Arxiu de la categoria: ZOOLOGY

The mysterious Ediacaran fauna

During many years, it has been considered that the origin of metazoans (i.e. multicellular animals) took place in the Cambrian period (541-484 My ago) after the Cambrian Explosion. However, several scientists, including Darwin, already suspected that the true origin of metazoans must be even older.

Did metazoans exist in the ancient and understudied Precambrian supereon? We invite you to know the Ediacaran fauna, a paleontological puzzle and a clue link in the evolutive history of animals.

The mysterious Ediacaran fauna

Before start talking about the Ediacaran period and its odd fauna, we must set it into a geological time context.

Our planet Earth formed around 4600 My Ago. The span between Earth’s formation and the moment in time 543 My ago is known as Precambrian supereon, the first and largest period of history of Earth, as well as the less studied and comprehended. It is suggested that the first life forms appeared 3800-3500 My ago, not very after the beginning of the Precambrian.

The end of the Precambrian supereon lead to the beginning of the Phanerozoic eon, whose first geological period, the Cambrian, has been traditionally considered to set the origin of all phyla of metazoans (multicellular animals). All animal phyla were already represented shortly after the beginning of this period; that is, it took place a great diversification of living beings on a global scale in a short span, an evolutive radiation event. This massive evolutive event was named as Cambrian Explosion.

Geological time scale: end of the Precambrian supereon and beginning of the Phanerozoic eon (specifically, the Paleozoic era). The Ediacaran and the Cambrian are highlighted in red. Source: The Geological Society of America.

The idea of the Cambrian period as the cradle of most of animal groups was deduced from the study of fossil records and their age. However, is it true that the origin of every animal phyla took place entirely during this period? Some scientists, as the selfsame Darwin, suspected that the first metazoan lineages could have appeared even earlier.

Precambrian fossils

The Precambrian was an instable period at a geological level: tectonic movements, vulcanism… put many troubles in the preservation of any biological rest. On the other hand, the succession of several global glaciations during this supereon (‘Snowball Earth’), the last of which took place 650 My ago, put even more difficulties into the progression of life on Earth.

No wonder, so, that the Cambrian, a more stable period from both a geologic and climatic point of view, was long considered the origin of metazoans, since the geological instability during the Precambrian presumably made it impossible to preserve any fossil record. That is, supposedly there were not “clues” about the existence of metazoans before the Cambrian Explosion.

However, something happened. At the end of the 19th century, a Scottish scientist discovered what was later considered as the first Precambrian fossil ever known: Aspidella terranovica, a disk-shaped fossil of uncertain affinity. But as it was found in Precambrian strata, it was considered an artifact.

Aspidella fossils (also known as Cyclomedusa, currently a synonym). Its shape reminds of that of a jellyfish. Source: Verisimilus (CC 3.0) on Wikipedia.

This discovery was followed by others throughout the world, in which fossils from the Precambrian were also found (e. g., Namibia and Australia), but the strong belief that multicellular animals appeared during the Cambrian or even later eclipsed the true origin of these fossil records for many years. It was not until the 20th century and after the discovery of a second iconic fossil in Charnwood Forest (England), Charnia masoni, that the Precambrian origin of metazoans was not really considered, this fossil being the first to be recognized as Precambrian. So, Aspidella terranovica, Charnia and the rest of Precambrian fossil records would be, at last, connected.

Charnia masoni holotype. Despite its frond-like appearance, it is not considered a plant or an alga since the nature of the fossil beds where specimens have been found implies that it originally lived in deep water, well below the photic zone where photosynthesis can occur. Source: Smith609 (CC 2.5) on Wikipedia.

The Ediacaran period

At last, Precambrian fossil have been found all over the world. Most of them have been found in strata date from 575-541 My ago, marking the end of the Precambrian and the beginning of the Phanerozoic.

Nowadays, representatives of the Ediacaran fauna occur at 40 localities worldwide, with 4 particularly good localities:

  • Southeastern Newfoundland (Canada)
  • The Flinders Ranges (South of Australia)
  • White Sea region (Russia)
  • Namibia

In 1960, the term ‘Ediacaran’ was proposed to name the geological span which the Ediacaran fauna is date from. The term comes from the Ediacara Hills in Australia, where one of the most important Precambrian fossil sites is found. This name competed with others, but in 2004, the International Union of Geological Sciences stablished the Ediacaran as the period that started 635 My ago (after the Marinoan glaciation) and that ended 542 My ago (with the discover of the earliest widespread complex trace fossil).

The Ediacaran fauna

Once the Precambrian was finally accepted as the origin of metazoans, and assuming that complex animals appeared during a hypothetical explosion of diversity just after the great Precambrian glaciations and some million years before the Cambrian (Avalon Explosion), some questions were raised:

How did the Ediacaran fauna look like?

Most of fossil records of the Ediacaran fauna consist of macroscopic, morphologically diverse (mainly radial or circular shapes) and generally soft-bodied organisms, without hard elements that could last until our days. This can be deduced from the shape and typology of the fossils, since most of them are simply marks or trails they left after dying, preserved in a manner that is, in many cases, unique to the Ediacaran fauna.

Tribrachidium fossil. It is, in fact, a negative impression, that is, the trail that the animal left after dying. It is suggested that it could be an organism with triradial symmetry very close to nowadays Lophophorata. Source: Aleksey Nagovitsyn (CC 3.0) on Wikipedia.

Besides, they were probably sessile, aquatic, with feather-like structures and filter feeders. However, several researchers consider that a few of them could be free-living animals with a bilateral symmetry (that is, with an anteroposterior axis that splits the body into two symmetric halves), one of the most successful body plans after the Cambrian Explosion.

Dickinsonia costata fossil. According to its shape, it was probably a bilateral animal (with a ‘head’ and an ‘anus’), and for a long time it was suggested that it was related to some kind of flat worm, some of which could be up to 1 meter long. In 2018, cholesterol molecules found in Dickinsonia fossils confirmed that it was an animal. Source: Verisimilus (CC 3.0) on Wikipedia.

With which current groups do they relate?

The fact is we still do not know. Most of them have shapes that reminds of some basal metazoans (like sponges and cnidarians) and a few, to annelids and arthropods. However, these are artificial relationships, as phylogenetic relationships between the Ediacaran fauna and the current fauna are still a mystery. Even some fossils cannot be related to any nowadays phyla, so they are considered as a part of an extinct Precambrian lineage.

However, not everything is lost. Similarities between some Ediacaran fossils and current metazoans shed some light on how animals could have evolved, and which was their origin.

Why Ediacaran fossils are not found beyond the Ediacaran period?

The fact is they are found in strata that date from after the Ediacaran period. Posterior studies demonstrated that some Ediacaran organisms were located in Cambrian strata together with fossils that resulted from the Cambrian Explosion, so it would be possible some representatives of the Ediacaran fauna gave place to certain current groups of animals. However, it is true that Ediacaran fauna representatives are found in a smaller proportion in Cambrian strata than other Cambrian organisms, and many living forms had already disappeared.

There exist some hypotheses that explain why most of the Ediacaran fauna did not survived beyond the Cambrian, for example:

  • Changes in atmospheric oxygen levels.
  • Competence with the Cambrian fauna, which probably had better adapted bodies or more successful body plans.
  • Changes in the sea level.

Are the Ediacaran organisms the true origin of metazoans?

Although this has been the general belief after their discovery, the truth is that even older metazoans have been recently found.

As we have explained above, most representatives of the Ediacaran fauna date from 575-541 My ago. Well, evidence of ancient sponges (Porifera) from 600 My ago has been found. The most recent discovery was that of Otavia antiqua in 2012 in Namibia, a sponge date from 760 My ago; that is, it is dated from before some of the great Precambrian glaciations.

Otavia antiqua. Source: National Geographic.

.            .           .

Do you believe there are even older metazoan fossils out to be discovered? Leave your comments!

Main image by Ryan Somma, from the Smithsonian National Museum of Natural History (CC 2.0).

Anuncis

Beyond red: the color of blood

There are people who remember with great impact the first time they saw their own blood. Even in adulthood and in controlled conditions (for example, during an extraction in a medical center) the vision of the red fluid is not always pleasant. Sometimes more intense, sometimes darker, but always red… or not? Do you know if there are animals with blue, green or maybe yellow blood? Keep reading to find out.

BEYOND RED: THE COLOR OF BLOOD

We are used to the color of blood being red, since it is the color of our blood and many vertebrates, like all mammals. The color of the blood is due to respiratory pigments, those responsible for transporting oxygen to cells throughout the body and carbon dioxide to the lungs. As you may remember, the human respiratory pigment is hemoglobin, which is found in red blood cells or erythrocytes.

But other animals have respiratory pigments other than hemoglobin, which endow their blood with colors as varied as green, blue, yellow and even purple.

glóbulos rojos, sangre, eritrocitos, hematíes
Human red blood cells (erythrocytes) seen under the electron microscope. Photo: John Kalekos

RED BLOOD

As mentioned, the respiratory pigment of mammals and many other vertebrates is hemoglobin, a protein. In its molecular structure, hemoglobin is formed by 4 subunits (called globins) linked to a heme group. The heme group has a central iron atom (iron II) that is responsible for the red color.

sangre color rojo hemoblogina molécula
Representation of the structure of hemoglobin. We can see the globins joined to their corresponding heme group, and an enlargement of the heme group with the iron (II) atom at its center. Picture: Buzzle

The hue of red may vary, depending on how oxygenated hemoglobin is. When it is attached to oxygen (O2), it is called oxyhemoglobin and its color is an intense light red (arterial blood). In contrast, deoxyhemoglobin is the name given to reduced hemoglobin, that is, when it has lost oxygen and has a darker color (venous blood). If hemoglobin is more oxygenated than normal it is called methemoglobin and has a red-brown hue. This is due to the intake of some medications or a congenital disease (methemoglobinemia).

sangre venosa, sangre arterial, rojo intenso, rojo oscuro, color
Color hue difference between venous blood (upper syringes) and arterial blood (lower syringes). Photo: Wesalius

As we have seen, deoxygenated blood is not blue. The blue tone that we see in our veins is due to an optical effect resulting from the interaction between the blood and the tissue that lines the veins.

BLUE BLOOD

Some animals, on the other hand, do have blue blood: decapod crustaceans, some spiders and scorpions, horsehoe crabs, cephalopods and other molluscs. When dealing with invertebrates, we must specify that instead of blood its internal liquid is called hemolymph, but in this post we will not distinguish hemolymph from blood for better understanding.

cangrejo herradura sangre azul xfosuro
Ventral view of a wounded horsehoe crab, in which its blue blood can be observed. Photo: Dan Century

The pigment responsible for the blue color of blood in these animals is hemocyanin. Its structure is quite different from that of hemoglobin, and instead of iron, it has a copper (I) atom at its center. When hemocyanin is oxygenated, it is blue, but when it is deoxygenated it is colorless.

molécula hemocianina
Chemical structure of oxygenated hemocyanin. Picture: Chemthulhu

GREEN BLOOD

There are some animals with green blood, such as some annellids (worms), some leeches and some marine worms. Its respiratory pigment, called chlorocruorine, gives its blood a light greenish color when it is deoxygenated, and a little darker when it is oxygenated. Structurally, it is very similar to hemoglobin, since it also has an iron atom at its center. Unlike hemoglobin, it is not found in any cell, but floats in the blood plasma.

molécula clorocruorina
Chemical structure of chlorocruorine. Public domain image

 

sangre color verde
Tube containing green blood from a New Guinea lizard. Photo: Christopher Austin

In the case of vertebrates with green blood (like some New Guinea lizards), the color is due to biliverdin, which results from the degradation of hemoglobin. Biliverdin is toxic, but these lizards are able to withstand high levels in their body. In the rest of vertebrates, if biliverdin levels are high because the liver can not degrade it to bilirubin, they cause jaundice, a disease that gives a yellowish color to the skin and corneas of the eyes. But in species of lizards like Prasinohaema prehensicauda, the high presence of biliverdin could protect them against malaria, according to some research.

lagarto nueva guinea sangre verde
Species of New Guinea lizard with green blood. Photo: Christopher Austin

YELLOW BLOOD

Tunicates (fixed ascidians) are a type of animals with yellow/yellow-green blood. The pigment responsible for this color is hemovanabine, a vanadium-containing protein, although it not transport oxygen, so its function remains unknown. Similarly, the yellowish, yellow-green and even orange color of the blood (hemolymph) of some insects is not due to the presence of a respiratory pigment, but to other dissolved substances that do not carry oxygen.

tunicado
Tunicate (Didemnum molle) in Sulawesi, Indonesia. Photo: Bernard Dupont

PURPLE BLOOD

Some marine invertebrates have violet blood (hemolymph), such as priapulids, sipunculides, brachiopods and some annelids.

priapulida hemeritrina
Priapulus caudatus, a priapulid. Photo: Shunkina Ksenia

The responsible respiratory pigment is hemeritrin, which turns violet-rosacea when it is oxygenated. In its deoxygenated form it is colorless. Like the rest of the respiratory pigments we have seen, hemeritrin is less efficient than hemoglobin when transporting oxygen.

hemeritrina color sangre violeta
Chemical structure of hemeritrin in its oxygenated form. Like hemoglobin, the central element is iron II

TRANSPARENT BLOOD

Finally, there is a family of fish called crocodile icefish whose blood is transparent. Actually, these are the only vertebrates that have lost hemoglobin. Similarly, erythrocytes are usually absent or dysfunctional. This strange anatomy is because they live in very oxygenated waters and their metabolism is very slow. In order for oxygen to reach all cells, it dissolves in the blood plasma, which distributes it throughout the body.

pez de hielo draco sangre color transparente
Crocodile Icefish (Chionodraco hamatus). Photo: Marrabbio2

CONCLUSION

To conclude, we have seen that in animals that require a respiratory pigment to deliver oxygen to all tissues, the color of blood (or hemolymph) will depend on the type of pigment that is present. In contrast, other animals that do not require respiratory pigments, have transparent blood or their color is due to other dissolved substances that have nothing to do with breathing.

infografía colores de la sangre
Infographic-summary of the chemistry of the main blood or hemolymphatic respiratory pigments (click to enlarge). Image: compound interest

 

Cover photo: John Kalekos

The importance of biological collections

Biological collections are cornerstones for the study of biodiversity and an almost endless source of scientific information. Many are those within the social networks who demand scientists to stop using ‘classical’ biological collections as they are seen as primitive tools that promote animals and plants extinctions.

We explain you why this statement is incorrect, which types of collections do exist and which are their most relevant functions.

The importance of biological collections

It is more than probably that the first thing it comes to mind when you hear someone talking about biological collections are hundreds of animals or plants dried, pinned and placed inside boxes by a fanatical collector. Yes, this type of collections exists. However, and without demonizing them (since these collectors can be very useful for science), this is not the type of collections we want to talk about and, of course, not the only one that exists.

Biological collections are systematized repositories (well identified, classified and ordered) of a combination of any biological material. Most of these repositories are deposited in natural history or science museums, but also in universities, research centers or even totally or partially in private collections.

ICM’s (Institute of Marine Sciences) Biological Reference Collections, in Barcelona. Picture by Alícia Duró on ICM’s web.
Some drawers of the Australian National Insect Collection. Picture by the Australian National Insect Collection.

Types of collections

Even though the concept of biological collection is something quite new, the collection and classification of biological material started some centuries ago with the first animals and plants collected by zoologists and botanists.

Nowadays, the term of biological collection has acquired a broader meaning:

  • Cryogenic collections

Storage of living biological material in frozen state under the assumption that it will retain its viability and normal functioning when being thawed after a long period of time. Cryogenic collections are typically used to store cells, tissues and genetic material. And even though science fiction has given us many fantastic ideas, the truth is that this method is very rarely used for preserving entire organisms.

  • ‘Classical’ biological collections

They essentially include collections of zoological museums (entire specimens or some of their parts) and herbaria (plants), among others. Some of these collections go back over more than two centuries, so ‘classical’ biological collections are considered the oldest within all types of collections. And also, one of the most valuable.

Collection of inquiline cynipids or gall wasps . Source: Irene Lobato Vila.

Most of these collections are deposited in museums or research centers and, excepting some particular cases, able to be required and examined by the scientific community as it pleases. A lot of private collectors collaborate with these institutions by transfering their specimens, which is quite common among insect collectors.

Drawers from the National Museum of Natural History, Washington D.C., Smithsonian Institution, containing thousands of insect specimens. Source: Irene Lobato Vila.

It is worthwhile remembering that transferring is subjected to an exhaustive revision and done only under contract, so institutions do not accept specimens obtained directly by the collector from illegal methods (e. g., poaching or wild animal trading).

  • Collections of biological information online

Repositories of biological information online. This type of collections has gained a lot of importance during the last years since it allows to share biological information of interest to science and technology immediately around the world. The most consulted online databases are those containing molecular data (proteins, DNA, RNA, etc.), which are necessary for phylogenetic studies and to make ‘trees of life’. Some of these databases are:

Other types of very consulted webs are the online databases of museum collections (which are of very importance to preserve massive amounts of data deposited in this institutions; remember the case of the Brazil National Museum fire) and webs of citizen science projects and collaborations, where either experts and amateurs provide information of their observations (like Biodiversidad Virtual).

Biological collections can be also classified according to their function: scientific collections (research), commercial collections (cell cultures for medicine, pharmacy, etc.) and ‘state’ collections (those created and managed for the sake of the state, like botanical garden, in order to preserve the biodiversity of a region and to promote its study and outreach).

The term of biological collections also embraces the biobanks, that is, collections exclusively containing human samples for biomedical studies. However, we will not go farer with this term.

Why are classical biological collections so necessary?

Biological collections and, especially, classical biological collections, are essential for biodiversity conservation. And no, they are not a direct cause of species extinction: the number of collected specimens is derisory compared with those lost as a consequence of pollution and habitats loss, and collections are carried out following several rules, always making sure to not disturb populations and their habitats.

Although it is true that pictures and biodiversity webs are a very useful tool for the study of worldwide biodiversity, unfortunately they are just a completement of physical collections.

So, why are these classical and physical collections so important?

  • They are a very valuable source of genetic material that can be obtained from stored samples and used in molecular studies. Thanks to these studies, we can approach to the origins and relationships of living beings (phylogeny), know their genetical diversity and the speciation mechanisms that lay behind species differentiation, or even to improve strategies to conserve them (e. g., in reintroduction and conservations plans).
  • They are a perpetual reference for future scientists. One of the basic pillars of zoological and botanical collections are the type specimens or type series: those organisms that a scientist originally used to describe a species. Types must be correctly labelled and stored because they are the most valuable specimens within a collection. The type or types should be able to be examined and studied by all scientists and used by them as a reference for new species descriptions or for comparative studies, since original descriptions can sometimes be insufficient to characterize the species.
Paratype insect (specimen from the type series) properly labelled and deposited in the entomological collection of the National Museum of Natural History of the Smithsonian Institution, in Washington D.C. Source: Irene Lobato Vila.
  • Regarding the previous point, classical collections allow to study the inter and intraspecific morphology (external and internal), which is sometimes impossible to assess only with pictures.
  • Classical collections contain specimens collected from different periods of time and habitats, including extinct species (both from a long time ago and recently due to the impact of human activity) and organisms from endangered ecosystems.  As habitat destruction continues to accelerate, we will never have access to many species and the genetic, biochemical, and environmental information they contain unless they are represented in museum collections. The information these samples provide is essential to investigate how to slow or mitigate the negative pressure on still extant species and ecosystems.
  • They provide us past and present information about geographic distribution of different organisms, since each of them is usually stored together with data about its locality and biology. This kind of information is very useful both for ecological and evolutive studies, as well as for resource management, conservation planning and monitoring, and studies of global change.
  • They are an important tool for teaching purposes and popular science, since people get directly in touch with samples. Pictures and books are undoubtfully essential for outreaching, but insufficient when they are not complemented with direct observations. Both visits to museums and field trips are basic tools for a complete environmental education.
At the end of the course each year,  thousands of students visit the collections of the National Museum of Natural History in Washington D.C. Some of them may even visit the scientific collections. Source: Irene Lobato Vila.

.        .        .

Do you still think biological collections are unnecessary after reading this post? You can leave your comments!

Animals walking on walls: challenging gravity

How do insects, spiders or lizards for walking on smooth vertical surfaces or upside down? Why would not be possible for Spiderman to stick on walls the way some animals do?

Scientist from several areas are still in search of the exact mechanisms that allow some animals to walk on smooth surfaces without falling or sliding. Here we bring you the latest discoveries about this topic.

Animals walking on walls: challenging gravity

Competition for space and resources (ecological niche) has led to a lot of amazing adaptations throughout the evolution of life on Earth, like miniaturization.

When nails, claws or friction forces are insufficient to climb up vertical smooth surfaces, dynamic adhesion mechanisms come into play. Dynamic adhesion mechanisms are defined as those that allow some animals to climb steep or overhanging smooth surfaces, or even to walk upside down (e.g. on ceilings), by attaching and detaching easily from them. The rising of adhesive structures like adhesive pads as an evolutionary novelty has allowed some animals to take advantage of unexplored habitats and resources, foraging and hiding from predators where others could not.

Gecko stuck on a glass surface. Picture by Shutterstock/Papa Bravo.

Adhesive pads are found in insects and spiders, some reptiles like geckos and lizards, and some amphibians like tree frogs. More rarely they can be also found in small mammals, like bats and possums, arboreal marsupials native to Australia and some regions from the Southeast Asia.

The appearance of adhesive pads among these very different groups of animals is the result of a convergent evolution process: evolution gives room to equal or very similar solutions (adhesive pads) to face the same problem (competence for space and resources, high predation pressure, etc.).

Adaptation limits (or why Spiderman could not climb up walls)

Studying the underlying processes of the climbing ability of these animals is a key point in the development of stronger adhesive substances. So, a lot of research regarding this topic has been carried out to date.

Will humans be able to climb up walls like Spiderman some day? Labonte et al. (2016) explain us why Spiderman could not be real. Or, at least, how he should be to be able to stick on walls and do whatever a spider can.

Will humans be able to climb up walls like Spiderman some day? For now, we will have to settle for this sculpture. Public domain image.

Apart from the specific mechanisms of each organism (of which we will talk in depth later), the main principle that leads the ability for walking on vertical smooth surfaces is the surface/volume ratio: the smaller the animal, the larger is the total surface of the body with respect its volume and smaller is the amount of adhesive surface needed to avoid falling due to the body weight. According to this, geckos are the bigger known animals (i.e. those with the smallest surface/volume ratio) able to walk on vertical smooth surfaces or upside down without undergoing deep anatomical modifications.

And what does ‘without undergoing deep anatomical modifications’ mean? The same authors say that the larger the animal, the bigger is the adhesive pad surface needed for walking without falling to the ground. The growth of the adhesive pad surface with respect the size of the animal shows an extreme positive allometry pattern: by a small increase of the animal size, a bigger increase of the adhesive pad surface takes place. According to this study, a 200-fold increase of relative pad area from mites to geckos has been observed.

Picture by David Labonte

However, allometry is led by anatomical constraints. Therefore, if there was an animal larger than a gecko able to climb up smooth surfaces, it should have, for example, extremely large paws covered by an extremely large sticky surface. While this would be possible from a physical point of view, anatomical constraints would prevent the existence of animals with such traits.

Now we are in condition to answer the question ‘Why Spiderman could not stick to walls?’. According to Labonte et al., to support a human’s body weight, an unrealistic 40% of the body surface would have to be covered with adhesive pads (80% if we only consider the front of the body) or ridiculously large arms and legs should be developed. Both solutions are unfeasible from an anatomical point of view.

Great diversity of strategies

Dynamic adhesion must be strong enough to avoid falling as well as weak enough to enable the animal to move.

A great diversity of dynamic adhesion strategies has been studied. Let’s see some of the most well-known:

Diversity of adhesive pads. Picture by David Labonte.

1) Wet adhesion

A liquid substance comes into play.

Insects

Insects develop two main mechanisms of wet adhesion:

Smooth adhesive pads: this mechanism is found in ants, bees, cockroaches and grasshoppers, for example. The last segment of their legs (pretarsus), their claws or their tibiae present one or several soft and extremely deformable pads (like the arolia located in the pretarsus). No surface is completely smooth at microscale, so these pads conform to the shape of surface irregularities thanks to their softness.

Cockroach tarsus. Adapted picture from the original by Clemente & Federle, 2008.

Hairy adhesive pads: these structures are found in beetles and flies, among others. These pads are covered by a dense layer of hair-like structures, the setae, which increase the surface of the leg in contact with the surface.

Chrysomelidae beetle paw. Picture by Stanislav Gorb et al.

A thin layer of fluid consisting of a hydrophilic and a hydrophobic phase located between the pad and substrate comes into play in both strategies. Studies carried out with ants show that the ends of their legs secrete a thin layer of liquid that increases the contact between the pretarsus and the surface, filling the remaining gaps and acting as an adhesive under both capillarity (surface tension) and viscosity principles.

Want to learn more about this mechanism in insects? Then do not miss the following video about ants!

Tree frogs

Arboreal or tree frog smooth toe pads are made of columnar epithelial cells separated from each other at their apices. Mucous glands open between them and secrete a mucous substance that fill the intercellular spaces. Having the cells separated enable the pad to conform to the shape of the surface and channels that surround each epithelial cell allow to spread mucus over the pad surface to guarantee the adhesion. These channels also allow to remove surplus water under wet conditions that could make frogs to slide (most tree frogs live in rainforests).

Red-eyed tree frog (Agalychnis callidryas), distributed from Southern Mexico to Northeastern Colombia. Public domain image.

In the next video, you can see in detail the legs of one of the most popular tree frogs:

Smooth toe pads of tree frogs are similar to those found in insects. In fact, crickets have a hexagonal microstructure reminiscent of the toe pads of tree frogs. This led Barnes (2007) to consider the wet adhesion mechanism as one of the most successful adhesion strategies.

Different species of tree frogs (a, b, c) and their respective epithelia (d, e, f). Figure g corresponds to the surface of a cricket’s smooth toe pad. Picture by Barnes (2007).

Possums

The most detailed studies on possums have been carried out about the feathertail glider (Acrobates pygmaeus), a mouse-sized marsupial capable to climb up sheets of glass using their large toe pads. These pads are conformed by multiple layers of squamous epithelium with alternated ridges and grooves that allow them to conform to the shape of the surface and that are filled with sweat, the liquid this small mammal use to adhere to surfaces.

00530622
Acrobates pygmaeus. Picture by Roland Seitre.
pygmffoot
Frontal toe pads of Acrobates pygmaeus. Picture by Simon Hinkley and Ken Walker.

2) Dry adhesion

Liquid substances do not come into play.

Spiders and geckos

The adhesion of both spiders and geckos depends on the same principle: the Van der Waals forces. Unlike insects, tree frogs and possums, these organisms do not secrete sticky substances.

Van der Waals forces are distance-dependent interactions between atoms or molecules that are not a result of any chemical electronic bond. These interactions show up between setae from footpads of geckos (which are covered by folds, the lamellae) and setae from spider paws (which are covered with dense tufts of hair, the scopulae), and the surface they walk on.

Spider paw covered with setae. Picture by Michael Pankratz.
Diversity of footpads of geckos. Picture by Kellar Autumn.

However, recent studies suggest dry adhesion in geckos is not mainly lead by Van der Waals forces, but by electrostatic interactions (different polarity between setae and surface), after confirming that their sticking capacity decreased when trying to climb a sheet of low energetic material, like teflon.

Anyway, the ability of geckos to climb is impressive. Check this video of the great David Attenborough:

3) Suction

Bats

Disk-winged bats (family Thyropteridae), native to Central America and northern South America, have disk-shaped suction pads located at the base of their thumbs and on the sole of their feet that allow them to climb smooth surfaces. Inside these disks, the internal pressure is reduced, and the bat stick to the surface by suction. In fact, a single disk can support the weight of the bat’s body.

Thyropteridae bat. Picture by Christian Ziegler/ Minden Pictures.

Now that you know about all these animals’ ability for climbing smooth walls, do you still think Spiderman is up to the task?

Main picture by unknown author. Source: link.

Insects are becoming smaller: miniaturization

According to different studies, multicellular organisms tend to become smaller and smaller through time. This phenomenon is called miniaturization and is considered one of the most significative evolutionary trends among insects. Miniaturization is a driving force for diversity and evolutionary novelties, even though it must deal with some limitations.

Learn more about this phenomenon and met some of the most extreme cases of miniaturization among insects through this post.

Why are animals becoming smaller?

For some years now, multiple studies suggest there is a widely extended trend to miniaturization among multicellular animals (i. e. organisms composed by more than one cell).

Miniaturization is a remarkable natural phenomenon headed to the evolution of extremely small bodies. This process has been observed in different non-related groups of animals:

  • Shrews (Soricomorpha: Soricidae), mammals.
  • Hummingbirds (Apodiformes: Trochilidae), birds.
  • Diverse groups of insects and arachnids.

To know more about giant insects, you can read Size matters (for insects)!

Diversification and speciation processes have given place to lots of new species through time, all of them constantly competing for limited space and food sources. This scenario turns even more drastic in tropical regions, where diversification rates are extremely high.

Learn about the ecological niche concept by reading “The living space of organisms“.

Facing the increasing demands of space and resources, evolution has given place to numerous curious phenomena such as miniaturization to solve these problems: by becoming smaller, organisms (either free-living or parasites) gain access to new ecological niches, get new food sources and avoid predation.

Despite many animals tend to miniaturization, this phenomenon is more frequently observed among arthropods, being one of their most remarkable evolutionary trends. Moreover, arthropods hold the record of the smallest multicellular organisms known to date, some of which are even smaller than an amoeba!

Guinness World Record of the smallest insects

The smallest arthropods are crustaceans belonging to the subclass Tantulocarida, which are ectoparasites of other groups of crustaceans, such as copepods or amphipodes. The species Tantulacus dieteri is still considered the smallest species of arthropods worldwide, which barely measures 85 micrometers (0,085 millimeters), thus being smaller than many unicellular life beings.

However, insects do not lag far behind.

Mymaridae

Mymaridae (or fairyflies) are a family of wasps inside the superfamily Chalcidoidea from temperate and tropical regions. Adults, ranging from 0.5 to 1 millimeter, develop as parasites of other insects’ eggs (e. g. bugs, Heteroptera). For this reason, fairyflies are very valuable as biological control agents of some harmful pests. Also, they are amongst the smallest insects worldwide.

Currently, the one holding the record as the smallest known adult insect is the apterous (wingless) male of the species Dicopomorpha echmepterygis from Costa Rica, with a registered minimum size of 0.139 millimeters. They neither have eyes nor mouthparts, and their legs endings are deeply modified to get attached to the females (somewhat bigger and winged) time enough to fertilize them. They are even smaller than a paramecium, a unicellular organism!

You can read “Basic microbiology (I): invisible world” to know more about unicellular organisms.

Male of D. echmepterygis. Link.

Fairyflies also include the smallest winged insects worldwide: the species Kikiki huna from Hawaii, with and approximate size of 0.15 millimeters.

Trichogrammatidae

Like fairyflies, trichogrammatids are tiny wasps of the superfamily Chalcidoidea that parasite eggs of other insects, especially lepidopterans (butterflies and moths). Adults of almost all the species measure less than 1 millimeter and are distributed worldwide. Adult males of some species are wingless and mate with their own sisters within the host egg, dying shortly after without even leaving it.

The genus Megaphragma contains two of the smallest insects worldwide after fairyflies: Megaphragma caribea (0.17 millimeters) and Megaphragma mymaripenne (0.2 millimeters), from Hawaii.

A) M. mymaripenne; B) Paramecium caudatum. Link.

Trichogrammatids also have one of the smallest known nervous systems, and that of the species M. mymaripenne is one of the most reduced and specials worldwide, as it is composed by only 7400 neurons without nucleus. During the pupae stage, this insect develops neurons with functional nuclei which are able to synthetize enough proteins for the entire adulthood. Once adulthood is reached, neurons lose their nuclei and become smaller, thus saving space.

Ptiliidae

Ptiliidae is a cosmopolitan family of tiny beetles known for including the smallest non-parasitic insects worldwide: the genera Nanosella and Scydosella.

Ptiliidae eggs are very large in comparison with the adult female size, so they can develop a single egg at a time. Other species undergo parthenogenesis.

Learn some more about parthenogensis by reading “Immaculate Conception…in reptiles and insects“.

Currently, the smallest Ptiliidae species known and so the smallest non-parasitic (free living) insect worldwide is Scydosella musawasensis (0.3 millimeters), from Nicaragua and Colombia.

Scydosella musawasensis. Link (original picture: Polilov, A (2015) How small is the smallest? New record and remeasuring of Scydosella musawasensis Hall, 1999 (Coleoptera, Ptiliidae), the smallest known free-living insect).

Consequences of miniaturization

Miniaturization gives rise to many anatomical and physiological changes, generally aimed at the simplification of structures. According to Gorodkov (1984), the limit size of miniaturization is 1 millimeter; under this critical value, the body would suffer from deep simplifications that would hinder multicellular life.

While this simplification process takes places within some groups of invertebrates, insects have demonstrated that they can overcome this limit without too many signs of simplification (conserving a large number of cells and having a greater anatomical complexity than other organisms with a similar size) and also giving rise to evolutionary novelties (e. g. neurons without nucleus as M. mymaripenne).

However, getting so small usually entails some consequences:

  • Simplification or loss of certain physiological functions: loss of wings (and, consequently, flight capacity), legs (or extreme modifications), mouthparts, sensory organs.
  • Considerable changes in the effects associated with certain physical forces or environmental parameters: capillary forces, air viscosity or diffusion rate, all of them associated with the extreme reduction of circulatory and tracheal (or respiratory) systems. That is, being smaller alters the internal movements of gases and liquids.

So, does miniaturization have a limit?

The answer is yes, although insects seem to resist to it.

There are several hypotheses about the organ that limits miniaturization. Both the nervous and the reproductive systems, as well as the sensory organs, are very intolerant to miniaturization: they must be large enough to be functional, since their functions would be endangered by a limited size; and so, the multicellular life.

.             .            .

Multicellular life reduction seems to have no limits. Will we find an even smaller insect? Time will tell.

Main picture: link.

The problem of wild animals as pets

Although the first animals we think of as life partners are dogs or cats, the truth is that unfortunately many people decide to have a wild or exotic animal at home. Vietnamese pot-bellied pigs, sugar gliders, fennec foxes, meerkats, raccoons, monkeys… Is it possible to have a wild animal in good condition at home? What are the issues we can find? What wild mammals do people have as pets? We invite you to continue reading to find out.

WHAT IS THE DIFFERENCE BETWEEN A DOMESTIC ANIMAL AND A WILD ONE?

A domestic animal is an animal that has lived with humans for thousands of years. During the history of our species we have artificially selected these animals to obtain benefits, such as food, companionship or protection, like dogs, which have even co-evolved with us. Most domestic animals could not survive in the wild, as they would not know how to find food or would be easy prey for predators. Those who survive when abandoned, like some dogs or cats, cause serious problems to wildlife or even people.

 lobo perro dog wolf perro lobo
Some domestic animals, such as certain dog breeds (right), resemble their wild counterparts (wolf, left), which gives rise to the false idea that wild animals can be domesticated. Photo: unknown

And a wild animal? Many people confuse wild animal with ferocious or dangerous animal. A wild animal is an animal that has not been domesticated, that is, its species has not been in contact with people (at least not for thousands of years as the domestic ones). The fact that some wild animals are not dangerous (or not at all) for us, that they appear in series and movies, some celebrities own them and the desire to have a “special” animal at home, continues favoring the purchase-sale of these animals as pets.

monkey mono capuchino marcel ross friends
The character of Ross in the world-famous series ‘Friends’ had a capuchin monkey, which has to be donated when it reaches sexual maturity for aggressive behavior. Source

WHAT PROBLEMS DOES IMPLY TO HAVE A WILD ANIMAL AT HOME?

PROBLEMS FOR PEOPLE

The main reason why wild or exotic animals cause problems for humans is the lack of knowledge of the species: some have very specific diets that are practically impossible to reproduce in captivity. Others may live longer than the owner, be very noisy, occupy a lot of space, have nocturnal habits, transmit diseases or be poisonous. This results in maintenance difficulties and changes in  the behavior of the animal, until it becomes dangerous for its owner. The consequence is usually the abandonment of the animal, which will cause death, cause problems in nature or very high maintenance costs if they end up in a wildlife rescue center (according to Fundació Mona, keeping a chimpanzee costs 7,000 euros a year. Their life expectancy is 60 years: 420,000 euros in total for a single animal).

Raccoons undergo behavioral changes and may attack their owners. Source

Many species released in the wild end up being invasive, endangering the native ecosystems. If you want to know the difference between introduced and invasive species, read this post. To know the threats they pose to ecosystems, visit this post.

Do not forget that the purchase, sale and possession of many wild animals is totally illegal.

PROBLEMS FOR ANIMALS

Animals must live in an environment where their needs, both physical and mental, can be met. Although we put all our good intentions, give love and spend money keeping a wild animal, we  will never be able to reproduce their natural conditions. Lack of space, contact with other animals of their species, time searching for food, temperature conditions, humidity, light… the animal can not develop its normal behavior even if it is in the most optimal conditions of captivity.

The consequences that will suffer an animal that has not met their needs implies health problems (diseases, growth deficit…) and behavior (stereotypic-compulsive movements, self-injury, anxiety, aggression…).

A fennec fox, a carnivorous animal of the desert, in an evident state of illness. According to social networks, because he was being fed a vegan diet. According to its owner, Sonia Sae, because it is allergic to pollen despite following a vegan diet. Be that as it may, it is clear that the pollen amounts in Sahara have nothing to do with those of Europe. Source

Finally, the most serious consequence when we acquire a wild animal is that we are favoring the trafficking of animals, the death of thousands of them during transport to our house and even their extinction. Animal trafficking is the second cause of biodiversity loss on our planet, behind the destruction of habitats.

Slow loris are nocturnal and poisonous animals that are marketed as pets and, like mostof them, are transported under terrible conditions. Learn more about the calvary of slow lories visiting blognasua. Photo: Naturama

EXAMPLES OF WILD MAMMALS AS PETS

PRIMATES

Marmosets, slow loris, lar gibbons, chimpanzees, Barbary macaques… The list of primates that people have in captivity is almost infinite. One of the main mistakes people make when they want a primate as a pet is to believe that they have our same needs, especially in superior primates such as chimpanzees. Its expressions are also confused with ours: what the photo shows is not a smile of happiness and what the video shows is not tickling, but an attitude of defense (slow loris have poison in their elbows).

This chimpanzee is not smiling, he is scared. Photo: Photos.com

Many primates live in family groups and the offspring need to be with the mother the first years of life, so that just the simple fact of acquiring a little primate entails the death of all the adults of their family group and psychological problems for the animal. To know the extensive and serious problem of keeping primates in captivity, we strongly recommend reading this post.

SUGAR GLIDERS

Sugar gliders (Petaurus breviceps) resemble a squirrel, but in fact they are marsupials. They have a very specific diet (insects and their depositions, eucalyptus sap, nectar …), they live in the canopy of trees in groups from 6 to 10 individuals and move between the trees jumping up to 50 meters with a membrane that let them hover. They are nocturnal so they yell and call at night. It is evident that it is impossible to reproduce these conditions in captivity, so the majority of sugar gliders die due to nutritional deficiencies.

Sugar glider caged. Photo: FAADA

VIETNAMESE POT-BELLIED PIGS

Although they are a variety of a domestic animal, Vietnamese pot-bellied pigs (Sus scrofa domestica) are small when tey are young, but adults can weigh more than 100 kilos, so it is impossible to keep them in a flat. There have been so many abandonments and they have reproduced so much, that there are populations established in nature. They can reproduce with wild boars and it is unknown if the hybrids are fertile. There are no wildlife recovery centers or shelters for these pigs, so they continue to affect the native ecosystems.

Since actor George Clooney introduced a Vietnamese pot-bellied pig as a pet, the trend to own one quickly spread. Source

RACCOONS AND COATIS

Other mammals that, because of their pleasant appearance, some people try to have as pets. Raccoons (Procyon sp) develop aggressive behaviors when they do not having their needs covered, they are destructive to household objects and have a tendency to bite everything, including people. Currently in Spain and other countries it is illegal to acquire them and it is classified as an invasive species.

In addition to aggressiveness, one of the most common behaviors of raccoons is “theft”. Source

Coatis (Nasua sp) are related to raccoons and, like them, when they grow up they become aggressive if kept in captivity in a home. In Spain, their possession is also illegal.

coatí nasua
The coati, another friendly-looking mammal that can be dangerous. Source

MERKAATS

Merkaats (Suricata suricatta) are very social animals that live in colonies of up to 30 individuals underground in the South African savanna. They usually make holes in the ground to protect themselves and are very territorial. Therefore, having a meerkat at home or in a garden is totally unfeasible. In addition, the climatic conditions (high temperatures and low humidity) in which they are adapted are not the same as those of a private home.

As sugar gliders, their food is impossible to reproduce at home: snake meat, spiders, scorpions, insects, birds and small mammals… Like raccoons, they do not hesitate to bite and are very active animals.

Meerkat with a leash where you can see his fangs. Photo: FAADA

FENNEC FOX

This species of desert fox (Vulpes zerda) has also become trendy as a pet. Although its tenure is still legal, it has been proposed several times as an invasive species.

The main reason why you can not have a fennec at home are the desert climatic conditions to which it is adapted. Living in an apartment causes kidney problems and thermoregulation problems. Also, it is a nocturnal animal. Changes in their circadian rhythm cause them hormonal problems.

Fennec  fox in the desert. Photo: Cat Downie / Shutterstock

Like the previous two species, behavioral problems can turn up and become violent against the furniture or its owners.

ELEPHANTS, TIGERS …

Although it may seem incredible, there are people who have an elephant in the home garden and other people have felines, like tigers. At this point we do not think it is necessary to explain the reasons why these animals have not their needs met and the potential danger they pose to their owners and neighbors in case of escape.

Dumba, the elephant that lives in a home garden in Spain. Photo: FAADA

IN CONCLUSION

As we have seen, a wild animal in captivity will never have its needs covered to guarantee its welfare. Here we have presented the best known wild mammals that are kept as pets, but unfortunately the list does not stop expanding.

In order not to favor animal trafficking and cause unnecessary suffering during the life of the animal, avoid buying wild animals, inform yourself and inform the people around you, denounce irresponsible tenures and in case you already have one wild animal as a pet and you can no longer keep it, contact a recovery wildlife center and never abandon it into nature.

MIREIA QUEROL ALL YOU NEED IS BIOLOGY

 

Known the Asian hornet or ‘assassin hornet’ in 5 steps

In recent years, reports of invasive species entering the Iberian Peninsula have grown at an alarming rate. One of the most recent cases is that of the Asian hornet, also known as the yellow-legged hornet and dramatically called ‘assassin hornet’, which is well-stablished in northern regions of the Iberian Peninsula and which has recently been confirmed to nest in the very center of Barcelona.

What do we know about this species? Why is it known as the ‘assassin hornet’?

1. Where does it come from and how did it get here?

The Asian hornet (Vespa velutina) is a social wasp native to the Southeast Asia. It was for the first time recorded in Europe in 2004, at southeast France, where it is currently well-spread. According to most of sources, it is believed that some founding queens accidentally arrived France inside boxes of pottery from China.

Some associations of beekeepers from the Basque Country confirmed the presence of the Asian hornet in the Iberian Peninsula in 2010. From that moment on, the Asian hornet started spreading toward other regions: it was recorded in Galicia in 2011, in Northern Catalonia and in some areas of Aragon in 2012, in some areas of La Rioja and Cantabria in 2014 and in Mallorca, in 2015.

Dynamic map by José Luis Ordóñez – CREAF

Meanwhile, this species spread toward Italy, Portugal, Germany, Belgium, Sweden and, occasionally, the United Kingdom. It presence in Japan and Korea, where it is an invasive species too, was confirmed some years before.

It was recorded for the first time in Catalonia in its northern comarques (‘counties’), specifically in Alt Empordà, and in 2015 almost 100 nests of this species had already been recorded. Nowadays, the Asian hornet is well-spread in Girona and Barcelona provinces.

On July 13th of this year (2018), the Generalitat de Catalunya (Government of Catalonia) confirmed the first record of an Asian hornet nest located in the very center of Barcelona city, close to one of the main buildings of the University of Barcelona; a few days before, it had also been detected in Vallès Oriental and Baix Llobregat.

2. How can we identify it?

The Asian hornet size varies between 2 and 3.5 cm, approximately. Queens and workers have a similar morphology except for their size, being workers smaller than queens.

This species can be recognized by the following morphological traits:

  • Thorax entirely black.
  • Abdomen mainly black except for its 4th segment, which is yellow.
  • Anterior half of legs, black; posterior half, yellow.
  • Upper part of head, black; face reddish yellow.
Dorsal and ventral view of Vespa velutina. Picture by Didier Descouens, Muséum de Toulouse, CC 3.0.

If you think you have found an Asian hornet and meant to notify authorities, first of all make sure it is the correct species. This is of special importance as some native species like the European hornet (Vespa crabro) are usually confused with its invasive relative, thus leading to misidentifications and removings of native nests.

Vespa crabro. Picture by Ernie, CC 3.0.

3. Why is it also called ‘assassin hornet’?

The Asian hornet is neither more dangerous, venomous nor aggressive than other European wasps. So, why is it dramatically called ‘assassin hornet’?

Larvae of this species feed on honeybees caught by adult hornets. Honeybees usually represent more than 80% of their diet, while the remaining percentage is compound of other arthropods. Adult hornets fly over hives and hunt the most exposed honeybees, even at flight. A single hornet can hunt between 25 and 50 honeybees per day. Hornets usually quarter them and get only the thorax, which is the most nutritious part.

In Asia, some honeybees have developed surprising defensive mechanisms to fight against their predators, like forming swarms around hornets to cause them a heat shock.

Take a look to this video to known some more about this strategy (caso of Japanese honeybees and hornets):

On the contrary, European honeybees have different defensive strategies that seem to be less effective against invasive hornets than they are against the European ones, which are also less ravenous their Asiatic relatives and their nests, smaller. In addition, the absence of natural predators that help to control their populations makes their spreading even more easier.

Several associations of both beekeepers and scientists from Europe have been denouncing this situation for years, since this invasive species is causing severe damages to both the economy (honey and crop production) and the environment (loss of wildlife -insects and plants- biodiversity) due to the decrease in wild and domestic honeybees.

4. How do their nests look like and what I have to do if I find one?

Asian hornets usually make their nests far from the ground, on the top of trees (unlike the European hornets, which never construct their nest on trees at great highs); rarely, nests can be found on buildings near non-perturbated areas or in the ground. Nests are spherical-shaped, have a continuous growth, a single opening in their superior third from which internal cells cannot be appreciated (in European hornet’s nests, the opening is in its inferior part and internal cells can be observed through it) and can reach up to 1 m height and 80 cm diameter. Nests are made by chewed and mixed wood fibers, leaves and saliva.

Nest of Asian hornet. Picture by Fredciel, CC 3.0.

If you find an Asian hornet nest, be careful and don’t hurry: don’t get to close to it (it is recommended to stay at least 5m far from the nest), observe and study the nest and observe if there are adults overflying it. If you find a dead specimen, you can try to identify it (REMEMBER: always staying far from the nest!). Anyway, the most recommendable thing is to be careful and call the authorities (in Spain, to the emergency phone number: 112).

5. There are preventive and management measures?

Currently, preventive and management measures proposed are the following:

  • Protocols for a more efficient detection of nests.
  • Early detection of the hornet by installing traps.
  • Constitution of an efficient communication net to provide information of the presence of this species between regions.
  • Removal of nests.
  • Capture of queens.
  • Improving the habitat quality to minimize the settlement of the Asian hornet and enhacing the settlement of native bees.
  • Study the possible introduction of natural enemies.

In the following link, you can download the PDF (in Spanish) made by the Spanish Government (2014) where these and more strategies are widely explained.

Citizen participation is a key point when fighting against the spreading of an invasive species; the same happens with the Asian hornet. Some associations of beekeepers, like the Galician Beekeeping Association (Asociación Gallega de Apicultura, AGA) and its campaign Stop Vespa Velutina, give educational conferences about this species and place traps to control their populations. Also, some students of the University of the Balear Islands have developed a mobile app to inform about the expansion of the Asian hornet.

.          .          .

Although knowledge of this species has been improved, there is still much work to be done. We will see how its populations evolve in the coming years.

Main picture by Danel Solabarrieta on Flickr, CC 2.0.