a la pell i mucoses d’animals més grans.

Les toxines dels milpeus es generen en unes glàndules situades a cada segment del seu cos conegudes com a odoríferes o repugnatòries, i el seu alliberament pot tenir lloc bé per compressió de l’organisme (p. ex., quan se’l volen menjar) o mitjançant uns orificis situats en els laterals de cada segment.

A simple vista, les glàndules, situades en els laterals del cos, són difícils d’observar. Imatge de Thomas Shahan a Flickr (CC 2.0).

CURIOSITAT: els lèmurs negres de Madagascar (Eulemur macaco) recullen milpeus i, després de mossegar-los i haver estimulat les seves glàndules, se’ls freguen per tot el cos per cobrir-se de les substàncies que alliberen, les quals actuen com a repel·lent d’insectes.

Pots veure-ho en aquest vídeo de National Geographic. Et recomanem que ho vegis fins al final. Et divertirà el resultat!

  • Centpeus

Els centpeus, el cos dels quals està menys segmentat i cada segment presenta un sol parell de potes, són carnívors i verinosos. En aquest cas, els òrgans per inocular el verí són les forcípules, unes pinces molt desenvolupades derivades de la transformació del primer parell de potes que claven al cos de les preses o de potencials enemics. Aquestes forcípules estan lligades a unes glàndules verinoses situades a l’interior del tronc de l’individu.

Detall de les forcípules de Scolopendra cingulata. Imatge de Eran Finkle (CC 3.0).

El grup que causa més picades és el gènere Scolopendra, encara que el seu verí en humans, tot i ser la picada força dolorosa, no genera massa complicacions clíniques.

Insectes

Malgrat la seva diversitat, la classe Insecta inclou pocs organismes molt tòxics o verinosos.

Escarabats

Algunes famílies d’escarabats (ordre Coleoptera), com Meloidae, Oedemeridae i Staphylinidae (gèneres Paederus i Paederidus), presenten substàncies tòxiques dins la seva hemolimfa que són alliberades per compressió del seu cos com a mecanisme defensiu contra la depredació. En humans, aquestes substàncies causen dermatitis de diversa gravetat (abrasions).

Estafilínid de l’espècie Paederus littoralis, present a Espanya, França i Itàlia. Imatge de Alvesgaspar (CC 4.0).

En el cas de Meloidae i Oedemeridae, la toxina és la cantaridina, mentre que en els gèneres Paederus i Paederidus és la pederina, una substància exclusiva de les femelles d’aquests escarabats i de certes esponges marines, la qual es creu seria generada per un bacteri simbiont.

Xinxes

Encara que les xinxes (subordre Heteroptera) són més famoses pel seu paper com a vectors de malalties, també són causa de dermatitis en humans (p. ex. família Pentatomidae, per compressió de l’insecte i alliberament de substàncies càustiques i irritants com a defensa) i de lesions per picades acompanyades de l’alliberament d’enzims salivals (p. ex. família Belostomatidae, que fan servir per caçar i dissoldre les seves preses).

Exemplar de Belostomatidae. Tot i que no són pròpiament verinosos, els seus enzims salivals poden donar petits ensurts. Imatge de domini públic (CC0).

Himenòpters

Moltes vespes, abelles i formigues (ordre Hymenoptera) generen substàncies tòxiques o verinoses com a mètode defensiu. Les femelles d’una gran majoria d’himenòpters han desenvolupat un fibló al final de l’abdomen resultat de l’evolució de l’ovopositor (infraordre Aculeata); tanmateix, també n’hi ha que inoculen aquestes substàncies mitjançant mossegades.

Les formigues (família Formicidae) ataquen generalment mitjançant mossegades, i algunes espècies, com les formigues de foc (Solenopsis spp.) o les formigues bala (Paraponera spp., Dinoponera spp.), també mitjançant picades del seu fibló. Entre les substàncies més conegudes està l’àcid fòrmic, exclusiu de la subfamília Formicinae, mentre que les formigues de foc injecten alcaloides del grup de les piperidines. La picada de les formigues bala, localitzades a Centre i Sud-Amèrica, és considerada la més dolorosa entre els insectes segons l’Índex Schmidt (similar a una ferida per arma de foc), encara que no sol ser mortal en humans.

Formiga vermella de l’espècie Solenopsis invicta (esquerra, imatge de domini públic (CC0)) i formiga bala de l’espècie Paraponera clavata (dreta, imatge de April Nobile / © AntWeb.org / CC BY-SA 3.0).

Les femelles de la majoria de vespes dins Aculeata i de les abelles presenten fibló. El seu verí sol ser ric en fosfolipases, i en humans el seu efecte va des d’inflamacions locals a reaccions anafilàctiques greus (en casos d’hipersensibilitat o per nombre massiu de picades, com ha passat algun cop amb “l’abella assassina” a Amèrica). La picada de la vespa caça taràntules (Pepsis formosa), de Mèxic i el sud d’EUA, és considerada la segona més dolorosa després de la de la formiga bala.

Pepsis formosa, una espècie de vespa caça taràntules. Pel nom, podeu fer-vos una idea de la seva mida… Imatge de domini público (CC0).

Papallones i arnes

Moltes papallones i arnes (ordre Lepidoptera), ja sigui en la seva fase larvària, adulta o en ambdues, resulten tòxiques per altres organismes com a mecanisme contra la depredació.

Les erugues de nombroses espècies presenten pèls urticants que causen irritacions i inflamacions en humans (erucisme), com la de la processionària del pi (Thaumetopoea pityocampa), una plaga molt estesa al sud d’Europa i d’Amèrica.

Niu d’erugues de processionària en un pi. Imatge de John H. Ghent (CC 3.0).

D’altra banda, els adults d’algunes espècies, com els de la papallona monarca (Danaus plexippus) o els de les gitanes (Zygaena spp.), tots dos de colors molt cridaners (aposematisme, un tipus de mimetisme), presenten substàncies tòxiques contra depredadors dins dels seus teixits; en el cas de la papallona monarca, les adquireixen per ingestió de plantes tòxiques del gènere Asclepias.

Adult de Zygaena transalpina. Imatge de gailhampshire (CC 2.0).

.             .             .

T’ha semblat interessant? Coneixes algun altre artròpode verinós o tòxic digne de menció? No dubtis a deixar les teves aportacions i preguntes en els comentaris!

Referències

La imatge de portada és de domini públic (CC0) i va ser obtinguda a través de Pixabay.

Simbiosi entre insectes i microorganismes: els endosimbionts

Les relacions simbiòtiques són un motor important per a la diversificació i evolució dels organismes. Als insectes, les relacions que estableixen amb microorganismes endosimbionts (és a dir, que resideixen a l’interior del seu cos) els han dotat d’un gran nombre d’adaptacions sorprenents.

La importància de la relació entre insectes i els seus endosimbionts

Gran part de l’èxit evolutiu i adaptatiu dels insectes ve donat per la seva capacitat per relacionar-se amb altres organismes i, especialment, amb microorganismes ubicats dins del seu cos: els endosimbionts.

Fins fa alguns anys, es considerava que la major contribució dels microorganismes endosimbionts a la fisiologia dels insectes era el seu paper en l’alimentació, fet que explicaria la seva gran diversitat de dietes. Tanmateix, s’ha demostrat que els endosimbionts afecten molts més aspectes de la seva fisiologia.

Tipus d’endosimbiosi

Els microorganismes endosimbionts poden trobar-se dins del tracte digestiu, als espais entre les cèl·lules i dins d’elles.

Com a norma general, com més internament es troba l’endosimbiont, més estreta és la seva relació amb l’insecte. A continuació, analitzarem els quatre tipus més habituals d’endosimbiosi en insectes, començant per la més externa i menys estreta.

Microorganismes del tracte digestiu

La microbiota del tracte digestiu dels insectes es compon tant de procariotes (unicel·lulars, sense nucli, com bacteris i arquees) com d’eucariotes (uni o pluricel·lulars, amb nucli, com els protozous), i és exclusiva de l’intestí.

Generalment, se situen fora de les cèl·lules a la part posterior de l’intestí, movent-se lliurement dins la seva llum o adherits a les seves parets. En molts insectes fitòfags, com tèrmits i paneroles, aquesta part posterior de l’intestí forma una càmera sense oxigen (anaeròbica) on té lloc la fermentació de la cel·lulosa i altres sucres complexos.

Sistema digestiu d’un tèrmit de casta obrera; la part verda correspon a la part posterior sense oxigen. Figura procedent de l’article: Brune, A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology, 12(3), 168-180.

En els tèrmits, aquesta càmera conté procariotes anaeròbics facultatius (poden desenvolupar-se amb o sense oxigen) o obligats (només es desenvolupen en absència d’oxigen), com espiroquetes i metanògens, que participen en la digestió; a més a més, en certes termites obreres, aquesta càmera també conté protozous que participen en la digestió de la cel·lulosa de la fusta (heu vist mai un moble foradat per tèrmits?).

A diferència d’altres endosimbionts, els microorganismes del tracte digestiu es transmeten horitzontalment entre organismes; és a dir, els insectes no neixen amb ells, sinó que han d’adquirir-los al llarg de la seva vida. En el cas dels tèrmits, la seva adquisició lloc mitjançant un procés conegut com a trofolàxia: les obreres, que són les úniques que s’alimenten per si mateixes, digereixen i transfereixen l’aliment (i els seus microorganismes) a la resta de membres de la colònia mitjançant el contacte dels seus aparells bucals.

Trofolàxia en tèrmits. Imatge de Shutterstock.

A més a més, els microorganismes són eliminats durant la muda, de manera que la trofolàxia els permet recuperar-los.

Endoparàsits

Els paràsits que viuen dins d’un organisme es coneixen com endoparàsits i, igual que els microorganismes intestinals, es transmeten horitzontalment d’uns insectes als altres.

Hi ha moltes més relacions entre insectes i endoparàsits pluricel·lulars que amb microorganismes, essent els pluricel·lulars més nocius en termes generals; és el cas dels parasitoids (dels quals ja vam parlar en aquesta entrada) i els nematodes (capaços de transmetre bacteris mortals per l’insecte).

La relació endoparasítica més rellevant entre insectes i microorganismes, i l’única que tractem aquí, són els vectors: l’insecte (o vector) actua de contenidor i transport provisional del paràsit fins el moment que aquest arriba al seu hoste definitiu. Els paràsits transportats solen ser protozous nocius per a vertebrats, com Trypanosoma (malaltia de Chagas), Leishmania (leismaniosi) o Plasmodium (malària). En general, l’insecte no pateix cap dany, així que en realitat seria més convenient parlar de comensalisme i no de parasitisme.

El mosquit Anopheles és vector del protozou causant de la malària, Plasmodium. Imatge de domini públic.

Simbiosi extracel·lular i intracel·lular

A diferència dels microorganismes intestinals, els endosimbionts extra i intracel·lulars es transmeten verticalment generació rere generació; és a dir, l’insecte neix amb ells, els “hereta”. Es tracta de relacions molt més estretes.

  • Endosimbionts extracel·lulars

Els microorganismes extracel·lulars poden ser tant procariotes com eucariotes i trobar-se en diferents parts del cos de l’insecte (fins i tot a l’intestí juntament amb els microorganismes intestinals). En qualsevol cas, mai penetren dins les cèl·lules. Això no treu que algunes espècies puguin trobar-se tant fora com dins de les cèl·lules.

Atès que molts microorganismes extracel·lulars poden ser alhora intracel·lulars, es considera que podrien trobar-se, a nivell evolutiu, en una transició entre els microorganismes intestinals i els endosimbionts intracel·lulars.

Un cas interessant d’endosimbiosi extracel·lular té lloc en algunes espècies de pugons de la tribu Cerataphidini. En general, els pugons o àfids presenten un bacteri endosimbiont intracel·lular (Buchnera), però en aquestes espècies aquest bacteri és substituït per un fong unicel·lular similar als llevats que viu fora de les cèl·lules (YLS, de l’anglès “yeast-like symbiont” ), el qual se situa tant en les cavitats entre els òrgans (hemocel) per on circula l’hemolimfa com en diferents cossos grassos. Igual que Buchnera a la resta de pugons, els YLS tindrien un paper clau en la dieta de l’insecte en participar en la producció de certs nutrients essencials.

Ceratovacuna nekoashi (Cerataphidini). Link (CC 2.5)

Es creu que aquests microorganismes similars a llevats o YLS haurien evolucionat a partir d’un fong entomopatogen (és a dir, nociu pels insectes) el llinatge del qual hauria donat lloc, posteriorment, a organismes endosimbionts beneficiosos.

  • Endosimbionts intracel·lulars

Es considera que almenys un 70% d’insectes presenta microorganismes endosimbionts dins les seves cèl·lules. Hi ha dos tipus d’endosimbionts intracel·lulars:

Endosimbionts dins de micetòcits o cossos de Blochmann

Els bacteriòcits o micetòcits són un tipus especialitzat de cèl·lules adiposes que es troben en alguns grups d’insectes i que contenen microorganismes endosimbionts. Aquestes cèl·lules són transmeses a la descendència i usualment s’agrupen en forma d’òrgans coneguts com micetomes o bacteriomes.

Els cossos de Blochman, o el que és el mateix, els endosimbionts que es troben dins dels micetòcits, són propis de tres grups d’insectes: Blattaria (paneroles), diferents grups d’heteròpters dins de l’antic grup dels Homoptera (cícades, psílids, àfids, etc.) i Curculionidae (escarabats curculiònids). La relació d’aquests endosimbionts amb les cèl·lules sol ser tan estreta que podrien confondre’s amb orgànuls cel·lulars (més o menys com el que ocorre amb mitocondris i cloroplasts).

Buchnera aphidicola dins d’un micetòcit o bacteriòcit del pugó Acyrthosiphon pisum. L’element central és el nucli del bacteriòcit. Les cèl·lules de Buchnera són rodones i estan empaquetades dins del citoplasma del bacteriòcit. Imatge de J. White y N. Moran, University of Arizona (CC 2.5).

El cas més estudiat és el de Buchnera en els pugons o àfids. Aquest bacteri intracel·lular recicla l’àcid úric i altres restes nitrogenades del pugó per produir l’aminoàcid glutamina, el qual empra com a base per produir altres aminoàcids essencials necessaris pel creixement de l’insecte. Es creu que també produiria la vitamina B2 (riboflavina). Això explicaria el gran èxit evolutiu dels pugons i la seva elevada taxa de reproducció tot i tenir una dieta rica en carbohidrats (procedent de la saba de les plantes) però molt pobre en compostos nitrogenats.

S’ha comprovat que quan hi ha escassetat de nutrients, el nombre de Buchnera disminueix, fet que suggereix que els pugons s’alimenten d’ells en situacions límit. Així doncs, la relació és molt més beneficiosa pel pugó que per l’endosimbiont.

Endosimbionts inquilins

En aquest cas, la relació entre microorganismes inquilins i insectes no és beneficiosa per a tots dos organismes (mutualista), doncs l’inquilí altera l’insecte per sortir-ne beneficiat.

Els endosimbionts inquilins afecten la proporció de mascles i femelles, així com la seva capacitat reproductiva. Molts dels microorganismes inquilins que viuen dins el citoplasma de les cèl·lules es transmeten a la següent generació a través dels òvuls, motiu pel qual necessiten que hi hagi una major proporció de femelles d’insectes per assegurar la seva perpetuïtat. Per tal d’alterar aquesta proporció, recorren a diferents mètodes: mort dels mascles, inducció de la partenogènesi, feminització o incompatibilitat citoplasmàtica. Per aconseguir-ho, solen induir canvis a nivell genètic.

Un dels inquilins més estudiats és Wolbachia, un bacteri intracel·lular capaç de causar un biaix en la proporció de sexes mitjançant gairebé totes les vies abans esmentades.

Fenotips derivats d’insectes infectats per Wolbachia. Figura procedent de l’article: Werren, J. H., Baldo, L. & Clark, M. E. 2008. Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 6(10), 741-751.

.          .          .

Coneixes més relacions entre microorganismes i insectes? Deixa’ns les teves aportacions als comentaris.

Referències

  • Bourtzis K. Miller T. A. (2003). Insect Symbiosis. CRC Press.
  • Douglas, A.E. (1998). Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology, 43: 17–38.
  • Vega F.E., Blackwell M. (2005). Insect-Fungal Associations: Ecology and Evolution. Oxford University Press, USA.

La imatge de portada és un muntatge realitzat per l’autora d’aquest article a partir de dues imatges: 1) vector de bacteri (per Flaticon de www.flaticon.com) i 2) vector de tèrmit (extret de www.allstatepest.com.au).