Arxiu de la categoria: ARTRÒPODES

La vida (a)sexual dels insectes

La majoria de grups d’insectes presenta organismes unisexuals que es reprodueixen sexualment mitjançant la còpula, generant descendència a través de la posta d’ous. Tanmateix, la seva enorme diversitat també amaga un gran ventall de mecanismes reproductius.

Descobreix-los a través d’aquest article!

Tipus de reproducció

Reproducció sexual: anfigònia i partenogènesi

La reproducció sexual implica la participació de cèl·lules sexuals especialitzades o gàmetes, les quals s’originen dins els òrgans sexuals de l’individu per meiosi. És el tipus de reproducció més comuna entre els artròpodes i els insectes.

1. Anfigònia

En l’anfigònia, es generen dos tipus de gàmetes que, en fusionar-se, donen lloc a l’embrió. Dins d’aquesta modalitat, la majoria d’insectes són unisexuals o dioics, de manera que cada organisme desenvolupa un sol tipus de gàmeta; de fet, són molt pocs els casos en què un únic organisme genera els dos gàmetes (hermafroditisme); és el cas de Icerya purchasi (Hemiptera), Perla marginata (Plecoptera) i de diverses espècies de la família Termitoxenidae (Diptera).

Icerya purchasi (esquerra; imatge propietat de Vijay Cavale, CC 3.0) i Perla marginata (dreta; imatge propietat de gailhampshire en Flickr, CC 2.0).

Cerca de parella i festeig

En els organismes unisexuals o dioics, la fusió dels gàmetes només és possible un cop troben una parella. Les estratègies que els insectes fan servir per trobar un company adient són molt diverses: emissió de feromones i / o llum, desenvolupament d’un determinat patró de coloració o emissió de sons i vibracions (moltes de les quals ja vam tractar en aquest article sobre la comunicació dels insectes).

Un cop trobada la parella, pot tenir lloc un procés de festeig, el qual anirà seguit de la còpula si aquest té èxit. El festeig pot tenir lloc mitjançant l’execució de balls nupcials, l’entrega d’ofrenes (per exemple, menjar; és el cas d’algunes mosques escorpí (Mecoptera)) o la formació d’eixams (vols nupcials, com en Hymenoptera), entre d’altres. En alguns casos, la femella no decideix aparellar-se amb el mascle si aquest no es troba en possessió d’un territori ampli o una font d’aliment.

En aquest vídeo podem veure el vol nupcial de les abelles mel·líferes:

Fecundació

La fecundació o singàmia és el procés mitjançant el qual els gàmetes es fusionen per donar lloc a l’embrió, fet que té lloc tant en organismes dioics com hermafrodites.

  • Interna

Seguint amb els organismes dioics, el mecanisme més estès entre els insectes “moderns” per garantir la trobada dels gàmetes és la còpula (fecundació interna). En aquest cas, el mascle sol transmetre directament els seus gàmetes (espermatozoides) al cos de la femella, on es troben els gàmetes femenins (òvuls).

Saltamartins de l’espècie Romalea microptera, nadiua dels Estats Units. Imatge propietat de http://www.birdphotos.com, CC 3.0.
  • Externa

En alguns insectes i grups relacionats més “primitius”, la fecundació té lloc sense que entren en contacte els òrgans sexuals (fecundació externa). En aquests casos, el mascle allibera un espermatòfor, un paquet d’esperma generat per les glàndules accessòries del seu aparell reproductor, recobert d’una pel·lícula lipoproteica que prevé la seva dessecació. Es considera un pas intermedi entre la reproducció en el medi aquàtic pròpia de grups “primitius”, els quals alliberaven l’esperma a l’aigua sense risc a dessecar-se, i la reproducció en el medi terrestre.

La seva producció és pròpia de grups relacionats als hexàpodes, com Myriapoda (centpeus i milpeus); d’hexàpodes basals, com Collembola, Diplura i Protura; d’insectes basals, com Archaeognatha i Zygentoma (peixets de coure i peixets de plata); i de certs grups d’insectes més “moderns”, com molts Orthoptera, Psocoptera, Coleoptera, Neuroptera, Mecoptera i alguns Hymenoptera. En alguns casos, el mascle allibera l’espermatòfor al medi, el qual és recollit posteriorment per la femella (cas de Collembola); en altres, el mascle l’ofereix a la femella o bé la dirigeix ​​al lloc on aquest es troba (Zygentoma i Archaeognatha).

Collembola de l’espècie Sminthurus viridis; darrera, l’espermatòfor pedunculat propi d’aquest ordre d’insectes. Imatge modificada a partir de la fotografia original de Gilles San Martin a Flickr, CC 2.0.
Femella d’Orthoptera recollint l’espermatòfor d’un mascle. Imatge modificada a partir de la fotografia original de Sandrine Rouja a Flickr, CC 2.0.

La fecundació interna es considera, doncs, una novetat evolutiva i adaptativa al medi terrestre. No obstant això, a dia d’avui encara hi ha insectes amb fecundació interna que conserven la informació genètica per produir espermatòfor; en aquests casos, el mascle introdueix ell mateix l’espermatòfor dins la femella, el qual li serveix a aquesta com a font addicional de nutrients pels seus ous.

De vegades, el mascle ofereix l’espermatòfor com a regal nupcial, incloent dins d’aquest nutrients per a la femella.

2. Partenogènesi

A la partenogènesi, la generació de descendència té lloc a través d’òvuls sense fecundar. Habitualment, se la tendeix a classificar com un tipus de reproducció asexual; tanmateix, és molt més apropiat considerar-la un tipus de reproducció sexual en estar implicats els gàmetes femenins generats per meiosi.

La partenogènesi pot ser:

  • Accidental: es desenvolupa un individu a partir d’un òvul sense fecundar de manera excepcional en espècies anfigòniques; ex. Bombyx mori (papallona del cuc de seda).
  • Facultativa: alguns òvuls són fecundats i altres, no.
  • Obligada: els òvuls només poden desenvolupar-se sense fecundació. És el cas d’espècies que alternen generacions partenogenètiques i anfigòniques.
Mariposa del gusano de seda (Bombyx mori). De forma extraordinaria, algunos de sus huevos sin fecundar generan descendencia. Imagen propiedad de Nikita en Flickr, CC 2.0.

A més a més, segons la dotació cromosòmica de l’òvul, la partenogènesi pot ser:

  • Haploide (n) o arrenotoca: els òvuls sense fecundar (n) sempre generen mascles i els fecundats (2n), femelles. Es dóna en abelles i en altres Hymenoptera, en alguns Coleoptera i en Zygentoma, i sempre és facultativa. El control del sexe de la descendència és un procés clau en l’evolució de les estructures colonials en insectes socials.
En les abellesmel·líferes, els ous fecundats generen femelles (obreres o, en caso de rebre una alimentació especial, una nova reina) i els no fecundats, mascles. Fotografies de Alex Wild i figura de Ashley Mortensen (web de la Universitat de Florida).

 

  • Diploide (2n) o telitoca: els òvuls sense fecundar (2n) sempre donen lloc a femelles amb la mateixa càrrega genètica que la progenitora (clons). Es dóna en pugons (Aphididae, Hemiptera), paneroles, cotxinilles (Coccoidea, Hemiptera) i en alguns escarabats curculiònids, i sol ser obligada. Aquest tipus de partenogènesi té la potencialitat de generar una gran quantitat de descendència en poc temps en detriment de la variabilitat genètica. En els pugons, les generacions partenogenètiques alternades amb les anfigòniques permeten explosions demogràfiques en moments puntuals.
Pugons de l’espècie Aphis nerii. Imatge propietat de Andrew C, CC 2.0.

De vegades, la partenogènesi pot tenir lloc en estadis immadurs, com les larves o les pupes. És el cas de la pedogènesi, en la qual les formes immadures poden generar descendència mitjançant aquest procés; es dóna en alguns cecidòmids (Diptera) i en una espècie d’escarabat, Macromalthus debilis, entre d’altres. Cal no confondre-la amb la neotènia, cas en què una forma larvària desenvolupa tots els trets i estructures reproductius propis d’un adult (cas d’algunes cotxinilles).

Reproducció asexual

En la reproducció asexual, la generació de descendència té lloc sense la participació dels gàmetes.

És una modalitat molt poc habitual en insectes, representada únicament per una forma molt peculiar coneguda com a poliembrionia. Mitjançant aquest procés, a partir d’un sol òvul fecundat es generen centenars d’individus per escissió de l’embrió. Tot i que inicialment té lloc una fecundació, la resta d’individus es genera asexualment. Es dóna únicament en unes poques espècies de cecidòmids i himenòpters calcídids (parasitoides), propiciant una gran explosió poblacional.

Generació de descendència

La producció de descendència en els insectes pot tenir lloc de diverses maneres:

Oviparisme

Té lloc mitjançant la posta d’ous, éssent el mecanisme més estès.

Posta de mantis o ooteca (esquerra; imatge propietat de Scot Nelson a Flickr, CC 2.0) i posta de la papallona blanca de la col, Pieris brassicae (dreta; imatge propietat de Walter Baxter, CC 2.0).

Ovoviviparisme

Els ous fertilitzats són incubats dins dels conductes reproductius de la femella. Té lloc en algunes paneroles, pugons, cotxinilles i mosques (Muscidae, Calliphoridae i Tachinidae), i en uns pocs escarabats i trips (Thysanoptera). Els ous eclosionen immediatament abans o després de la posta.

Viviparisme

Les femelles donen a llum directament a les larves. Existeixen diferents modalitats entre els insectes:

  • Viviparisme pseudoplacentari: la femella desenvolupa ous amb poc vitel en els seus conductes reproductors i aquesta els nodreix mitjançant un teixit similar a una placenta. Es dóna en molts pugons i Dermaptera, en alguns Psocoptera i en Polyctenidae (Hemiptera).

En aquest vídeo de Neil Bromhall, veiem un grup de pugons o àfids “donant a llum”:

  • Viviparisme hemocèlic: els embrions es desenvolupen lliurement dins l’hemolimfa de la femella (líquid intern equivalent a la sang), de la qual obtenen nutrients per òsmosi. Ocorre només en Strepsiptera i en cecidòmids. En alguns cecidòmids, les larves consumeixen a la seva progenitora, que també és una larva (cas extrem de pedogènesi larvària).
  • Viviparisme adenotròfic: la larva està tan poc desenvolupada que ha de continuar alimentant-se a partir de secrecions procedents d’unes glàndules accessòries (“glàndules mamàries”) situades en el canal reproductiu de la femella. Un cop assoleix una mida adequada i després de ser dipositada, la larva pupa immediatament. Ocorre en dípters de les famílies Glossinidae (mosca tse-tse), Hippoboscidae (mosques dels cavalls o coloms), Nycteribidae i Streblidae (mosques dels ratpenats).

En aquest vídeo de Geoffrey M. Attardo (AAAS/Science), veiem una mosca tse-tse donant a llum a una larva:

.              .              .

Qui havia dit que la vida (a)sexual dels insectes era senzilla? I tú, et saps alguna curiositat? Envia’ns els teus comentaris!

Referències

La imatge de portada és propietat de Irene Lobato Vila (autora d’aquest article).

Que no et piquin les xinxes!

De ben segur que en sentir aquesta expressió, més d’un haurà temut patir les picades d’aquestes petits bestioles anomenades “xinxes” a l’hora d’anar al llit. Tanmateix, ni totes les xinxes piquen, ni totes s’amaguen dins els nostres llits, ni totes són tan petites com aquests companys nocturns.

Què són realment les xinxes? Totes són perjudicials? On es troben? Descobreix la seva diversitat en aquest article, i oblida’t d’una vegada per totes de la seva mala fama!

Què són?

En referir-se a les xinxes, sovint la gent no és conscient de la gran diversitat que amaguen aquests organismes, la qual va més enllà d’aquells petits insectes que ens piquen mentre dormim. Les xinxes pertanyen al subordre dels Heteroptera, un taxó de distribució cosmopolita que inclou més de 40.000 espècies a nivell mundial; de fet, constitueixen el grup d’insectes més gran amb metamorfosi senzilla. El seu fòssil més antic, Paraknightia magnífica, data del Permià superior a Austràlia (260-251 MA).

Aquest subordre es classifica dins l’ordre dels Hemiptera juntament amb altres subordres antigament agrupats en un de sol (“Homoptera”), el qual incloïa organismes tan coneguts com les cigales (Cicadidae) o els pugons (Aphididae).

Com els reconeixem?

Els heteròpters presenten un ampli ventall de formes i mides, oscil·lant entre un mil·límetre i diversos centímetres. Els membres més petits pertanyen a les famílies Anthocoridae, Microphysidae, Ceratocombidae, Dipsocoridae, Aepophilidae i Leptopodidae, molt poc visibles a ull nu. Entre els membres més grans trobem algunes espècies de la família Belostomatidae, com Lethocerus indicus amb els seus 6.5-8cm de longitud.

Tot i això, constitueixen un grup monofilètic amb, com a mínim, tres caràcters morfològics únics o sinapomorfies:

  1. Peces bucals de tipus picador-xuclador, allargades en forma d’estilet.

    Peces bucals del depredador Arilus cristatus (Reduviidae). Imatge propietat de John Flannery en Flicker (CC 2.0).
  2. Glàndules odoríferes parells.
  3. Antenes amb 4 segments.

A més a més, les seves ales anteriors o hemièlitres es divideixen en dues regions fàcilment diferenciables: un basal endurida i una distal membranosa, fet que es considera un caràcter derivat. Per aquest motiu van rebre el nom d’Heteroptera (del grec “hetero”, diferent; “-pteron“, ala).

Pentatomidae. La part superior de les ales anteriors es troba endurida, mentre que la distal és membranosa. Imatge propietat de Mick Talbot en Flickr (CC 2.0).

Ecologia

Cicle de vida

Els heteròpters duen a terme una metamorfosi senzilla, de manera que juvenils i adults quasi no presenten diferències i conviuen en el mateix hàbitat. Després de sortir de l’ou, els juvenils o nimfes experimenten diverses mudes successives, augmentant la seva mida. Finalment, després d’una darrera muda coneguda com a muda imaginal, assoleixen la fase adulta o imago.

Desenvolupament dels heteròpters. Imatge propietat de Encyclopedia Britannica, Inc. (link).

Els adults es diferencien de les nimfes per presentar ales, una nova disposició de les obertures de les glàndules odoríferes, un nombre diferent de segments tarsals (potes) i antenals, ocels, ornamentació (espines i pèls glandulars), trets sexuals en els segments terminals de l’abdomen i, a vegades, en el patró de coloració, a més d’assolir una major mida i consistència del tegument o exosquelet.

Nimfa de Nezara viridula (Pentatomidae), a la qual encara li manquen les ales. Imatge propietat de S. Rae en Flickr (CC 2.0)

Comunicació i defensa

Els individus d’una mateixa espècie es comuniquen principalment mitjançant l’emissió de feromones volàtils que emeten a través de les glàndules odoríferes, gràcies a les quals poden agrupar-se (feromones d’agregació) o reunir-se per a la reproducció (feromones sexuals). També s’han citat casos d’espècies que emeten sons per estridulació, és a dir, fregant dues parts del cos entre sí com fan, per exemple, les cigales.

Els heteròpters també presenten mecanismes defensius actius i passius:

  • Entre els mètodes passius es troben les característiques del propi cos (per exemple, estructures llises, arrodonides, que dificulten la captura per depredadors), la inactivitat (no moure’s per passar desapercebut) i la cripsi o el mimetisme. Dins de les cripsis o mimetismes, destaquen 1) la mimesi de color (homocromia), per exemple, amb la vegetació, 2) la mimesi de forma (homotípia), mitjançant la qual es confonen amb estructures del seu entorn, ja siguin vegetals o altres animals (per exemple, imitant formigues en el cas d’espècies mirmecomorfes, un tipus de mimetisme batesià) i 3) la disrupció de la silueta mitjançant formes que dificulten marcar els límits de l’individu amb el seu entorn.
Leptoglossus occidentalis (Coreidae), amb les seves tíbies posteriors aplanades imitant fulles. Imatge propietat de Giancarlodessi (CC 3.0).
Myrmecoris gracilis (Miridae), un clar exemple de mirmecomorfia. Imatge propietat de Michael F. Schönitzer (CC 4.0).
  • Entre els mètodes actius, destaquen 1) la fugida, 2) les picades, 3) el despreniment d’apèndixs per confondre els depredadors i 4) l’emissió de substàncies pudents o irritants a través de les glàndules odoríferes; en molts casos, adquireixen aquestes substàncies irritants o tòxiques a través de les plantes que ingereixen. També n’hi ha que emeten sons intimidatoris mitjançant estridulació.

Formes de vida i diversitat

Si bé gairebé tothom coneix a les xinxes per la seva alimentació basada en la ingesta de sang, aquesta no és ni de bon tros la seva única forma de vida.

  • Terrestres

La majoria d’heteròpters viu en ambients terrestres, sobre plantes o a terra, podent ser totalment fitòfags (dieta basada en fluids vegetals) o depredadors d’altres insectes que es mouen entre la vegetació, els quals a més poden ingerir líquids vegetals per complementar la seva dieta. També n’hi ha que viuen sota l’escorça alimentant-se de fongs, o a terra nodrint-se d’arrels. Alguns exemples de famílies terrestres fitòfagues són Pentatomidae i Coreidae; entre les xinxes depredadores, les quals utilitzen el seu estilet per inocular agents proteolítics a les seves preses, dissoldre-les i succionar el seu contingut, trobem molts representants de la família Reduviidae.

  • Aquàtics i semiaquàtics

Hi ha una gran diversitat de formes aquàtiques o semiaquàtiques depredadores i fitòfagues, les quals presenten adaptacions per viure en aquests ambients, com la presència de pèls hidròfugs (repel·leixen l’aigua). La majoria viu en llacs i rius, ja sigui únicament en la seva superfície (semiaquàtics) o submergits.

Les espècies semiaquàtiques solen presentar potes i antenes llargues que, juntament amb els pèls hidròfugs, els ajuden a sostenir-se sobre l’aigua; un exemple conegut de xinxes semiaquàtiques són els sabaters (família Gerridae), abundants a Europa.

Sabater (Gerris sp.). Imatge propietat de Webrunner (CC 3.0)

En canvi, les espècies aquàtiques solen presentar algun parell de potes transformat en paletes natatòries; en són un bon exemple els notonèctids (família Notonectidae), els quals presenten l’últim parell de potes aplanades i amb franges de pèls per augmentar la seva superfície.

Notonecta sp. (Notonectidae). Imatge propietat de Jane Burton/Bruce Coleman Ltd. (link).

Els heteròpters aquàtics necessiten l’aire per respirar, per la qual cosa realitzen ascensos periòdics a la superfície per captar oxigen. En aquest sentit presenten múltiples estratègies, com absorbir aire directament cap al seu sistema respiratori o traqueal mitjançant un sifó (família Nepidae) o capturar bombolles d’aire mitjançant els pèls hidròfugs (família Notonectidae). D’altres, simplement, queden envoltats d’una fina pel·lícula d’aire en sortir de l’aigua (plàstron) gràcies als pèls hidròfugs.

  • Hematòfags

També hi ha heteròpters que s’alimenten de sang com a paràsits d’aus i mamífers, podent ser potencials vectors de malalties. Aquest és el cas dels Cimicidae (com Cimex lectularius, la xinxa dels llits que dóna fama al grup) i alguns grups de Reduviidae, com la subfamília Triatominae, agents vectors de la malaltia de Chagas a Centre i Sud-amèrica principalment (sent Triatoma infestans el seu principal vector).

Nimfa de Cimex lectularius o xinxe dels llits. Imatge de domini públic.
Triatoma sp. (Triatominae). Imatge propietat de Bramadi Arya (CC 4.0).

Interès científic

Els heteròpters són interessants per diversos motius:

  • Contribueixen a regular les poblacions d’algunes plagues d’insectes en boscos i conreus, sent un element essencial en el control integrat de plagues. És el cas d’alguns heteròpters depredadors de les famílies Reduviidae, Anthocoridae, Miridae, Nabidae i Geocoridae. No obstant això, alguns heteròpters fitòfags també poden esdevenir plagues.
  • Han estat un model científic per estudiar la fisiologia dels insectes.
  • Formen una part important de la dieta humana en alguns països, sent especialment consumits els pentatòmids. També són molt apreciats a Àsia alguns heteròpters aquàtics, com Lethocerus sp. (Belostomatidae) a Vietnam i Tailàndia.
Lethocerus sp. Imatge propietat de Judy Gallagher a Flickr (CC 2.0).
  • Són vectors de malalties o causants de malestar. El cas més clàssic és la xinxa dels llits (Cimex lectularius), la qual ha esdevingut una plaga freqüent en regions temperades; alguns cimícids també resulten perjudicials per a les aus de corral. D’altra banda, i especialment a Amèrica, els redúvids de la subfamília Triatominae són agents vectors de malalties (com la malaltia de Chagas causada pel protozou Trypanosoma cruzi).

.                .                 .

Tots els organismes tenen alguna funció o utilitat, tan sols cal investigar una mica per esbrinar-ho. Incloses les xinxes!

Referències

Foto de portada propietat de Pavel Kirillov a Flickr, amb llicència Creative Commons 2.0. (link).

Abelles i vespes: alguns mites i com diferenciar-les

Malgrat que formen part del mateix ordre (Hymenoptera), abelles i vespes presenten tota una sèrie de trets i hàbits ben diferenciats; tanmateix, és molt habitual que la gent els confongui. A continuació, et facilitem una sèrie de claus senzilles per diferenciar-les i us desmentim alguns dels mites més comuns que giren al voltant d’aquests organismes.

Abelles i vespes: com les separem?

Abans de diferenciar-les visualment, coneguem una mica la seva classificació interna.

Vespes i abelles formen part de l’ordre dels Himenòpters, els quals es caracteritzen per presentar dos parells d’ales membranoses que romanen acoblades durant el vol gràcies a una sèrie de ganxos (hàmuli); a més a més, solen presentar antenes més o menys llargues, de 9-10 segments mínim, i un ovopositor que, en determinats grups, ha donat lloc a un fibló. Dins d’aquest ordre, tant abelles com vespes es classifiquen dins del subordre Apocrita, caracteritzats per presentar una “cintura” que separa el tòrax i l’abdomen.

Per la seva banda, els Apocrita es divideixen tradicionalment en dos grups, “Parasitica” i “Aculeata“, els quals ja vam esmentar en l’entrada “Què són i per què són útils els insectes parasitoides?:

  • Parasitica“: superfamílies molt abundants de vespes parasitoides d’artròpodes (calcidoideus, icneumonoideus, cinipoideus, etc.), a excepció de la família Cynipidae (vespes de les gales), formada per vespes paràsites de plantes. Cap d’aquestes vespes presenta fibló, així que podeu estar tranquils!
  • Aculeata“: inclou a la majoria de les vespes i abelles que tots coneixem (a més a més de les formigues), la majoria de les quals presenta agulló.

Fins aquí, podem veure que hi ha un gran nombre de vespes paràsites que es diferencien clarament de la resta d’abelles i vespes amb agulló. Si continuem aprofundint, dins dels “Aculeata” es distingeixen típicament 3 superfamílies:

  • Chrysidoidea: grup format per vespes paràsites (moltes d’elles, cleptoparàsites) i parasitoides. La família Chrysididae deu la seva popularitat a la coloració metàl·lica de bona part dels seus membres.
  • Apoidea: inclou les abelles i els borinots, a més de les antigament conegudes com a vespes esfecoidees, la majoria de les quals ha passat a formar part d’una altra família de apoideus (Crabronidae).
  • Vespoidea: grup majoritàriament format per les típiques vespes amb agulló (p.ex. família Vespidae) i per les formigues.
Crísido (Chrysididae). Autor: Judy Gallagher a Flickr, CC.

Claus senzilles per diferenciar-les

Després d’aquest repàs, molts pensareu que això de separar vespes i abelles no és tan senzill; i, en realitat, tindreu part de raó. Mentre que abelles i borinots pertanyen a un llinatge monofilètic (és a dir, un grup que inclou l’ancestre comú més recent i a tots els seus descendents), essent els seus caràcters força clars, el concepte de vespa és força més dispers.

A continuació, us presentem alguns trets morfològics i de comportament bàsics per diferenciar a les vespes i les abelles més comuns i fàcils de detectar d’una forma senzilla. A ulls d’entomòlegs experts, potser aquests resultin molt generals (i, de fet, hi ha molts altres caràcters complexos que permeten diferenciar-les); tanmateix, poden ser d’utilitat quan no es té gaire experiència:

  • Les abelles (i especialment els borinots) solen ser més robustes i peludes que les vespes, les quals no presenten pilositat aparent i solen ser més esveltes, amb el tòrax i l’abdomen habitualment més separats.
Esquerra: abella de la mel (Apis mellifera); autor: Kate Russell a Flickr, CC. Dreta: vesoa del gènero Polistes; autor: Daniel Schiersner a Flickr, CC.
  • La majoria d’abelles presenta adaptacions corporals per recol·lectar pol·len, les quals reben el nom d’escopa. En la majoria d’abelles, aquestes adaptacions es limiten a la presència de molts pèls a les potes posteriors. No obstant això, hi ha casos especials: a l’abella melífera (Apis mellifera), a banda de presentar pilositats, les tíbies de les potes posteriors es troben molt eixamplades, formant una mena de pales amb les que recullen el pol·len; en canvi, les abelles solitàries de la família Megachilidae no presenten pilositats ni eixamplaments a les potes posteriors, sinó una sèrie de pèls a la cara ventral de l’abdomen.
Esquerra: abella de la mel (Apis mellifera) amb les potes posteriors plenes de pol·len; autor: Bob Peterson a Flickr, CC. Dreta: Megachile versicolor, amb el detall de l’escopa a la cara ventral de l’abdomen; autor: janet graham a Flickr, CC.
Mascle de Halticoptera flavicornis, un calcidoideu (vespa parasitoide de pocs mil·límetres); autor: Martin Cooper a Flickr, CC.
  • Si et trobes un himenòpter més o menys esvelt amb una mena de “fibló” molt llarg, no t’espantis: segurament es tracti de la femella d’un parasitoide (per exemple, un icneumònid), i aquest llarg “fibló”, del seu ovopositor.
Femella d’icneumònid de l’espècie Rhyssa persuasoria; autor: Hectonichus, CC.

Moltes vespes volen amb les potes més o menys esteses ja que, llevat d’algunes excepcions, són caçadores.
• En apropar-nos a una planta amb flors, observarem una gran quantitat d’insectes volant i posant-se sobre elles. Amb quasi total seguretat, la majoria d’himenòpters que observarem seran abelles, ja que tots els adults i gairebé totes les larves són fitòfags (s’alimenten de productes vegetals), concretament de nèctar i pol·len.

Abella de la mel. Domini públic (Zero-CC0).
  • Si alguna cop has deixat menjar a l’aire lliure, segur que has vist com s’hi apropava algun himenòpter. Les larves de la majoria de vespes són carnívores, de manera que els adults aprofiten la mínima ocasió per capturar preses per a la seva descendència… o trossos d’alguna cosa que t’estiguis menjant.
Vespes tallant trossos de pollastre; autor: rupp.de, CC.

Això no s’acaba aquí: caçant mites

Ara que ja sabem més o menys com diferenciar-les a grans trets, destapem-ne alguns mites:

  • “Les vespes no participen en la pol·linització de les plantes”

Fals. És cert que les abelles juguen un paper molt rellevant en la pol·linització: la seva alimentació basada en la ingesta de nèctar i pol·len les fa visitar moltes flors i, a més a més, presenten moltes pilositats en les quals aquest hi queda adherit. No obstant això, la majoria de vespes adultes també ingereix nèctar, a banda d’altres aliments. Si bé no presenten tantes pilositats com les abelles, el simple fet de visitar flors fa que el seu cos entri en contacte amb el pol·len i part d’ell hi quedi adherit.

Existeix, també, el cas contrari: algunes abelles, com les dels gèneres Hylaeus i Nomada (aquestes últimes abelles cleptoparàsites les larves de les quals s’alimenten del pol·len emmagatzemat en nius d’altres abelles solitàries), no presenten adaptacions pel transport de pol·len , i el seu aspecte és més proper al d’una vespa.

Esquerra: mascle d’Hylaeus signatus; autor: Sarefo, CC. Dreta: abella solitària del gènere Nomada; autor: Judy Gallagher, CC.
  • Totes les abelles són herbívores i totes les vespes, carnívores”

Fals. Si bé gairebé totes les larves d’abella s’alimenten de pol·len i nèctar, i les de vespa, de preses que cacen els adults o bé que aquestes parasiten, hi ha excepcions. Les larves de les vespes de les gales (família Cynipidae) s’alimenten del teixit vegetal de la pròpia gala on es desenvolupen, mentre que les larves d’un petit grup d’abelles de la tribu Meliponini (gènere Trigona), presents al Neotròpic i en la regió Indo-australiana, s’alimenten de carronya, essent les úniques abelles conegudes no herbívores.

  • Les abelles són colonials i les vespes, solitàries”

Fals. Hi vespes i abelles tant colonials com solitàries. Les abelles de les mel són el cas d’abella colonial més típic, però hi ha una enorme diversitat d’abelles solitàries que construeix petits nius en cavitats preestablertes o que elles mateixes excaven. De la mateixa manera, també hi ha vespes colonials, com algunes del gènere Polistes (vespes papereres), que construeixen bresques en què s’estableixen certs rols jeràrquics (encara que solen ser més petites que les de les abelles).

  • Totes les abelles i vespes piquen

Fals. Les abelles de la tribu Meliponini, també anomenades abelles sense agulló, presenten un fibló tan reduït que manca de funció defensiva, de manera que presenten altres mètodes per defensar-se (mossegades). A més, les femelles d’algunes abelles (per exemple, família Andrenidae) no presenten fibló. Per descomptat, tots els mascles d’abelles i vespes no tenen fibló, ja que recordem que es tracta de l’ovopositor modificat.

  • Les abelles moren quan piquen; les vespes piquen molts cops”

Parcialment cert. En les abelles mel·líferes de l’espècie Apis mellifera, la superfície del fibló està coberta d’una sèrie de barbes que li donen un aspecte de serra, de manera que l’agulló queda clavat a la superfície de la seva víctima, arrossegant rere seu tot el contingut abdominal al qual es troba adherit. A les vespes, les abelles solitàries i els borinots, en canvi, la superfície de l’agulló és gairebé llisa o les barbes estan molt reduïdes, podent retreure-les i retirar el fibló sense patir danys.

Detall del fibló d’una abella de la mel; autor: Landcare Research, CC.
  • “Les vespes són més agressives que les abelles”

Depèn. En general, les vespes tenen més facilitat per nidificar en qualsevol lloc, de manera que és més probable que les persones i altres animals entrin en contacte amb els seus nius. Per contra, les abelles solen tenir preferència per llocs menys exposats. Tanmateix, això no sempre és així: les abelles africanes, de les quals ja vàrem parlar en una altra entrada, poden nidificar en gairebé qualsevol lloc i són molt agressives.

  • Les vespes són de colors més cridaners que les abelles”

Fals. De fet, parcialment fals. En no tenir pilositat aparent, la coloració de les vespes sol ser més cridanera en termes generals. No obstant això, hi ha gèneres d’abelles amb colors molt cridaners, com les solitàries Anthidium, amb una coloració abdominal molt cridanera, similar a la d’una vespa, o les abelles de les orquídies. De la mateixa manera, hi ha vespes de coloració fosca i poc cridanera.

Mascle d’Anthidium florentium; autor: Alvesgaspar, CC.

.        .         .

Encara que existeixen moltes altres diferències, esperem que aquest resum us ajudi a reconèixer-les … I a estimar-les per igual!

REFERÈNCIES

Imatge de portada formada per dues fotografies propietat de Kate Russell, CC (esquerra) i Daniel Schiersner, CC (dreta).

 

Entomologia forense: artròpodes a l’escenari del crim

Inevitablement, tard o d’hora la vida finalitza per tots els organismes. Però allà on el cicle de la vida acaba per a uns, d’altres hi troben l’oportunitat per iniciar-ne el seu i desenvolupar-se.  Els insectes i altres artròpodes són alguns dels organismes que treuen profit de les restes d’altres éssers un cop morts, i el seu estudi ens ofereix una informació molt valuosa per fixar el moment, lloc i circumstàncies de la mort (quelcom molt interessant en criminologia). Com s’aconsegueix aquesta informació a través del seu estudi? Continua llegint per assabentar-te’n.    

Què és l’entomologia forense?

L’entomologia forense és una branca de l’entomologia aplicada centrada en l’estudi d’insectes i altres artròpodes com a proves científiques en matèries legals; tanmateix, el seu ús més conegut és el mèdic-legal. L’entomologia forense mèdica se centra en l’estudi dels artròpodes associats a un cos mort amb la fi de determinar el temps transcorregut des de la seva mort, a més a més de les circumstàncies i el lloc en què aquesta es va produir. Es tracta d’una eina de gran interès en criminologia, per exemple, per valorar la coartada d’un sospitós d’assassinat o per ajudar en les tasques d’identificació d’una víctima.

Crani humà cobert d’escarabats dermèstids. Imatge de domini públic.

L’entomologia forense no és, ni de bon tros, una disciplina moderna. El primer cas del qual es té constància que es resolgué aplicant aquesta disciplina data del segle XIII a la Xina, en el qual es descobrí la identitat de l’assassí (que era llaurador) depositant tots els sospitosos les seves falçs a terra i advertint que les mosques se sentien atretes únicament per una d’elles (l’arma del crim).

En aquell moment, l’ús d’aquesta disciplina era més aviat anecdòtica i ben poc es sabia de les bases que la regien. De fet, no va ser fins el segle XVII que Francesco Redi refutà la idea de la “generació espontània”, la qual sostenia que certes formes de vida sorgien de forma espontània a partir de matèria orgànica i inorgànica. Redi, mitjançant diversos experiments, demostrà quelcom que, a dia d’avui, ens resulta obvi: que la vida es genera a partir de la vida; en conseqüència, que els insectes que trobem en un cadàver hi són perquè ja hi eren abans (en forma d’ous o larves).

Inconscientment, l’experiment de Redi també revelà més coses: per exemple, que en funció de la ubicació o climatologia en la que es situï el cadàver, es desenvolupen insectes diferents i en diferent quantitat (o, fins i tot, cap donat el cas). Això és quelcom especialment útil per esbrinar on es va produir la mort exactament i si el cadàver va ser traslladat.

Històricament, no va ser fins el segle XIX que Bergeret, un metge francès, juntament amb els descobriments de Redi i Orfila (qui va llistar més de 30 insectes i altres artròpodes que colonitzen un cos mort), amplià i sistematitzà l’entomologia forense, moment en què començà a fer-se sevir seriosament en medicina. Tanmateix, es considera que el naixement real d’aquesta disciplina tingué lloc el 1894 a partir de la publicació “La Fauna dels Cadàvers. Aplicació de l’Entomologia a la Medicina Legal” escrita per J. P. Mégnin.

Per a què serveix i com s’aplica?

Quan es produeix un crim, un criminalista es fa tres preguntes bàsiques: Com? Quan? On? D’aquestes qüestions, l’entomologia forense pot respondre a les del moment i lloc de la mort.

Quan?

Des d’un punt de vista legal, és essencial conèixer el temps transcorregut des de la mort de la víctima. Aquest lapse de temps rep el nom d’Interval Post-Mortem (IPM). En cossos humans, aquest valor s’estima mitjançant tres mètodes: histològic (temperatura, rigidesa, livideses cadavèriques,…), químic (determinació dels nivells de certs elements químics o compostos) i zoològic (acció per animals i invasió d’insectes), als quals se’ls ha de sumar el grau de deteriorament de teixits plàstics, teles, etc. Tanmateix, passades 72 hores el mètode més eficaç per establir l’IPM és l’entomologia forense.

Hi ha dues formes d’estimar l’IPM mitjançant els artròpodes, que poden fer-se servir tant per separat com en conjunt depenent del cas:

  • Determinar l’edat i la taxa de desenvolupament larvari. Es fa servir durant les primeres fases de descomposició del cadàver.
Larves de Calliphora sp. Autor: Hans Hillewaert, CC.
  • Determinar la composició i grau de creixement de la comunitat d’artròpodes i, després, comparar-los amb els patrons que es donen en hàbitats i condicions ambientals propers. Es fa servir en fases més avançades de descomposició.

On?

El lloc de la mort determina quines espècies d’artròpodes es desenvolupen en un cadàver i la forma com aquestes es van succeint en el temps. Entre els paràmetres més determinats es troben la regió biogeogràfica (no existeixen les mateixes espècies al tròpic i a les zones temperades), l’època de l’any (en mitjanes latituds, les estacions influeixen en els cicles biològics) i les característiques particulars de l’hàbitat (humitat, radiació solar, accessibilitat i exposició, etc.), les quals poden facilitar o dificultar la colonització i, conseqüentment, alterar les estimacions de l’IPM.

Veureu que, al llarg de l’article, ens referim constantment a insectes i altres artròpodes terrestres: això és degut a què la determinació de l’IPM i del lloc de la mort en cossos trobats en ambients aquàtics és molt més complexa i requereix de molts altres paràmetres.

Els protagonistes: els artròpodes

Classificació

Entre els artròpodes que podem trobar en un cadàver, distingim:

  • Necròfags: s’alimenten directament del cadàver i constitueixen el grup més important. Inclouen dípters (famílies Calliphoridae, Sarcophagidae, Muscidae, Phoridae…) i coleòpters (famílies Silphidae, Dermestidae…).
  • Depredadors i paràsits de necròfags: són el segon grup més rellevant, el qual inclou coleòpters (famílies Silphidae, Staphylinidae, Histeridae), dípters (famílies Calliphoridae, Stratiomydae) i himenòpters paràsits de larves i pupes de dípters (p. ej. Ichneumonidae) que s’havien instal·lat prèviament al cos.
  • Omnívors: vespes, formigues i coleòpters que s’alimenten tant del cadàver com d’altres artròpodes del cos.
  • Espècies accidentals: aquelles espècies que fan servir el cos com una extensió del seu hàbitat i que varien molt segons aquest (col·lèmbols, aranyes, centpeus, àcars, etc.).

Per saber més sobre relacions entre organismes, pots llegir “La simbiosi: relacions entre éssers vius“.

La colonització d’un cadàver pas a pas

Tot i les variacions que es donen en cada cas en particular, la colonització i successió d’artròpodes en un cos segueix un patró bastant constant.

  1. Degradació de principis immediats

Diferents dípters (Calliphoridae i/o Sarcophagidae) es veuen atrets pels gasos despresos durant les primeres fases de degradació (amoníac, àcid sulfhídric, nitrogen, diòxid de carboni) i realitzen la posta en orificis naturals (ulls, nas i boca), en ferides o en la superfície en contacte amb el substrat, on la humitat és elevada degut a la secreció de fluids. Tanmateix, el seu olfacte és tan fi que a vegades arriben, fins i tot, abans que la persona hagi mort, sobretot quan hi ha ferides!

Pots llegir més sobre els sentits dels insectes i com es comuniquen a “Com es comuniquen els insectes?“.

Poques vegades trobem aquestes dues famílies de dípters junts al mateix cadàver, probablement perquè les larves dels sarcofàgids depreden les dels califòrids.

Calliphora vicina (esquerra) i Sarcophaga carnaria (dreta). Autors: AJC1, CC; James K. Lindsey, CC.

Conèixer l’estat de desenvolupament de les larves i les pupes de cada espècie, la seva durada i característiques resulta essencial per estimar l’IPM. Aquests paràmetres poden variar entre espècies, degut a les condicions externes o a les circumstàncies de la mort; a més a més, la seva presència és tan comuna que la seva absència també resulta informativa.

 2. Fermentació butírica dels greixos

Amb la fermentació dels greixos apareixen els primers coleòpters (Dermestidae) i alguns lepidòpters (p.ex. l’arna Aglossa pinguinalis), essent comuns en cadàvers d’un mes. Mentre que el cicle dels dermèstids dura entre 4-6 setmanes (alimentant-se les larves dels greixos i de les mudes de colonitzadors anteriors), el dels lepidòpters com A. pinguinalis pot durar fins a la següent primavera si les temperatures no són les adients per a què tingui lloc l’eclosió de les crisàlides.

Dermestes maculata (esquerra) i Aglossa pinguinalis (dreta). Autors: Udo Schmidt, CC; Ben Sale, CC.

 3. Fermentació caseica de las proteínas

En aquesta fase de la descomposició del cos, apareixen dípters habituals en processos de fermentació del formatge o de l’assecat del pernil (Piophila sp., Fannia sp., així com drosòfils, sèpsids i esferocèrids). També apereixen coleòpters del gènere Necrobia.

Piophilia casei (esquerra) i Necrobia violacea (dreta). Autors: John Curtis, Dominio Público; Siga, CC.

 4. Fermentació amoniacal

Durant aquesta fase, apareixen els darrers grups de dípters (gènere Ophira i família Phoridae essencialment), els quals solen viure en nius d’ocells i caus alimentant-se de restes d’aliments, excrements i residus orgànics dels seus hostes, i grups de coleòpters necròfags dels gèneres Nicrophorus, Necrodes i Silpha habituals en cossos en estat avançat de descomposició. També apareixen coleòpters depredadors de les famílies Staphylinidae (gèneres Coprohilus, Omalium i Creophilus) i Histeridae (gèneres Hister i Saprinus).

Nicrophorus humator (esquerra) i Coprophilus striatulus (dreta). Autors: Kulac, CC; Udo Schmidt, CC.

 5. Desaparició de restes

Passats més de 6 mesos, el cadàver està pràcticament sec. En aquest moment, apareixen ingents quantitats d’àcars de diferents espècies que s’alimenten de les floridures i dels fongs que creixen al cos. Posteriorment, també hi acudeixen coleòpters que s’alimenten de les restes de pèls i ungles (Dermestes, Attagenus, Rhizophagus, etc.), algunes espècies de dermèstids presents en etapes anteriors i alguns lepidòpters.

Passat més d’un any, a les poques restes que hi puguin quedar a vegades apareixen alguns coleòpters (gèneres Ptinus, Torx i Tenebrio).

Tenebrio obscurus. Autor: NobbiP, CC.

.           .           .

L’entomologia forense és tan sols un exemple de com d’útil és conèixer els insectes i altres artròpodes des d’un punt de vista taxonòmic i ecològic per finalitats pràctiques. Tanmateix, existeixen moltes altres aplicacions. Les coneixes o t’agradaria conèixer-les? Pots aportar els teus suggeriments i curiositats als comentaris.

Referències

  • Entomología Forense. Colegio de Postgraduados.
  • Joseph, I., Mathew, D. G., Sathyan, P., & Vargheese, G. (2011). The use of insects in forensic investigations: An overview on the scope of forensic entomology. Journal of forensic dental sciences, 3(2): 89.
  • Magaña, C. (2001). La entomología forense y su aplicación a la medicina legal. Data de la muerte. Boletín de la Sociedad Entomológica Aragonesa, 28(49): 161.

Foto de portada: muntatge realitzat per l’autora d’aquest article a partir de diferents imatges (vector de la mosca: Icona disenyada per Freepik des de www.flaticon.com amb llicència CC 3.0 BY).

Els xifosurs: “fòssils vivents” entre els artròpodes

Els xifosurs o “cassoles de les Moluques” són, probablement, uns dels artròpodes vivents més primitius que existeixen. D’aspecte prehistòric, marins i extremadament reduïts en la fauna actual, aquests organismes emparentats amb els aràcnids han sobreviscut, sense patir gaires canvis, a nombroses extincions…fins a l’actualitat. En aquest article us expliquem amb detall les seves principals característiques, així com les seves actuals amenaces.

Què són els xifosurs?

Els xifosurs (del grec antic xíphos “espasa” i ourá “cua”), coneguts popularment com a “cassoles de les Moluques”, són uns artròpodes marins l’origen dels quals es remunta a l’Ordovicià (485,4 ±1,9 – 443,8 ±1,5 MA), al Paleozoic. Originalment, constituïen una part molt important de la fauna aquàtica; tanmateix, actualment el seu número és extremadament reduït i la seva diversitat es limita a tan sols 4 espècies classificades dins d’un únic ordre (Limulida), essent la resta grups fòssils.

Per saber més sobre els fòssils: Coneixent els fòssils i la seva edat“.

Limulus polyphemus o cassola de les Moluques de l’Atlàntic. Font: Domini Públic.

Degut a la seva estabilitat morfològica en relació a les formes fòssils del Carbonífer i del Triàsic, les espècies actuals es considerenfòssils vivents” (terme que només hauria d’emprar-se en un context divulgatiu), a més a més de les úniques que sobrevisqueren a diversos processos d’extinció.

Quin lloc ocupen en l’arbre de la vida?

De la mateixa manera que els picnogònids o aranyes de mar (a les quals ja vam dedicar una entrada), la posició dels xifosurs en l’arbre de la vida ha estat objecte de discussió. Fins fa pocs anys, els xifosurs s’agrupaven amb els euriptèrids o escorpins marins (actualment extints) degut a certes semblances morfològiques, formant els grup dels Merostomata. Tanmateix, anàlisis més detallats determinaren que els escorpins marins no estarien directament relacionats amb els xifosurs, motiu pel qual actualment el grup Merostomata es considera artificial i, conseqüentment, mancat de validesa científica.

Eurypterus, fòssil d’euriptèrid més comú i el primer gènere descrit. Autor: Obsidian Soul, CC.

La posició més acceptada actualment és que els xifosurs constitueixen per sí mateixos una classe d’artròpodes (classe Xiphosura) dins la superclasse dels quelicerats (subfilum dels queliceromorfs). Alhora, es classifiquen dins el grup dels euquelicerats juntament amb dues classes més: els aràcnids i els ja mencionats euriptèrids.

I sobretot…malgrat els seu aspecte i ser marins, NO estan emparentats amb els crustacis!

Font: Tree of Life Web Project.

Anatomia externa i interna

De la mateixa manera que la majoria de queliceromorfs actuals, els xifosurs tenen el cos dividit en dos segments o tagmes (prosoma i opistosoma), el cap indiferenciat del tòrax, i les antenes i les mandíbules absents. Tanmateix, el caràcter que millor defineix els queliceromorfs és la presència de quelícers, uns apèndixs pre-orals modificats que desenvolupen funcions relacionades sobretot amb l’alimentació. En les aranyes, per exemple, constituirien els típics “ullals”.

Els xifosurs són d’una mida que va d’uns pocs a uns 60 cm de longitud. Dorsalment, el seu cos està cobert d’una closca quitinosa no segmentada dividida en dues parts articulades més o menys equivalents al prosoma i l’opistosoma:

Visió dorsal. Imatge modificada a partir de la fotografia original de Didier Descouens, CC.

Veiem ara les característiques anatòmiques més rellevants de les formes actuals (Limulida):

Tagmes: prosoma i opistosoma

Al prosoma, la closca presenta tres crestes: una de central i dues de laterals. A la part anterior de la cresta central es situen dos ocels diminuts, mentre que a la part externa de les laterals, hi trobem els ulls compostos. La closca s’allarga lateralment cap enrere formant una mena d’ales, les puntes genals. Ventralment, aquesta s’eixampla anteriorment formant una àrea triangular, l’hipostoma, on se situen diversos òrgans sensorials, com els ocels ventrals (que degeneren en l’edat adulta) i l’òrgan frontal.

L’opistosoma presenta els segments fusionats (diferenciats als membres de l’ordre “Synziphosurina”, actualment extints); tanmateix, aquests encara es poden identificar mitjançant les espines mòbils laterals i les fossetes dorsals (6 en total, corresponents als 6 segments fusionats). L’opistosoma finalitza en una espina caudal articulada, el tèlson, el qual dóna nom al grup.

Visió dorsal. Imatge modificada a partir de la fotografia original de Didier Descouens, CC.

Apèndixs

El prosoma presenta 6 parells d’apèndixs: un parell de quelícers per capturar l’aliment i 5 parells de potes locomotores. Aquestes últimes presenten una doble funció, doncs a banda de permetre el desplaçament de l’animal, la seva base està dotada d’unes dents fortes amb què trituren l’aliment. Aquestes bases també s’uneixen al centre formant un canal (endostoma) per canalitzar l’aliment i dur-lo a la boca. Totes les potes locomotores finalitzen en una quela o pinça ben formada, excepte el primer parell en els mascles. L’últim parell presenta un òrgan en ambdós sexes, el flabel, que utilitzen per analitzar la composició de l’aigua.

Al prosoma també hi tenen els quilaris, uns apèndixs vestigials corresponents al primer parell d’apèndixs de l’opistosoma que impedeixen que l’aliment triturat s’escapi per darrera de les bases del darrer parell de potes locomotores.

Detall dels apèndixs del prosoma (vista ventral). Imatge modificada a partir de la fotografia original de Wayne marshall, CC a Flickr.

L’opistosoma també presenta 6 parells d’apèndixs molt modificats: un parell d’opercles genitals més o menys fusionats, a la cara posterior dels quals s’obren els orificis genitals, i 5 parells de brànquies laminars per respirar, protegides per la placa que formen els opercles.

Visión ventral. Imagen modificada a partir de la fotografía original de KatzBird, CC en Flickr.

Un sistema circulatori molt especial

Tot i ser artròpodes, els xifosurs presenten un sistema circulatori molt desenvolupat, amb un complex de “venes” i “artèries” que ben poc es distancien de les d’organismes més complexos. La seva sang conté dos tipus cel·lulars: els amebòcits, equivalents als leucòcits o glòbuls blancs, i els cianòcits, equivalents als eritròcits o glòbuls vermells, però amb hemocianina enlloc d’hemoglobina. Quan l’hemocianina transporta oxigen o entra en contacte amb l’aire, la sang dels xifosurs adquireix un color blau molt característic.

El líquid blau que observem a la imatge correspon a la sang de l’individu. Autor: Dan Century, CC a Flickr.

Biologia

Reproducció i desenvolupament

Durant l’època reproductora, els xifosurs s’apropen en grans grups a les platges o estuaris. En el moment de l’aparellament, els mascles es col·loquen sobre les femelles i s’hi aferren mitjançant les pinces rudimentàries del primer parell de potes. Amb el mascle a l’esquena, les femelles es desplacen fins a la sorra on hi excaven un clot on dipositen entre 200-300 ous sense fecundar. A continuació, el mascle rega els ous amb el seu esperma (fecundació externa), els quals queden enterrats com a conseqüència de les marees.

La reproducció dels xifosurs és tot un espectacle!. Autor: U.S. Fish and Wildlife Service Northeast Region, CC a Flickr.

Després de l’eclosió, els xifosurs passen per dos estadis larvaris pelàgics (viuen a la columna d’aigua) abans d’assolir la forma adulta bentònica lligada al substrat: larva trilobítica, amb els apèndixs opistosòmics poc formats i el tèlson curt, i larva prestwiquianela, amb els apèndixs i el tèlson ben formats. La seva esperança de vida pot arribar als 20 anys.

Ecologia i distribució

Els xifosurs actuals són essencialment marins, encara que entre els seus parents fòssils també n’hi havia que vivien en aigües salobroses i dolces. Són excavadors i habiten fons llimosos o sorrencs entre 3-9 metres de profunditat. Per excavar, s’ajuden dels marges de la seva closca i dels quatre primers parells de potes locomotores, alhora que amb el tèlson aixequen l’opistosoma de manera que el cinquè parell pugui analitzar i filtrar l’aigua.

En cas de nedar, ho fan de forma invertida, com en aquest vídeo de Wayne Brear:

Són depredadors d’anèl·lids, mol·luscs, així com d’altres invertebrats bentònics. Alhora, també poden alimentar-se d’algues que tallen amb les pinces de les seves potes.

Com ja s’ha comentat, la diversitat actual de xifosurs està representada per 4 espècies dins l’ordre Limulida: Limulus polyphemus (costa atlàntica d’Amèrica del Nord), Tachypleus tridentatus, Tachypleus gigas i Carcinoscorpius rotundicauda (costa indopacífica).

Distribució aproximada de les 4 espècies vivients de xifosurs. Font: Charmichael & Brush, 2012.

Quin és el seu estat de conservació?

Els humans ho hem tornat a fer. Tot i haver sobreviscut a nombroses extincions, els xifosurs es troben ara més amenaçats que mai per causes antròpiques. Entre les principal amenaces destaquen:

  • Alteració dels seus hàbitats: canvis en la temperatura de l’aigua degut a l’escalfament global, contaminació i empobriment o destrucció de les platges (essencials per la seva reproducció). És, d’entre totes les amenaces, la més problemàtica.
  • Ús com a esquer: tradicionalment, els xifosurs s’han capturat pel seu ús com a esquers en la indústria pesquera.
  • Usos biomèdics: la sang dels xifosurs s’utilitza en biomedicina en un test anomenat Limulus amebocyte lysate” (LAL), donat que els seus amebòcits reaccionen vers certes endotoxines bacterianes formant coàguls. El LAL s’empra, per tant, per detectar la presència de bactèries sobre diferents materials. Actualment, la forma d’obtenir la sang és força invasiva i, tot i tornar els individus al seu hàbitat, la seva mortalitat després de l’extracció continua essent elevada.
  • Ús en investigacions sobre la visió, el sistema endocrí i altres processos fisiològics.
  • Alimentació: en alguns països asiàtics, es consumeixen en plats tradicionals o en certs rituals.
  • Compra/venta com a animals de companyia.
Procés d’extracció de sang pel test LAL. Font: National Geographic/Getty Images.
Plat preparat a base de xifosur a Si Racha (Tailàndia). Autor: Marshall Astor, CC.

Les poques dades existents sobre el seu estat de conservació provenen de l’espècie americana Limulus polyphemus, actualment en situació vulnerable i amb una tendència decreixent de les seves poblacions des de fa 100 anys (segons la IUCN).

Recentment, s’ha descobert que els xifosurs són un component important de les xarxes tròfiques bèntiques; a més a més, els seus ous són un suplement alimentari de la dieta de diferents aus migratòries costeres dels EUA. És per aquests motius que actualment existeix un interès creixent en conservar i promoure les seves poblacions, a més a més de per la seva enorme importància biomèdica, cultural i econòmica.

.           .           .

Resoldre les relacions filogenètiques d’un grup format majoritàriament per organismes fòssils no és pas una tasca senzilla. Tot i que ara que comencem a entreveure el seu origen i parentiu, estem condemnant-los a poc a poc a la seva desaparició. Ni els fòssils vivents es salven de la sisena extinció!

Referències

  • Carmichael, R. H. & Brush, E. (2012). Three decades of horseshoe crab rearing: a review of conditions for captive growth and survival. Reviews in Aquaculture, 4(1): 32-43.
  • Chacón, M. L. M. & Rivas, P. (2009). Paleontología de invertebrados. IGME.
  • Grimaldi, D. & Engel, M. S. (2005). Evolution of the Insects. Cambridge University Press.
  • Marshall, A. J., & Williams, W. D. (1985). Zoología. Invertebrados (Vol. 1). Reverté.
  • Pujade-Villar, J. & Arlandis, J. S. (2002). Fonaments de zoologia dels artròpodes (Vol. 53). Universitat de València.
  • The IUCN Red List of Threatened Species: Horseshoe crabs.
  • Xifosuros: Animales de la realeza. Boletín Drosophila.

Imatge de portada propietat de Didier Descouens, CC.

L’abella assassina: el cas que conmocionà Amèrica

A la dècada dels 60, la premsa americana va treure a la llum un cas que posà en alerta mig món: la hibridació entre dues abelles de la mel havia donat com a resultat a un nou organisme “imparable, agressiu i letal”. L’abella assassina havia arribat.

Durant molt de temps, aquest petit insecte va protagonitzar múltiples portades de diaris i revistes, arribant, fins i tot, a inspirar algunes pel·lícules de terror (com “The Swarm”, del 1978). Però en quin moment la ficció va superar la realitat? Què hi ha de verídic en aquesta història? T’ho expliquem en aquest article.

L’origen de l’abella assassina

Les abelles de la mel més famoses pertanyen a l’espècie Apis mellifera, àmpliament distribuïda arreu del món. Totes les seves subespècies són originàries d’Europa, Àfrica i part d’Àsia, tot i que moltes d’elles (sobretot les europees) han estat importades a moltes parts del món degut a la seva importància com a pol·linitzadores i productores de mel.

Pots llegir més sobre aquest tema al post “La vida en família de les abelles i l’apicultura“.

apiario-abejas
La cria d’abelles de la mel (apicultura) és una pràctica molt estesa arreu del món. A Amèrica, les abelles de la mel europees foren importades per aquesta finalitat. Autor: Emma Jane Hogbin Westby, CC a Flickr.

L’origen de les abelles assassines es troba en la subespècie A. mellifera scutellata o abella africana, originària de l’Àfrica subsahariana i del sud-est d’Àfrica. A diferència de les abelles europees, són molt agressives. A Amèrica, aquestes abelles van creuar-se amb abelles de la mel europees importades, generant uns híbrids coneguts com a abelles africanitzades o brasileres. Aquestes abelles híbrides, juntament amb les abelles africanes originals de la subespècie scutellata i els seus descendents al continent americà, són les que van rebre el sobrenom d’abelles assassines.

distriubució-abella_africana
Distribució nativa de l’abella de la mel africana. Font: UF/IFAS, Universidad de Florida. Il·lustració original de Jane Medley, Universitat de Florida.

Com i per què es va expandir?

Als anys 50, la importació d’abelles europees a Amèrica era una pràctica habitual. Ara bé, mentre que l’apicultura funcionava bé als EUA, a Sud-Amèrica el rendiment era baix degut a la inadaptació de les abelles al clima tropical. Així va ser com l’any 1956, el científic brasiler Warwick Kerr proposà la importació d’abelles de la mel africanes a Sud-Amèrica degut a què els seus requeriments climàtics encaixaven perfectament amb el clima brasiler; quedava, però, solucionar el problema de l’agressivitat. La idea del Dr. Kerr era obtenir una varietat dòcil que fos productiva en climes tropicals mitjançant la selecció artificial i l’entrecreuament entre abelles africanes i europees.

Tot podria haver estat un èxit si no fos perquè algunes abelles experimentals van escapar durant el projecte, formant ràpidament noves colònies a la natura i hibridant-se amb abelles europees per donar lloc a les ja mencionades abelles africanitzades, més agressives i menys productives del que Kerr esperava obtenir. Així, els apicultors es trobaven amb què les seves abelles eren a poc a poc substituïdes per híbrids difícils de manipular i potencialment més perillosos.

Actualment, aquestes abelles es troben molt distribuïdes per tot el continent americà. Als EUA, el seu límit es troba als estats surenys, doncs el seu origen tropical va frenar la seva progressió cap al nord.

Expansió-abella_assassina
La progressió de l’abella assassina pel continent americà va ser molt ràpida, arribant fins els estats situats més al sud dels EUA. Font de la imatge original: Harvard University Press (86).

Les abelles assassines de prop

Morfologia

Un dels principals problemes amb què es trobaven els apicultors era distingir les abelles europees de les africanes i les africanitzades, doncs pràcticament no es diferencien a simple vista. El seu estudi, però, ha permès evidenciar dues diferències: tant abelles africanes com africanitzades són lleugerament més petites (aprox. 10%) i sensiblement més fosques que les europees. Tanmateix, continuen sent necessaris anàlisis morfomètrics per diferenciar-les correctament, sobretot quan els gens africans estan més diluïts.

apis_mellifera_scutellata-apis_mellifera_mellifera
A l’esquerra, Apis mellifera scutellata o abella africana; a la dreta, Apis mellifera mellifera o abella de la mel europea. Autor: Scott Bauer, USDA Agricultural Research Service, United States. Domini públic.

Comportament

Les abelles africanes presenten diferències en determinats trets del seu comportament que les fan potencialment més perilloses que les seves parents europees:

  1. Més agressives. L’exposició a diferents pressions ambientals al seus hàbitats d’origen podria ser la causa d’aquesta diferència: a Europa, tradicionalment s’han seleccionat i criat varietats més manses i fàcils de gestionar, mentre que a Àfrica és habitual la recol·lecció directa dels ruscs salvatges. Aquesta pràctica, més la presència d’enemics naturals, podria haver seleccionat individus amb una major capacitat per defensar el niu.
  1. Atac massiu. Mentre que les europees ataquen en números no superiors a 10-20 individus, les africanes ho fan en grups de centenars, podent causar entre 100-1000 picades. Existeixen evidències de la producció de feromones alliberades durant l’atac que incitarien a altres individus a unir-s’hi. Alhora, el territori que defensen al voltant del niu és molt superior i el nivell d’estímul que necessiten per iniciar un atac és molt més baix.

1283

bees_mackley_hospital
Els casos d’atacs massius d’abelles africanes i africanitzades són poc freqüents, però impactants. A dalt, els granjer Lamar LaCaze va ser atacat per una colònia de 70.000 abelles que s’havia instal·lat dins d’un antic escalfador d’aigua (Font: Inside Edition). A baix, el cas de l’escalador Robert Mackley, el qual va ser atacat durant més de 3 hores quan va quedar atrapat mentre efectuava una ascenció; va rebre al voltant de 1500 picades (Font: Phoenix New Times; autor: Robert Mackley) .
  1. Facilitat per formar eixams. Les colònies d’abelles europees formen eixams (quan unes quantes abelles marxen amb l’abella reina per formar una nova colònia) d’1 a 3 cops l’any, mentre que les abelles africanes poden arribar a formar-ne fins a 10 cops l’any, més encara si se senten amenaçades.
eixam_abella-assassina
Eixam d’abelles de la mel africanes. Autor: Michael K. O’Malley, University of Florida.
  1. Selecció del lloc de nidificació. Les abelles africanes són molt poc selectives a l’hora d’escollir un lloc de nidificació, de manera que se’n poden trobar en una gran varietat d’espais, sobretot petits: canonades, cubells de les escombraries, esquerdes de cases, forats al terra, etc.
Niu-abella_assassina
Una colònia d’abelles africanes establerta a l’interior d’un cubell. Autor: Michael K. O’Malley, University of Florida.
africanized_honey_bee_hive
Niu d’abelles africanitzades instal·lat a les estructures d’un habitatge. Autor: Ktr101, CC.
  1. Usurpació de nius d’abelles europees. Aquest és, possiblement, un dels aspectes més curiosos del seu comportament. El procés té lloc molt subtilment: les obreres d’un eixam d’abelles africanes que aterra al niu d’una colònia d’abelles europees comencen a intercanviar menjar i feromones amb les obreres europees; d’aquesta manera, les abelles europees deixen de veure-les com a intruses i les adopten dins del rusc. De cop, en algun moment del procés la reina de la colònia europea mor i és substituïda per la reina africana. Així, les abelles europees són substituïdes per abelles africanes i els seus híbrids.

Biologia

Tot i que la biologia reproductiva i el desenvolupament de les abelles de la mel és molt semblant, hi ha alguns trets de les africanes que els confereixen certs avantatges adaptatius respecte de les europees, fet que explicaria en bona part l’èxit de la seva dispersió a Amèrica:

  1. Major producció de mascles haploides per partenogènesi (abellots). Aquests formen grans núvols durant el vol reproductor que superen amb escreix els dels mascles europeus. Així, la probabilitat que les reines europees entrin en contacte i copulin amb mascles africans és molt superior, fet que afavoreix els gens de la subespècie africana.
  1. Desenvolupament molt més ràpid. Les colònies creixen i es dispersen ràpidament.
  1. Major resistència a patògens i paràsits. Per exemple a la varroa, a l’escarbat dels ruscs Aethina tumida o a les bactèries del gènere Paenabacilis, els quals han acabat amb moltes poblacions d’abelles europees a Amèrica.
varroa_destructor_on_a_bee_nymph_5048094767-min
Varroa destructor sobre una nimfa d’abella de la mel europea. Autor: Gilles San Martin, CC.

La forma com s’expressen tots aquests trets en les abelles híbrides varia segons la proporció de gens europeus i africans que presentin, fet que depèn de la distància al focus original de dispersió. Així, per exemple, als EUA són genèticament més semblants a les europees i generalment resulten menys agressives.

Són realment un risc per a la salut pública?

Amb el número de picades que reben les seves víctimes (provocant reaccions anafilàctiques en persones no al·lèrgiques), la ferocitat de l’atac, la gran versatilitat a l’hora de seleccionar un lloc on nidificar (podent ser més pròximes a zones urbanitzades) i l’especial sensibilitat que presenten vers qualsevol soroll o vibració (podent desencadenar la formació d’eixams), n’hi ha prou per dir que constitueixen un risc per la salut pública.

Tanmateix, els casos més sonats d’atacs massius solen ser fets aïllats, i el que més preocupa a nivell de salut pública són els grups de risc (nens, persones grans i malaltes o incapacitades) i els animals domèstics, els quals tindrien més dificultats per fugir i sobreviure a un atac, encara que aquest no fos tant massiu.

Tot i el risc potencial que poden suposar, actualment la situació està molt controlada gràcies a què el seu estudi i seguiment han permès posar en marxa diferents mesures per tenir un bon control de les seves poblacions i, fins tot, treure’n profit. Per exemple, a Centre i Sud-Amèrica fa anys que les crien per produir mel i pol·linitzar conreus, havent-se convertit en uns grans productors a escala mundial. Per fer-ho, apliquen mesures de gestió dels nius una mica diferents a les habituals, com deixar que es desenvolupi una única colònia per rusc.

warning_killer-bee-area
Cartell en el que s’alerta de la presència d’abelles africanitzades; d’aquesta manera, es minimitza el risc d’entrar en contacte amb les seves colònies. Aquesta mesura, juntament amb la detecció prematura d’individus i a l’eliminació d’espais potencialment colonitzables per evitar l’assentament de colònies, formen part de les mesures de prevenció per evitar la progressió i interacció amb aquests organismes. Font de la imatge: ALTHEA PETERSON/Tulsa World.

.          .          .

Tot i que l'”abella assassina” pot esdevenir perillosa donat el cas, no se l’hauria de considerar un mal major donat a l’enorme informació i control que existeix actualment sobre les seves poblacions. Tanmateix, un cop més es demostra que la interacció de l’ésser humà en els ecosistemes i la introducció d’espècies forànies pot jugar males passades…

REFERÈNCIES

  • Calderón, R. A., Van Veen, J. W., Sommeijer, M. J., & Sanchez, L. A. (2010). Reproductive biology of Varroa destructor in Africanized honey bees (Apis mellifera). Experimental and Applied Acarology, 50(4): 281-297.
  • Ellis J., Ellis A. (2012). Apis mellifera scutellata Lepeletier (Insecta: Hymenoptera: Apidae). Entomology and Nematology Department, University of Florida, USA [en linia].
  • Evans, H. E. (1985). “Killer” Bees, The Pleasures of Entomology: Portraits of Insects and the People Who Study Them. Smithsonian Institution, Washington D.C. Pp 83-91.
  • Ferreira Jr, R. S., Almeida, R. A. M. D. B., Barraviera, S. R. C. S., & Barraviera, B. (2012). Historical perspective and human consequences of Africanized bee stings in the Americas. Journal of Toxicology and Environmental Health, Part B, 15(2): 97-108.
  • França, F. O. S., Benvenuti, L. A., Fan, H. W., Dos Santos, D. R., Hain, S. H., Picchi-Martins, F. R., Cardoso J. L., Kamiguti A. S., Theakston, R. D. & Warrell, D. A. (1994). Severe and fatal mass attacks by ‘killer’bees (Africanized honey bees—Apis mellifera scutellata) in Brazil: clinicopathological studies with measurement of serum venom concentrations. QJM, 87(5): 269-282.
  • Neumann, P., & Härtel, S. (2004). Removal of small hive beetle (Aethina tumida) eggs and larvae by African honeybee colonies (Apis mellifera scutellata). Apidologie, 35(1): 31-36.
  • O’Malley, M.K., Ellis, J. D., Zettel Nalen, C. M. & Herrera P. (2013). Differences Between European and African Honey Bees. EDIS.
  • Winston, ML. (1992). Killer Bees: The Africanized honey bee in the Americas. Harvard University Press, Cambridge, Massachutes, USA. 176 pp.

Foto de portada propietat de Gustavo Mazzarollo (c)/Alamy Stock Photo.

Difusió-català

Evolució i adaptacions de l’alimentació en els insectes

Durant milions d’anys, els insectes han aconseguit adaptar-se a tot tipus de canvis ecològics. En articles anteriors, vam parlar sobre com el fet de volar va fer aquests organismes més diversos, a més a més de les diferents adaptacions al vol. En aquesta nova entrada, us expliquem l’origen i els canvis de l’aparell bucal i, per tant, de la diversificació de l’alimentació dels insectes al llarg de la seva història evolutiva.

Introducció: entògnats vs ectògnats

Abans de parlar sobre l’evolució de l’alimentació en els insectes, cal que deixem ben clara la diferència entre els termes “insecte” i “hexàpode”. Els insectes constitueixen la classe més important i diversificada dins del subfilum dels hexàpodes, i dins d’ella es troben els grups més coneguts: lepidòpters, himenòpters, coleòpters, dípters, etc. Tanmateix, dins dels hexàpodes també hi ha tres ordres que constitueixen la classe Entognatha: col·lèmbols, proturs i diplurs.

Així doncs, dins dels hexàpodes existeixen dues classes ben diferenciades: Insecta i Entognatha. Què les diferencia? Essencialment, les seves peces bucals: en els entògnats (de ento- ‎(“dins”) +‎ del grec antic gnáthos (“mandíbula”)), les peces bucals es troben protegides dins la càpsula cefàlica i només les projecten quan mengen, mentre que en els insectes o ectògnats (amb el prefix ecto- (“fora”)) les peces bucals sempre són externes.

ectognatha-vs-entognatha
Peces bucals d’un coleòpter (ectògnat, esquerra) i part anterior del cap d’un col·lèmbol, en la que no s’observen exteriorment les peces bucals (entògnat, dreta). Font: coleòpter de Fyn Kynd Photography, CC; col·lèmbol de Gilles San Martin, CC.

Peces bucals dels insectes o ectògnats

La diversificació de les peces bucals i de les formes d’alimentació dels insectes és el resultats d’un llarg procés evolutiu. Per tant, és d’esperar que existeixin formes ancestrals i derivades (o evolucionades).

L’aparell bucal més primitiu i que ha sofert menys modificacions adaptatives és el de tipus mastegador, lligat a una alimentació basada en aliments sòlids. El trobem en molts grups actualment: ortòpters (grills, saltamartins), odonats (libèl·lules), coleòpters (escarabats), dictiòpters (paneroles i mantis), mecòpters, neuròpters… a més a més de en les larves d’alguns insectes que, a la fase adulta, presenten un altre tipus d’aparell bucal (p.ex. erugues de lepidòpter).

Degut a la seva condició primitiva, l’aparell de tipus mastegador s’utilitza com a model per explicar la morfologia de l’aparell bucal i les seves posteriors modificacions. Un dels models més emprats és el dels ortòpters.

ortopthera-mouthparts-chewing
Model mastegador d’un ortòpter. Font: imatges originals de John R. Meyer, North Carolina State University. Link.

Seguint aquest model, l’aparell bucal està constituït per 5 peces: labre, mandíbules, maxil·les, hipofaringe i llavi. Les mandíbules, les maxil·les i el llavi són apèndixs verdaders o apendiculars, és a dir, durant el desenvolupament embrionari es formen a partir d’un segment o metàmer del cos de l’insecte, motiu pel qual serien equivalents des d’un punt de vista morfològic als apèndixs locomotors. Per una altra banda, el labre i la hipofaringe no es consideren apèndixs verdaders, tot i que per la seva importància en l’alimentació també formen part de les peces bucals.

Per a què serveix cada peça?

Conèixer la funció de cada peça al model mastegador ens ajuda a entendre els canvis que aquestes han patit en les diferents formes adaptatives sorgides al llarg de l’evolució:

chewing-mouthparts-beetle-grasshopper
Dissecció de les peces bucals de l’aparell mastegador d’un escarabat (esquerra) i d’un saltamartí (dreta). Font: imatges originals propietat de John R. Meyer, North Carolina State University. Link.
  • Labre. És la peça que protegeix per davant la resta de peces bucals. La seva mida pot variar entre grups i ajuda a retenir els aliments. La cara posterior rep el nom d’epifaringe.
  • Mandíbules. Peces encarregades d’aixafar, moldre o triturar l’aliment. Es mouen de costat a costat.
  • Maxil·les. Formades por tres peces: el card, que articula amb el cap; l’estip, que presenta un palp sensorial; la gàlea i la lacínia, que funcionen com cullera i forquilla manipulant l’aliment.
  • Hipofaringe. Aquesta petita peça, situada darrere de les mandíbules i entre les maxil·les, actua com una llengua que ajuda a barrejar l’aliment i la saliva.
  • Llavi. A diferència de les mandíbules i de les maxil·les, els apèndixs que constitueixen el llavi estan fusionats per la part medial. Format per dues peces: el postmentum, que articula amb el cap, i el prementum, unes peces distals amb un parell de palps sensorials que, a més a més, estan dividides en 4 lòbuls distals: les glosses i les paraglosses.
mouthparts_mandibles_maxilla
Detall de la mandíbula, la maxil·la, el llavi i la hipofaringe (Davies, 1991).

Modificacions de les peces bucals

Com van evolucionar?

Es considera que, a partir de l’aparell bucal de tipus mastegador, van derivar la resta de models. Tanmateix, el més probable és que aquest procés tingués lloc de forma més o menys simultània en diferents grups com a conseqüència de la seva expansió, un major accés als recursos i a l’aparició de noves fonts d’aliment. Aquest és un clar exemple de radiació adaptativa (quan dues o més poblacions sotmeses a pressions selectives diferents divergeixen d’un ancestre comú).

Gràcies a alguns registres fòssils (insectes en ambre, copròlits o evidències de l’atac sobre plantes fòssils), sabem que l’aparició dels diferents tipus de peces bucals tingué lloc en, com a mínim, 5 fases en un període comprès fa 420-110 MA. A poc a poc, alguns grups van passar d’una alimentació basada en aliments sòlids a una basada en la ingesta de líquids exposats (p.ex. nèctar), líquids dins de teixits (p.ex. saba o sang) o de partícules. Adoptar a una dieta basada en líquids va suposar un gran avantatge adaptatiu i selectiu per alguns insectes, especialment durant l’expansió de les angiospermes (plantes amb flor) durant el Cretàcic.

img_1558-min-min
El pas cap a una alimentació basada en aliments líquids, com en els lepidòpters, va suposar un gran avantatge adaptatiu per molts insectes durant la diversificació de les plantes amb flor. A més a més, va donar peu a l’inici d’un procés coevolutiu entre insectes i plantes. Autora: Irene Lobato.

Tipus d’aparells bucals

Veiem ara un petit resum de les principals modificacions de l’aparell bucal dels insectes a partir del model mastegador:

MASTEGADOR-LLEPADOR

S’associa a una alimentació basada en líquids naturals, com el nèctar, però en alguns casos encara conserva la capacitat per mastegar. És propi d’himenòpters: en els símfits (grups més primitiu d’himenòpters) presenta modificacions respecte de l’aparell mastegador original; en vespes i abellots, les mandíbules i les maxil·les es redueixen i es desenvolupa la llengua (glosses del llavi allargades) amb la que ingereixen líquids, tot i que encara poden mastegar; finalment, en les abelles les mandíbules han perdut la funció mastegadora típica (encara que les fan servir per defensar-se, netejar-se o treballar la cera) i les maxil·les i les glosses del llavi s’allarguen formant una llengua pilosa amb un canal intern (canal salivar), motiu pel qual la seva alimentació és totalment líquida.

bee_mouthparts-min
Esquema de l’aparell mastegador-llepador d’una abella (esquerra; fragment d’una imatge original de Xavier Vázquez, modificada posteriorment per Siga, CC) i aparell bucal d’una abella de l’espècie Colletes willistoni (dreta; imatge original de domini público). Md: Mandíbula; mx: Maxil·la; lb: llavi.

XUCLADOR-LLEPADOR

Els insectes que presenten aquest model han patit una reducció important, o inclús una desaparició, de les mandíbules, i la seva alimentació es basa totalment en la ingesta d’aliments exposats. En cas d’estar presents, en cap cas la seva funció està relacionada amb l’alimentació. Existeixen dues variacions dins d’aquest model: el xuclador maxil·lar típic dels lepidòpters adults i el xuclador labial típic de les mosques.

En les mosques, les mandíbules desapareixen, les maxil·les es redueixen fins quedar únicament representades pels seus palps i s’hipertrofia la part posterior del llavi, formant uns lòbuls coberts de petits canals que convergeixen formant un únic canal per on succionen els aliments.

fly-min
Esquema de l’aparell xuclador-llepador d’una mosca (esquerra; font: Educational Media Group (EMG), RMIT University, 2002-06-01, Fly mouthparts illustration [Online, Image Illustration], Educational Media Group (EMG), Melbourne, Vic) i detall de l’aparell bucal d’una mosca de l’espècie Gonia capitata (dreta; imatge de Richard Bartz, CC).

En els lepidòpters més evolucionats, les mandíbules i el llavi pràcticament desapareixen (només són visibles els palps labials), mentre que les gàlees de les maxil·les es desenvolupen formant l’espiritrompa, la qual presenta un canal alimentari al seu interior.

butterfly-min
Aparell xuclador d’una papallona (esquerra; imatge de tdlucas5000, CC) i imatge de microscopia electrònica de l’espiritrompa (dreta; imatge de domini públic).

PICADOR-XUCLADOR

Aquest model es troba en diferents grups d’insectes que l’han adquirit per vies evolutives ben diferents, motiu pel qual existeixen moltes variacions. Veiem alguns exemples:

  • Heteròpters (xinxes): són l’únic grup amb un aparell bucal d’aquest tipus des del moment de l’eclosió. Els palps maxil·lars i labials són absents, i el llavi forma un canal que amaga 4 estilets similars a agulles, dos corresponents a les mandíbules i dos a les maxil·les. Aquesta estructura rep el nom de rostre. Els estilets maxil·lars delimiten un canal aspirador i un canal salival, i juntament als mandibulars serveixen per penetrar en diferents teixits i absorbir els seus fluids: saba en les formes fitòfagues i sang o altres fluids en les formes depredadores, entre les quals existeixen variacions morfològiques.
heteroptera-min
Esquema de l’aparell bucal d’un heteròpter (esquerra; imatge extreta de Baker, 2011) i primer pla de l’aparell bucal d’un exemplar de la família Reduviidae, depredadors (dreta; imatge propietat de John R. Meyer, North Carolina State University. Link).
  • Mosquits: molt similar al dels heteròpters, encara que, a banda dels estilets maxil·lars i mandibulars, també tenen un estilet corresponent a la hipofaringe a l’interior del qual circula un canal salivar (que emet anticoagulants i altres substàncies per facilitar la succió de la sang dels seus hostes). El labre i la hipofaringe formen el canal aspirador, i el llavi només acompaña els estilets.
mosquito
Esquema del aparato bucal de un mosquito (izquierda; fragmento de una imagen original de Xavier Vázquez, modificada posteriormente por Siga, CC) e imagen de una hembra de mosquito (derecha; imagen de Grzegorz “Sculptoris” Krucke, CC). Lr: labro; hp: hipofaringe; mx: maxilas; md: mandíbulas; lb: labio.
  • Ftiràpters i Sifonàpters (polls i puces): l’aparell picador, que fan servir per parasitar animals i succionar la seva sang, està constituït en aquets cas per l’epifaringe, els palps labials i les lacínies maxil·lars. Els palps maxil·lars, molt desenvolupats, queden per davant.
head_of_the_flea_lens_aldous_tagged-min
Aparell bucal d’un sifonàpter o puça. 1: ull; 2: palps labials; 3: estilet maxil·lar (lacínia); 4: epifaringe; 5: palps maxil·lars; 6: maxil·les (gàlea). Font: domini públic.
  • Tisanòpters (trips): aquests petits insectes solen constituir plagues de cultius i, a vegades, actuen com a vectors de virus vegetals. El seu aparell bucal és asimètric: l’estructura picador està delimitada pel llavi, les maxil·les i el labre, i totes elles són clarament desiguals. Interiorment, presenten dos estilets maxil·lars i un mandibular (l’altra s’atrofia). Per menjar, rasquen a superfície del vegetal i després claven els seus estilets per succionar els seus fluids.
trips-min
Esquema de l’aparell bucal d’un trip (esquerra; imatge extreta d’apunts personals de l’assignatura Biologia i Diversitat d’Artròpodes, UAB) i imatge d’un exemplar de trip (dreta; imatge propietat de John W. Dooley, USDA APHIS PPQ, Bugwood.org, CC).

UN CAS EXTREM: L’ATRÒFIA

En alguns insectes, com en les formes adultes de les efímeres o d’alguns dípters, es produeix una reducció total de les peces bucals, doncs la seva funció queda reduïda a la reproducció i deixen de menjar.

.           .            .

No hi ha cap dubte que els insectes són el grup d’organismes més diversificat de la Terra, fet que queda demostrat, un cop més, amb tan sols fixar-se en la gran varietat de formes d’alimentació que han desenvolupat.

I tu, coneixes alguna altra forma d’alimentació que et sembli curiosa? Pots deixar la teva contribució als comentaris.

REFERÈNCIES

També s’han consultat els apunts de l’assignatura Biologia i Diversitat d’Artròpodes impartida durant el curs 2013-2014 a la Universitat Autònoma de Barcelona.

Foto de portada, d’esquerra a dreta: Lisa Brown, CC; Domini Públic i Richard Bartz, CC.

Difusió-català

Són els insectes l’aliment del futur?

S’apropa el Nadal, de manera que és probable que hagis començat a pensar quins plats prepararàs per compartir amb els teus i gaudir de les festes. Ara bé, com reaccionarien els teus amics i familiars si, enlloc dels plats nadalencs de tota la vida, els preparessis un assortit d’insectes fregits o en salsa? Rebuig, fàstic, curiositat…

Menjar insectes no inspira massa confiança en bona part de la societat occidental, tot i haver format part de la seva història. Per què? D’altra banda, i si et digués que aquesta pràctica podria esdevenir la solució a molts problemes de sostenibilitat que la societat occidental experimenta actualment? Continua llegint per conèixer les respostes.

L’entomofàgia al llarg de la història

Tot i que actualment a molts ens resulti estrany i exòtic, l’entomofàgia (del grec ἔντομος [éntomos], ‘insecte’, y φᾰγεῖν [făguein], ‘menjar’) ha format part de la història de l’ésser humà des de l’origen dels temps. De fet, existeixen nombroses al·lusions al consum d’insectes en diferents escrits religiosos del cristianisme, l’islam i el judaisme.

insect_food_stall
Parada de venta d’insectes a Bangkok (Tailàndia) (Font: Takoradee, CC).

A Europa, les primeres referències a l’entomofàgia provenen de l’antiga Grècia, on menjar cícades es considerava una delicadesa. El propi Aristòtil en deixà constància a la seva obra Historia Animalium (384-322 a.C.), segons el qual el gust de les femelles adultes de cícada sabien millor un cop produïda la còpula degut a què eren plenes d’ous.

cigarra_cicada
Cigala o cícada (Font: CostaPPPR, CC).

Molts altres documents van deixar patent com d’habitual era llavors menjar insects: Diodorus (200 a.C.), de Sicília, va batejar amb el nom de Acridophagi als habitants d’Etiòpia degut a la seva dieta basada en el consum de saltamartins i llagostes (família Acrididae); alhora, a l’antiga Roma, Plini el Vell (Historia Naturalis) fa referència a un plat molt estimat pels romans conegut amb el nom de “cossus”, el qual, segons Bodenheimer (1951), tindria com a ingredient principal la larva de l’escarabat Cerambyx cerdo.

A Àsia, la literatura xinesa també fa referència a l’entomofàgia i a l’ús dels insectes en la seva medicina tradicional. En el Compendi de Matèria Mèdica de Li Shizhen (Dinastia Ming, 1368–1644), se cita una gran quantitat de receptes basades en l’ús d’insectes, remarcant els beneficis medicinals de cadascuna d’elles.

Per què ja no mengem insectes a occident?

Tot i haver format part de la nostra dieta des de l’origen dels temps i que el seu consum continuï essent habitual a moltes parts del món, els insectes s’han convertit en un producte tabú a la dieta occidental moderna, especialment a Europa i Estats Units. Quina podria haver estat la causa d’aquest canvi?

El motiu més fefaent es troba lligat a l’origen de l’agricultura i la ramaderia. El Creixent Fèrtil, una regió històrica que comprèn els territoris occidentals d’Àsia, la vall del Nil i el delta del Nil, és considerat el lloc de naixement de l’agricultura i, secundàriament, de la ramaderia (revolució neolítica d’occident). A partir d’aquest moment, les pràctiques agrícoles i ramaderes es van començar a estendre per tota Europa, substituint poc a poc la caça i la recol·lecció com a principals fonts d’aliment.

mapa_del_creciente_fertil-min
Mapa del Creixent Fèrtil (Font: NormanEinstein, CC).

Així, a poc a poc el consum d’insectes va anar-se substituint pel consum d’animals domèstics, especialment de mamífers herbívors i omnívors, els quals, a més a més, oferien un ventall mol més ampli de productes: pells, productes làctics, força de tracció i medi de transport. Amb el temps, la ramaderia i l’agricultura es tornaren pràctiques habituals a Europa en tractar-se de fonts més estables d’aliment. La caça d’animals o el consum d’insectes, ambdues pràctiques molt inestables en estar subjectes a les estacions, van passar a un segon pla fins al punt de considerar-se pràctiques primitives en un context de societat sedentària.

Tanmateix, el motiu més probable pel qual la gent començà a sentir aversió pel consum d’insectes fou el seu impacte sobre l’agricultura. Essent ara aquesta pràctica la principal font d’aliment, els insectes començarem a percebre’s com un problema en esdevenir plagues i afectar la seva producció. D’altra banda, la densitat poblacional, especialment als nuclis urbans tan habituals a occident, facilitava la transmissió de malalties a través d’insectes vectors.

Fora de la influència occidental, el consum d’insectes és molt més habitual actualment. Hi ha moltes raons que explicarien aquesta diferència: un major contacte amb la natura en societats menys urbanitzades, una pràctica agrícola menys extensiva o una introducció més tardana de l’agricultura podrien haver perpetuat el consum d’insectes.

insectos_consumo
Número estimat, en base a diversos estudis, d’espècies d’insectes destinats al consum per país (Font: Centre for Geo Information, Wageningen University, basat en la informació recopilada per Jongema, 2012; imatge extreta de l’informe de la FAO “Edible Insects: future prospects for food and feed security”).
insectos_especies_consumidas
Famílies d’insectes més consumides arreu del món (Font: Jongema, 2012; imatge extreta de l’informe de la FAO “Edible Insects: future prospects for food and feed security”).

Els insectes: recurs del passat, solució pel futur

Havent passat els insectes a un segon pla dins la dieta occidental, és lògic que no existeixi, en molts casos, regulació sobre el seu consum. A diferència d’altres països, la comercialització d’insectes com a aliment a la Unió Europea es trobava estancada fins fa pocs anys. Tanmateix, la FAO (Organització de les Nacions Unides per l’Alimentació i l’Agricultura) publicà l’any 2013 un informe en el qual llistava els beneficis del consum d’insectes, instant als països europeus i a les societats occidentals més desenvolupades a regular la seva comercialització com a part de les mesures per assolir una alimentació més sostenible.

Quins beneficis comportaria donar més importància al consum d’insectes a occident?

Salut pública

  • Font de proteïnes i d’àcids grassos. Un insecte pot arribar a assolir fins a un 70% de contingut proteic/individu. Segons alguns experts, el seu consum per part de nens desnodrits també seria de gran importància degut al seu elevat contingut en àcids grassos. A més a més, d’acord amb la Societat Entomològica d’Estats Units, els tèrmits, les erugues, els saltamartins, les mosques, les aranyes i els corcs constitueixen fonts més importants de proteïnes que altres animals, com el pollastre o la vaca.
insectos_proteinas
Proporció aproximada de proteïnes en saltamartins i en carn de vaca (Font: Entomological Gastronomy, 2015; a partir de la informació extreta de l’informe de la FAO “Edible Insects: future prospects for food and feed security”).
  • Font de minerals i de fibra. Al voltant d’1 de cada 2 dones embarassades i d’un 40% dels nens en etapa preescolar als països desenvolupats pateixen anèmia (falta de ferro) com a conseqüència de la seva dieta, fet que comporta problemes cognitius i de rendiment. Els insectes contenen enormes quantitats de micronutrients com el ferro, a banda de coure, magnesi, fòsfor, manganès, seleni i zinc. D’altra banda, contenen molta fibra en forma de quitina, el carbohidrat bàsic que configura la cutícula dels artròpodes. La quitina és molecularment semblant a la cel·lulosa de les plantes i té, com aquesta, una gran importància per a la salut intestinal.
  • Menys risc de contraure malalties zoonòtiques. No existeixen evidències de la transmissió de malalties d’insectes a humans degut al seu consum, com sí passa amb el pollastre o la carn de vaca (grip aviar o malaltia de les vaques boges). Tanmateix, no existeixen suficients estudis que recolzin la total iniquitat del seu consum. Si bé podrien causar al·lèrgies similars a les produïdes pel consum de crustacis, seria necessari investigar una mica més al respecte.

Salut ambiental i econòmica

  • Major índex de transformació de l’aliment (kg d’aliment consumit per kg de pes guanyats). L’eficiència d’un insecte per transformar allò que menja en massa corporal i en creixement és superior que en qualsevol altre animal domèstic. Així doncs, cal invertir menys recursos en el seu creixement que en altres animals; proporcionalment, obtenim més biomassa gastant menys. Aquest fet cobra especial rellevància en el context d’una població mundial creixent que requereix cada cop més terrenys per cobrir les demandes d’aliment tant de persones com d’animals (pastures, cultius, etc.).

    insectos_eficiencia
    Per cada 10 Kg d’aliment (pinso) invertit, es produeixen 9 Kg de biomassa d’insecte i tan sols 1 Kg de biomassa en forma de carn de vaca (Font: Entomological Gastronomy, 2015; a partir de la informació extreta de l’informe de la FAO “Edible Insects: future prospects for food and feed security”).
  • Revalorització de residus orgànics. Els insectes poden criar-se a base de restes orgàniques (p.ex. compost, femtes d’animals, etc.), fet que redueix la contaminació ambiental i revaloritza aquests residus.
  • Poc contaminants. Els insectes, a diferència d’altres animals, generen pocs gasos d’efecte hivernacle i poc amoníac (derivat, sobretot, dels excrements), motiu pel qual el seu efecte contaminant en aire, terra i aigua són mínims.
ghg
Producció de gasos d’efecte hivernacle (a dalt) i d’amoníac (a baix) per Kg de pes guanyat per tres espècies d’insecte, porcs i ramat destinat al consum de carn (Font: Oonincx et al., 2010.; extret de l’informe de la FAO “Edible Insects: future prospects for food and feed security”).
  • Menys consum d’aigua. La manca d’aigua afecta actualment a bona part de la humanitat i atempta contra la biodiversitat. La cria d’insectes requereix d’un menor consum d’aigua que la de ramat.

Malgrat tots aquests avantatges, l’any 2013 només Gran Bretanya, França, Holanda i Bèlgica comptaven amb la regulació adient per a la comercialització d’insectes i dels productes derivats d’aquests pel consum humà a Europa.

.          .          .

Incorporar insectes i productes derivats d’aquests (per ex. farina) a la dieta occidental podria esdevenir la solució a nombrosos problemes que experimenta la nostra societat actualment. Tanmateix, encara existeix certa reticència al seu consum, derivada sobretot de la tradició cultural occidental, de la manca d’informació i de l’absència d’estudis (a Espanya, per exemple, existeix un gran buit legal al respecte i una manca total de regulació). Però, com ja ha succeït altres cops amb altres aliments (p. ex. el peix cru i el sushi), no seria pas estrany que, en un temps, també poguéssim comprar insectes als supermercats.

I tu, et veuries amb cor de fer un canvi a la teva dieta amb el propòsit de ser més sostenible?

REFERÈNCIES

Foto de portada propietat de Sean Gallup (GettyImages).

Difusió-català

Les vespes de les gales: una xarxa tròfica en miniatura

Estem tan acostumats a fixar-nos només en les relacions entre grans organismes, que sovint ens oblidem de l’existència de petits sistemes amb relacions tròfiques tan o més complexes que aquelles que desenvolupen mamífers, aus o rèptils. Aquest és el cas dels cinípids o vespes de les gales, uns microhimenòpters capaços d’induir una gran varietat de tumoracions (gales) sobre diferents grups de plantes, però els quals tan sols assoleixen uns pocs mil·límetres de longitud. Si bé és cert que la gran majoria de la gent n’ha sentit a parlar algun cop, de les gales, el que normalment no saben és que dins d’aquestes deformacions es desencadena una lluita frenètica per la supervivència entre nombrosos grups d’insectes.

Vols conèixer una mica millor el món que s’amaga dins les gales dels cinípids? Doncs continua llegint!

Què són els cinípids?

Els cinípids o vespes de les gales (família Cynipidae, ordre Hymenoptera) són una família de microvespes paràsites de plantes. Pertanyen al grup Parasitica, de manera que les femelles no presenten l’ovopositor (òrgan per dipositar els ous) transformat en un agulló, com passa a moltes altres vespes. En aquest cas, aquest òrgan conserva la seva funció original, exclusivament reproductiva.

Hembra de Periclistus brandtii y detalle del ovopositor (Foto extraída del Catàleg de microhimenòpters de Ponent).
Femella de Periclistus brandtii i detall de l’ovopositor (Foto extreta del Catàleg de microhimenòpters de Ponent).

Les femelles dels cinípids fan servir l’ovopositor per inocular els ous dins del teixit vegetal de la planta que parasiten (majoritàriament arbres pertanyents al gènere Quercus, com els roures).

Els cinípids són vespes fitòfagues, és a dir, s’alimenten exclusivament de teixit vegetal. Aquest fet els distancia força d’altres grups de vespes, la majoria d’elles carnívores o parasitoids d’altres insectes.

Però el més rellevant d’aquest grup és, sense cap mena de dubte, la seva capacitat per induir la formació de gales en diferents grups de plantes.

Les gales

Què són?

Així com les aus construeixen nius i els castors, dics, alguns cinípids “construeixen” gales, unes malformacions del teixit vegetal. Tanmateix, la formació de gales no és un procés que duguin a terme activament, sinó que el seu desenvolupament és induït per l’activitat de la pròpia vespa i de la seva interacció amb el teixit vegetal.

Tot i que hi ha altres artròpodes capaços d’induir la formació de gales (per ex. mosques), els cinípids són aquells que produeixen les tipologies de gales més complexes, cridaneres i evolucionades conegudes fins al moment, a banda de ser les més abundants, especialment en roures (Quercus sp.).

sin-titulo-1-min
Existeix una enrome diversitat de morfologies de gales: 1, 2 i 3 – gales de cinípids en Quercus (Fotos de Irene Lobato); 4- Gala del cinípid Neuroterus numismalis en Quercus (Foto de domini públic); 5 – gala del cinípid Diplopedis rosae sobre Rosa (Foto de Lairich Rig, CC); 6 – gales del cinípid Andricus quercuscalicis en Quercus robur (Foto de Peter O’Connor a Flickr, CC).

A més a més, el grau d’especificitat entre les plantes i els cinípids sol ser molt elevat, de manera que cada espècie o gènere normalment indueix una tipologia de gala concreta. Atès a aquesta gran especificitat i de la mateixa manera que els nius en el cas de les aus, les gales són considerades un fenotip estès d’aquests organismes (és a dir, un caràcter propi d’un organisme que s’expressa forma del mateix, n’és característic i en permet la identificació).

Com es formen i quina és la seva funció?

Les gales són el resultat de la deformació i engruiximent total o parcial de pràcticament qualsevol òrgan vegetal: fulles, nervis foliars, tiges, fruits, etc.

Generalment, la formació de gales no afecta necessàriament la producció i creixement de les plantes, llevat quan la seva presència esdevé massiva i la seva estructura causa greus deformacions al teixit vegetal. En aquests casos, els cinípids tendeixen a constituir veritables plagues (p.ex. la vespa dels castanyers, Dryocosmus kuriphilus, procedent d’Àsia, en bona part de les poblacions de castanyers d’Europa).

dryocosmus-kuriphilus_avispilla-castaño-plaga
Femella de la vespa dels castanyers (Foto de Gyorgy Csoka, CC) i la seva gala, la qual deforma les fulles i causa el seu posterior assecat (Foto de Irene Lobato).

Els mecanismes moleculars finals que endeguen la formació de gales són poc coneguts. Tanmateix, és sabut que aquest procés comença en el moment que les femelles adultes inoculen els ous a l’interior del teixit vegetal.

avispa-agalla-puesta_cynipidae-puesta_huevos-cynipidae
Femella de cinípid inoculant els ous dins del teixit vegetal d’una planta (Foto de domini públic).

A partir d’aquest moment, la gala creix al voltant dels ous, quedant aquests inclosos dins d’una o diverses cambres. Al seu interior, les larves es nodreixen dels teixits vegetals nutricis de la gala a recer de les inclemències ambientals; es creu que el propi rascat de les parets de les gales realitzat per les larves amb la fi d’alimentar-se potenciaria el creixement de la gala.

desarollo-avispas-agallas
Cambres larvals i larves de la vespa dels castanyers (Dryocosmus kuriphilus), esquerra (Foto de Irene Lobato); interior d’una gala amb una sola cambra larval, dreta (Foto de chickeninthewoods, CC).

Un cop formats, els adults s’obren pas a través de la gruixuda paret de la gala per assolir la seva superfície i sortir a l’exterior, procés en el que necessiten invertir molt de temps i energia. Generalment, els adults no s’alimenten i dediquen la seva curta vida a la reproducció.

agalla-cinípido
Gala amb forats d’emergència dels adults (Foto de Irene Lobato).

Un complexa xarxa tròfica en miniatura

És força habitual que emergeixin individus de diferents grups d’artròpodes de dins de les gales, a més a més dels adults dels cinípids que les han induït: alguns es nodreixen dels teixits nutricis de la gala per així completar el seu desenvolupament; n’hi ha, en canvi, que parasiten les larves de diferents cinípids, causant la seva mort, i d’altres que es desenvolupen únicament al final de la vida útil de la gala.

Així doncs, l’interior de les gales és l’escenari d’una xarxa tròfica en miniatura i el d’una lluita per la supervivència entre diferents artròpodes:

Cinípids inductors

Grups de cinípids que indueixen la formació de la gala de novo. Molts tenen el cos robust, la cel·la radial de les ales anteriors oberta al seu marge superior i una diferenciació clara dels segments de l’abdomen (caràcters habituals de la tribu Cynipini, una de les més abundants).

cynipini_agallador_avispilla-agalla
Femella adulta d’Andricus kollari: 1 – detall de la cel·la radial oberta al seu marge superior; 2 – abdomen clarament segmentat (Foto original de TristramBrelstaff, CC).

Cinípids inquilins

Alguns grups de cinípids han perdut la seva capacitat per induir la formació de gales. Aquests reben el nom d’inquilins, i les seves larves es desenvolupen a l’interior de les gales d’altres cinípids aprofitant-se dels seus teixits nutricis. Per això, les femelles d’aquests organismes inoculen els ous a l’interior de gales en formació. Tanmateix, tot i que no són capaços d’induir-les, sí poden modificar-les degut a la seva activitat.

Hembra adulta del inquilino mexicano Synergus equihuai, descubierta por Irene Lobato y Juli Pujade durante la elaboración del trabajo de final de máster de la primera: 1 - celda radial cerrada (puede ser abierta en inquilinos); 2 - gran placa que cubre el resto de segmentos abdominales (Foto realizada por Marcos Roca-Cusachs).
Femella adulta de l’inquilí mexicà Synergus equihuai, descoberta per Irene Lobato i Juli Pujade durant l’el·laboració del projecte de final de màster de la primera: 1 – cel·la radial tancada (pot ser oberta a altres inquilins). 2 – gran placa que cobreix la resta de segments abdominals (Foto realitzada per Marcos Roca-Cusachs).

La relació entre els cinípids inquilins i els inductors de les gales és una forma de cleptoparasitisme coneguda com a agastoparasitisme, doncs la larva de l’inquilí “roba” el teixit nutrici de la gala dins la qual es desenvolupa. Es tracta d’una relació obligada, doncs els inquilins necessiten de les gales per poder completar el seu cicle de vida.

Generalment, aquesta relació no afecta negativament ni positiva els inductors, llevat quan les cambres on es desenvolupen les larves d’ambdós grups es troben molt properes en l’espai. En aquest cas, el ràpid desenvolupament dels inquilins i la competència per l’aliment pot acabar amb la vida dels inductors, cas en el que només emergeixen els adults dels inquilins (inquilins letals).

Parasitoids

Es tracta d’un dels grups d’artròpodes més importants que es desenvolupen dins les gales. La majoria pertany a la família Chalcidoidea (ordre Hymenoptera), formada totalment per vespes parasitoides de diferents artròpodes.

chalcidoidea_parasitoides
Femella de Torymus aceris (Foto del Natural History Museum_ Hymenoptera Section a Flickr, CC).

Els parasitoids inoculen els ous a l’interior del cos de les larves de diferents cinípids mitjançant els seus ovopositors allargats mentre es troben dins la gala. Així doncs, és d’esperar que, de l’interior de les gales amb cinípids parasitats, acabin emergint, majoritàriament, els adults de les vespes parasitoides.

Actualment, existeixen programes d’alliberament de parasitoids per controlar algunes plagues causades per cinípids (p.ex. Torymus sinensis, un parasitoid procedent d’Àsia, per combatre la vespa dels castanyers a Espanya).

Entomofauna secundària

Aquesta categoria inclou una gran diversitat d’artròpodes que viuen dins les gales com a successors secundaris: coleòpters, lepidòpters, dípters, tisanòpters (trips), etc. Generalment, aquests organismes es desenvolupen un cop ja han emergit els cinípids i actuen com a inquilins secundaris.

.              .              .

Sovint, la natura és més complexa del que podem arribar a percebre, i el cas del micromón de les gales n’és només un exemple de tants. Així doncs, quan vagis a fer un tomb pel camp o la muntanya, recorda que, fins i tot en els element o espais més petits, existeixen sistemes altament desenvolupats en els quals s’estableixen relacions ben riques i diverses.

REFERÈNCIES

Bona part de la informació ha estat extreta del meu projecte de final de Màster realitzat a la Universitat de Barcelona durant el curs 2015-2016, titulat “Separació i identificació d’inquilins del gènere Synergus (Fam. Cynipidae, Hymenoptera) de gales de Quercus de Mèxic.”

Alguns dels estudis més rellevants consultats durant la seva elaboració foren:

  • Ashmead, W. H. (1899). The largest oak-gall in the world and its parasites. Entomological News, 10: 193-196.
  • Askew, R. R. (1984). The Biology of Gall Wasps, en: Biology of gall insects (ed. T.N. Ananthakrishnan). Edward Arnold, London, pp. 223–271.
  • Bozsó, M., Penzes, Z., Bihari, P., Schwéger, S., Tang, C. T., Yang, M. M., Pujade-Villar, J. & Melika, G. (2014). Molecular phylogeny of the inquiline cynipid wasp genus’ Saphonecrus’ Dalla Torre and Kieffer, 1910 (Hymenoptera: Cynipidae: Synergini). Plant Protection Quarterly, 29(1): 26.
  • Nieves-Aldrey, J. L. (1998). Insectos que inducen la formación de agallas en las plantas: una fascinante interacción ecológica y evolutiva. Boletín de la Sociedad Entomológica Aragonesa, 23: 3-12.
  • Nieves-Aldrey, J. L. (2001). Hymenoptera, Cynipidae, en: Fauna Ibérica, Vol. 16 (ed. M. A. Ramos). Museo Nacional de Ciencias Naturales, CSIC, Madrid, pp. 1–636.
  • Pujade-Villar, J., Equihua-Martínez, A., Estrada-Venegas, E. G. & Chagoyán-García, C. (2009). Status of the knowledge of the Cynipini (Hymenoptera: Cynipidae) in Mexico: perspectives for future studies. Neotropical entomology, 38(6): 809-821.
  • Ronquist, F. (1994). Evolution of parasitism among closely related species: phylogenetic relationships and the origin of inquilinism in gall wasps (Hymenoptera, Cynipidae). Evolution, 48(2): 241-266.
  • Shorthouse, J. D., & Rohfritsch, O. (1992). Biology of insect-induced galls. Oxford University Press, New York, Oxford, 285 pp.

Imatge de portada propietat de Beentree (Wikimedia Commons).

Difusió-català

Micro-okupes a casa

Segurament has pensat algun cop “Que bé s’està sol a casa”. Doncs, si es així, ens sap greu dir-te que t’estaves equivocant. A casa existeixen una gran quantitat de micro-ecosistemes perfectes per la proliferació d’una gran diversitat de microorganismes. Aquestes comunitats són les responsables de les olors, degradació de certs materials i contaminació. Vols conèixer una mica més els teus microcompanys de pis? Endavant. 

MICRO-OKUPES A LES NOSTRES LLARS

Passem un 90% del nostre temps a llocs tancats, com per exemple oficines, cases, escoles, etc. Aquests llocs, així com la resta del planeta, presenta unes condiciones adequades per la proliferació de diverses espècies microscòpiques com ara bacteris, fongs i determinades espècies d’artròpodes. Aquestes comunitats formen el que coneixem com microbioma de les nostres llars.

3-cepillo-dientes
Microfotografia d’escàner electrònic d’un bri d’un raspall de dents utilitzat on s’acumulen les comunitats bacterianes. (Imatge: Science photo library)

Les diferents relacions que podem establir amb aquestes comunitats poden condicionar directament a la nostra salut. Dins les nostres llars podem trobar microorganismes beneficiosos, microorganismes indiferents (és a dir, que no ens produeixen cap efecte) i microorganismes patògens (com Staphylococcus aureus resistent a antibiòtic) o al·lergogens, com per exemple els àcars. Tranquils! Cal destacar que aquests patògens no presenten un percentatge important i per tant, no suposen cap risc per la nostra salut.

BACTERIS

Aquests són els  microorganismes més abundants que podem trobar a casa. Es troben repartits per tots els racons imaginables i presenten una gran diversitat genètica. Per exemple, a la pols es calcula que hi pot haver fins a 7000 espècies de bacteris diferents. Al següent gràfic, ens presenten una llarga llista de taxons bacterians que colonitzen cada racó de casa, com per exemple la tapa del vàter, la cuina o els nostres llits.

fig_1a
Diferents taxons bacterians que trobem en llocs variats de les nostres cases. (Imatge: G.E. Flores)

FONGS

Es calcula que a una casa normal es poden trobar fins a 2000 tipus diferents de fongs. També es troben repartits arreu de la casa com per exemple al menjar, cuina, parets o llocs oblidats per la neteja com la pols acumulada sobre les portes. Entre aquesta gran quantitat de fongs podem destacar la presència d’ Aspergillus, Penicillium i Fusarium (fongs molt comuns a l’ambient). També podem trobar espècies com Stereum, Tremetes o Phlebia (fongs encarregats de la degradació de la fusta) o fongs relacionats amb els humans, com seria el cas de Candida.

fig_6
Floridura de les parets de la casa per Strachybrotrys sp. (Imagen: Mycleaningproduct.com) o a les fruites com per exemple Penicillium sp. (imagen: wisegeek).

ÀCARS

Aquests organismes representen al grup d’artròpodes microscòpics més abundants de les nostres llars. Normalment habiten a la pols, a les superfícies rugoses com teles, matalassos i coixins on s’alimenten de pell morta d’humans i animals. Normalment trobem les espècies Dermatophagoides pteronyssus i Dermatophagoides farinae (coneguts vulgarment com àcars de la pols). Tot i això, també podem trobar en menor quantitat l’espècie Demodex folliculorum. Aquest àcar habita als fol·licles pilosos de la nostra cara i s’alimenta de pell morta. Normalment es desprenen de la pell mentre dormim.

fig_7
Àcar de la pols D. pteronyssinus (imatge: Göran Malmberg) i àcar dels fol·licles pilosos Demodex folliculorum (Imagen: BBC)

BIOGEOGRAFIA I PRINCIPALS FONTS D’EMISSIÓ

La distribució geogràfica de les comunitats microscòpiques de casa i els factors ambientals que la condicionen són poc coneguts. Per aquest motiu, al llarg d’aquests darrers anys els estudis sobre el microbioma de les nostres llars han augmentat significativament.

Aquesta gran diversitat microbiana canvia en funció de la localització, és a dir, no trobarem els mateixos microorganismes al llit que al vàter. Per exemple, a la nostra cuina podem trobar diferents bacteris depenent del lloc que analitzem. A la imatge inferior, ens mostren com al foc de la cuina trobem una major quantitat de Salmonella sp. que Clostridium sp.

fig_3
Diferència de distribució geogràfica en funció de l’espècie bacteriana analitzada (Imatge: G.E. Flores)

Tot i això, trobem una certa tendència en aquesta distribució geogràfica, és a dir, els microorganismes que habiten en certes zones són semblants a les que trobem a altres ones relacionades. Al dendrograma següent se’ns explica de manera gràfica aquest darrer punt. Per exemple, podem veure com als coixins (pillowcase en anglès) trobem microorganismes molt semblants a les que trobem al vàter (contacte amb la pell humana) mentre que són totalment diferents de les que trobem a la fusta de tallar de les nostres cuines.

fig_1
Dendrograma de similitut entre les comunitats bacterianes que trobem a les nostres cases. (Imatge: Robert, D. Dunn).

Però, per què existeix aquesta distribució geogràfica?

Les diferents fonts d’emissió de microorganismes són les causants d’aquesta variació geogràfica. En funció d’aquesta font trobarem a un determinat lloc unes espècies o unes altres. Òbviament la font més gran d’emissió de microorganismes són els éssers humans. Com bé sabem, al nostre cos portem milions i milions de bacteris i altres microorganismes que s’escampen per l’ambient (ja sigui per la nostra activitat respiratòria, per contacte directe o descamació de la pell). Cada humà deixa una petjada microbiana (fingerprint en anglès) específica a aquells llocs on es troba.

fig_3b
Principals fonts d’emissió batceriania de les nostres llars. Com podem veure, la font més gran d’emissió són els pròpis humans (Imatge: G. E. Flores)

Podem observar que en certs llocs es troben microorganismes relacionats amb els nostres excrements. Si no rentem les nostres mans després d’anar al bany, segurament anem escampant bacteris fecals per tot arreu. No només és cosa dels bruts això, ja que tots escampem aquests bacteris de forma inconscient. Per exemple, si estirem la cadena del vàter amb la tapa oberta, es produeix una expansió en aerosol de bacteris fecals de fins a dos metres de distància, això implica que arriben al nostre raspall de dents o al sabó de mans.

Per altra banda, la diversitat microbiana està molt condicionada pel nombre i tipus d’ocupants de la casa, és a dir, no hi haurà les mateixes espècies  a una casa amb dos ocupants que a la casa d’una família de set persones. A més, s’ha observat que no trobem els mateixos microorganismes a cases on hi ha una major proporció de dones que a les que hi ha major proporció d’homes. Generalment, els homes alliberen una major quantitat de  microorganismes a l’ambient. 

f5a
Gràfic de la influència del gènere dels ocupants a la diversitat microbiana de les cases. (Imatge: Albert Barberán).

Un altre factor molt important que condiciona aquesta diversitat microbiana és la presència d’animals a casa. Si tenim gossos o gats, segurament conviurem amb comunitats totalment diferents de les que trobem en cases sense animals. En aquests casos, trobem normalment microorganismes relacionats amb els excrements, pell i saliva dels nostres animals.

f5-large
Diferències d’abundància de determinades espècies bacterianes per la presència d’animals domèstics (Imatge: Albert barberán).

Tot i que les principals fonts d’emissió són els ocupants d’aquestes cases, el microbioma de les nostres llars està relacionat estretament amb les espècies microbianes que trobem a l’exterior. En el cas dels fongs aquesta relació és més pronunciada que en el cas dels bacteris. Cal destacar, però, que hi ha una major quantitat d’espècies diferents de dins les nostres llars que a l’exterior.

fig_4
Comparació de la riquesa microbiana entre l’interior i exterior de les nostres llars. (Imagen: Albert barberán)

·

Ja ho diven “com a casa no s’està enlloc”. Efectivament, cada casa és un univers únic i específic de comunitats microscòpiques. No n’hi ha dos iguals! 

REFERÈNCIES

Maribel-català