Arxiu d'etiquetes: adaptació

Plantes hiperacumuladores de metalls pesants

Durant milions d’anys l’evolució ha portat a les plantes a desenvolupar diferents estratègies per defensar-se contra els enemics naturals, donant lloc a una lluita d’armament evolutiva en la qual la supervivència d’uns i altres depèn de l’habilitat per fer front a les adaptacions dels altres. I és en aquest escenari on la acumulació de metalls pesants a alts nivells en les plantes juga un paper molt important.

 INTRODUCCIÓ

Segons Boyd (2012), la defensa de les plantes pot tractar-se sota diferents punts de vista:

  • mecànica: espines, cobertures rígides, etc.
  • química: diferents compostos inorgànics i orgànics.
  • visual: cripsis i mimetisme.
  • comportament: relacionat amb modificacions en la fenologia.
  • i associativa: simbiosis amb altres organismes, com és el cas del gènere Cecropia que estableix simbiosi amb les formigues del gènere Azteca, les qual protegeixen aquestes plantes – per saber-ne més: Plantes i animals també poden viure en matrimoni – .
espinas-karyn-christner-flickr
Defensa mecànica amb espines (Autor: Karyn Christner, Flickr, CC).

S’ha vist que la defensa química és ubiqua, i, per tant, moltes interaccions entre organismes s’explicarien sota aquest punt de vista. A més a més, algunes plantes contenen grans quantitats de certs elements químics, freqüentment metalls o components metàl·lics, que juguen un paper defensiu important, són les anomenades plantes hiperacumuladores.

Plantes hiperacumuladores i les seves característiques principals

Aquestes plantes pertanyen a diferents famílies, per tant la hiperacumulació és una adquisicuió independentment que ha sorgit distintes vegades durant l’evolució, però que en tots els casos genera l’habilitat per créixer en sòls metal·lífers i acumular altes quantitats extraordinàries de metalls pesants en els òrgans aeris, a diferència dels nivells trobats en la majoria d’espècies. Se sap que les concentracions d’aquests elements químics pot ser entre 100 – 1000 vegades majors que les presents en espècies no hiperacumuladores.

Generalment la química defineix els metalls pesants com aquells metalls de transició amb una massa atòmica superior a 20 i una densitat relativa al voltant de 5.  Però, sota un punt de vista biològic, els metalls pesants són aquells metalls o metal·loides que poden ser tòxics en baixes concentracions. Tot i així, les plantes hiperacumuladores aconsegueixen ser tolerants, hiperacumulen aquests metalls pesants sense patir efectes fitotòxics (toxicitat expressada en la planta).

En aquest sentit, hi ha tres característiques principals que defineixen les plantes hiperacumuladores:

  • Fort augment de la taxa d’absorció de metalls pesants.
  • Arrels que duen a terme la translocació més ràpidament.
  • Gran habilitat per detoxificar i segrestar metalls pesants a les fulles.

Per tant, les plantes hiperacumuladores estan ben preparades per a l’assimilació, translocació a fulles i segrest de grans quantitats de metalls pesants en vacuoles o parets cel·lulars. En part, això és degut a una sobrexpressió constitutiva dels gens que codifiquen per a transportadors en membrana.

Els valors llindars que permeten distingir una planta hiperacumuladora d’una altra que no ho és estan relacionats amb la fitotoxicitat especifica de cada metall pesant. Segons aquest criteri, les plantes hiperacumuladores són plantes que quan creixen en sòls naturals acumulen en les parts aèries (en grams de pes sec):

  • > 10 mg·g-1 (1%) de Mn o Zn,
  • > 1 mg·g-1 (0,1%) de As, Co, Cr, Cu, Ni, Pb, Sb, Se o Ti
  • ó > 0,1 mg·g-1 (0,01%) de Cd.
minuartia-verna-cu-candiru-flickr
Minuartia verna, hiperacumuladora de coure (Autor: Candiru, Flickr, CC).

L’APARICIÓ DE PLANTES HIPERACUMULADORES I LES SEVES IMPLICACIONS

Fins al moment s’ha plantejat diferents hipòtesis per explicar per què certes plantes han esdevingut hiperacumuladores de metalls pesants:

  • Tolerància i disposició de metalls.
  • Resistència a la sequera.
  • Interferència amb les plantes veïnes.
  • Defensa contra els enemics naturals.

La hipòtesis que rep més suport és l’anomenada “Elemental defence” (defensa per elements), que indica que certs metalls pesants poden tenir un rol defensiu en la planta contra els enemics naturals, com els herbívors i els patògens. Aquests organismes al consumir la planta presentarien efectes tòxics, els quals els portarien a la mort o a la reducció del consum d’aquesta planta en un futur. Tot i això, encara que els metalls pesants poden actuar a través de la seva toxicitat, això no garanteix que la planta no sigui danyada o atacada abans que l’enemic natural sigui afectat per aquests. En aquest sentit segueix essent necessari una defensa més efectiva que permeti evitar l’atac.

D’altra banda, d’acord amb una hipòtesi més moderna, “Joint effects” (efectes conjunts), els metalls pesants poden actuar juntament amb els compostos orgànics de defensa donant lloc a una major defensa global. Els avantatges dels elements inorgànics, incloent aquí als metalls pesants, és que no són sintetitzats per la planta, s’absorbeixen del sòl directament i per tant no hi ha tanta despesa energètica invertida en la defensa, i a més no poden ser biodegradats. Tot i així, alguns enemics especialistes poden quelar els metalls pesants, gracies als quelat (substàncies que s’uneixen a aquests metalls pesants per a reduir la seva toxicitat) o segrestar-los dins d’òrgans d’acumulació on es reduiria la seva activitat. Aquesta nova hipòtesi justificaria la presència simultània de diferents metalls pesants i compostos orgànics de defensa en la mateixa planta, amb la finalitat d’aconseguir una defensa major que afecti a més enemics naturals, els quals s’esperaria que no fossin capaços de tolerar els diferents elements tòxics.

Thlaspi caerulescens - Zn - Randi Hausken, Flickr.jpg
Thlaspi caerulescens, hiperacumuladora de zinc (Autor: Randi Hausken, Flickr, CC).

D’altra banda, s’ha vist que certs herbívors tenen habilitats per evitar alimentar-se de plantes amb alts nivells de metalls pesants fent el que s’anomena “taste for metals” (“tasta dels metalls”). Tot i saber que això succeeix, encara no es coneix el mecanisme exacte de tot aquest procés d’alerta i evitament.

Solanum nigrum - Cd- John Tann, Flickr.jpg
Solanum nigrum, hiperacumuladora de cadmi (Autor: John Tann, Flickr, CC).

A més a més, tot i les elevades concentracions de metalls pesants que assumeixen aquestes plantes, alguns herbívors aconsegueixen sobrepassar aquesta defensa essent tolerants, és a dir, la seva dieta permet ingerir altes dosis de metalls i per tant alimentar-se de la planta. Això porta a pensar que certs herbívors podrien esdevenir especialistes en alimentar-se d’aquestes plantes, i que, per tant, aquest tipus de defensa quedaria reduït als organismes amb dietes variades, els anomenats generalistes. Tot i així, s’ha vist que algunes vegades els herbívors generalistes presenten una preferència i tolerància superior per les plantes hiperacumuladores que no pas els especialistes.

Per tots aquests motius es pot dir que l’evolució continua jugant un paper molt important en aquesta lluita d’armaments.

Difusió-català

REFERÈNCIES

  • Boyd, R., Davis, M.A., Wall, M.A. & Balkwill K. (2002). Nickel defends the South African hyperaccumulator Senecio coronatus (Asteraceae) against Helix aspersa (Mollusca: Pulmonidae). Chemoecology 12, p. 91–97.
  • Boyd, R. (2007). The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant soil 293, p. 153-176.
  • Boyd, R. (2012). Elemental Defenses of Plants by Metals. Nature Education Knowledge 3 (10), p. 57.
  • Laskowski, R. & Hopkin, S.P. (1996). Effect of Zn, Cu, Pb and Cd on Fitness in Snails (Helix aspersa). Ecotoxicology and environmentak safety 34, p. 59-69.
  • Marschner, P. (2012). Mineral Nutrition of Higher Plants (3). Chennai: Academic Press.
  • Noret, N., Meerts, P., Tolrà, R., Poschenrieder, C., Barceló, J. & Escarre, J. (2005). Palatability of Thlaspi caerulescens for snails: influence of zinc and glucosinolates. New Phytologist 165, p. 763-772.
  • Prasad, A.K.V.S.K. & Saradhi P.P. (1994).Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 39, p. 45-47.
  • Rascio, N. & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?. Plant Science 180 (2),p. 169-181.
  • Shiojiri, K., Takabayashi, J., Yano, S. & Takafuji, A. (2000) Herbivore-species-specific interactions between crucifer plants and parasitic wasps (Hymenoptera: Braconidae) that are mediated by infochemicals present in areas damaged by herbivores. Applied Entomology and Zoology 35, p. 519–524.
  • Solanki, R. & Dhankhar, R. (2011). Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66 (2), p. 195-204.
  • Verbruggen, N., Hermans, C. & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181 (4), p. 759–776.
  • Wenzel, W.W. & Jockwer F. (1999). Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environmental pollution 104, p. 145-155.

Les plantes i el canvi climàtic

Des de fa uns quants anys hem sentit parlar del canvi climàtic. Avui dia ja és una evidència i també una preocupació. No només ens afecta a nosaltres, als humans, sinó que també a tota la vida. S’ha parlat bastant de l’escalfament global, però potser no s’ha fet tanta transmissió del que succeeix amb la vegetació. Són moltes coses les que es veuen afectades pel canvi climàtic i la vegetació també n’és una d’elles. A més, els canvis produïts en aquesta també ens afecten a nosaltres. Però, quins són aquests canvis?, com els pot regular la vegetació? I, com podem ajudar a mitigar-los a través d’aquesta?

CANVIS EN LA VEGETACIÓ

Distribució dels biomes

En general, degut al canvi climàtic s’espera un increment de les precipitacions a algunes parts del planeta, mentre que en d’altres s’espera un descens. També es denota un increment global de la temperatura. Això comporta un desplaçament en la localització dels biomes, les grans unitats de vegetació (per exemple: selves, boscos tropicals, tundres, etc.).

biomes
Triangle dels biomes segons altitud, latitud i humitat (Imatge de Peter Halasaz).

Per una altra banda, existeix una tendència al augment de la distribució de les espècies en els rangs septentrionals (latituds altes) i un detriment en regions meridionals (latituds baixes). Això porta greus problemes associats; el canvi en la distribució de les espècies afecta a la seva conservació i la seva genètica. En conseqüència, les poblacions situades als marges meridionals, que han estat considerades molt importants per a la conservació a llarg termini de la diversitat genètica i pel seu potencial evolutiu, es veuen en perill per aquesta pèrdua. I, en canvi, els rangs septentrionals es veurien afectats per l’arribada d’altres espècies competidores que podrien desplaçar a les presents, essent doncs invasores.

Distribució de les espècies

Dins l’escenari del canvi climàtic, les espècies tenen una certa capacitat per reajustar la seva distribució i per adaptar-se a aquest.

Però, quin tipus d’espècies podrien estar responent més ràpidament a aquest canvi? Es dedueix que aquelles amb un cicle de vida més ràpid i una capacitat de dispersió major seran les que mostrin una major adaptació i responguin millor. Això podria comportar una pèrdua de les plantes amb ritmes més lents.

Galactites tomentosa
La calcida blanca (Galactites tomentosa) una planta de cicle ràpid i amb gran dispersió (Imatge de Ghislain118).

Un factor que facilita el reajustament en la distribució és la presència de corredors naturals: aquests són parts del territori geogràfic que permeten la connectivitat i desplaçament d’espècies d’un lloc a un altre. Són importants per evitar que aquestes quedis aïllades i puguin desplaçar-se cap a noves regions.

Un altre factor és el gradient altitudinal, aquest proporciona molts refugis per a les espècies, facilita la presència de corredors i permet la redistribució de les espècies en altitud. Per tant, en aquells territoris on hi hagi més rang altitudinal es veurà afavorida la conservació.

En resum, la capacitat de les espècies per fer front al canvi climàtic depèn de les característiques pròpies de l’espècie i les del territori. I, per contra, la vulnerabilitat de les espècies al canvi climàtic es produeix quan la velocitat que aquestes presenten per poder desplaçar la seva distribució o adaptar-se és menor a la velocitat del canvi climàtic.

A nivell intern

El canvi climàtic també afecta a la planta com a organisme, ja que li produeix canvis al seu metabolisme i a la seva fenologia (ritmes periòdics o estacionals de la planta).

Un dels factors que porta a aquest canvi climàtic és l’increment de la concentració de diòxid de carboni (CO2) a l’atmosfera. Això podria produir un fenomen de fertilització de la vegetació. Amb l’augment de COa l’atmosfera s’incrementa també la captació d’aquest per les plantes, augmentat així la fotosíntesi i permetent una major assimilació. Però, no és tot avantatges, perquè per això es produeix una pèrdua d’aigua important, degut a que els estomes (estructura que permeten l’intercanvi de gasos i la transpiració) romanen oberts molt temps per incorporar aquest CO2. Per tant, hi ha efectes contraposats i la fertilització dependrà de la planta en sí, com també del clima local. Molts estudis han demostrat que diverses plantes reaccionen diferent a aquest increment de CO2, ja que el compost afecta a varis processos fisiològics i per tant les respostes no són úniques . Per tant, ens trobem amb un factor que altera el metabolisme de les plantes i que no es pot predir com seran els seus efectes sobre elles. A més, aquest efecte fertilitzat està limitat per la quantitat de nutrients presents i sense ells la producció es frena.

fotosíntesi
Procés de fotosíntesi (Imatge de At09kg).

Per un altre costat, no hem d’oblidar que el canvi climàtic també altera el règim estacional (les estacions de l’any) i que això afecta al ritme de la vegetació, a la seva fenologia. Això pot comportar repercussions inclús a escala global; per exemple, podria produir un desajust en la producció de plantes cultivades per a l’alimentació.

PLANTES COM A REGUALADORES DEL CLIMA

Encara que no es pot parlar de les plantes com a reguladores del clima global, esta clar que hi ha una relació entre el clima i la vegetació. Però, aquesta relació és un tant complicada perquè la vegetació té tan efectes d’escalfament com de refredament del clima.

La vegetació disminueix l’albedo; els colors foscos absorbeixen més la radiació solar i per tant menys llum solar es reflecteix cap al exterior. A més. al ser organismes amb superfície rugosa s’augmenta l’absorció. En conseqüència, si hi ha més vegetació, la temperatura local (calor transferida) augmenta més.

Però, per altra banda, al augmentar la vegetació hi ha més evapotranspiració (conjunt de l’evaporació d’aigua d’una superfície i la transpiració a través de la planta). De manera que el calor es consumeix en passar l’aigua líquida a forma gasosa, el que comporta un refredament. A més, l’evapotranspiració també ajuda augmentar les precipitacions locals.

Biophysical effects of landcover
Efectes biofísics de diferents usos del sòl i la seva acció sobre el clima local (Imatge de Jackson et al. 2008. Environmental Research Letters.3: article 0440066).

Per tant, és un efecte ambigu i en determinats entorns pesa més l’efecte de refredament, mentre que en altres té més rellevància el d’escalfament.

MITIGACIÓ

Avui dia hi ha varies propostes per reduir el canvi climàtic, però com poden ajudar les plantes?

Les comunitats vegetals poden actuar com a embornals, reserves de carboni, ja que a través de l’assimilació de COajuden a compensar les emissions. Un maneig adequat dels ecosistemes agraris i dels boscos pot ajudar a la captació i emmagatzematge del carboni. Per altra banda, si s’aconsegueix reduir la desforestació i augmentar la protecció d’habitats naturals i boscos, es reduirien les emissions i s’estimularia aquest efecte embornal. Tot i així, existeix el risc de que aquests embornals es puguin convertir en fonts d’emissió; per exemple, degut a un incendi.

Finalment, presentar els biocombustibles: aquests, a diferència dels combustibles fòssils (com el petroli), són recursos renovables, ja que es tracta de cultius de plantes destinats al ús de combustible. Encara que no aconsegueixen retirar CO2 de l’atmosfera ni redueixen emissions de carboni, eviten l’increment d’aquest a l’atmosfera. Per aquest motiu no arribarien a ser una tècnica del tot mitigadora, però mantenen el balanç d’emissió i captació neutre. El problema és que poden generar efectes colaterals a nivell social i ambiental, com l’increment de preus d’altres cultius o la desforestació per a instaurar aquests cultius, cosa que no hauria de succeir.

800px-Canaviais_Sao_Paulo_01_2008_06
Cultiu de canya de sucre (Saccharum officinarum) a Brasil per produir biocombustible (Imatge de Mariordo).

Difusió-català

REFERÈNCIES

Evolució per a principiants

L’evolució biològica encara no és ben compresa pel públic general, i quan parlem d’ella en el nostre llenguatge abunden expressions que confonen encara més com funcionen els mecanismes que donen lloc a la diversitat d’espècies. A través de preguntes que potser t’has formulat alguna vegada, en aquest article farem un primer apropament als principis bàsics sobre evolució i desmitificarem falses idees sobre ella.

L’EVOLUCIÓ ÉS REAL? NO ÉS NOMÉS UNA TEORIA, UNA IDEA NO DEMOSTRADA DEL TOT?

Fora de l’àmbit científic, la paraula “teoria” s’usa per referir-se a fets que no han estat provats o suposicions. Però una teoria científica és l’explicació d’un fenomen recolzada per proves i evidències, resultat de l’aplicació del mètode científic.

diagrama mètode científic
Esquema del mètode científic. Imatge per Mireia Querol adaptada de Lauro Chieza

Com es desprèn del diagrama, les teories poden ser modificades, millorades o revisades si es prenen noves dades que no segueixin recolzant la teoria, però sempre es basen en unes dades i experiments repetibles i comprovables per qualsevol investigador per a ser considerats com a vàlids.

Així doncs, poca gent posa en dubte la Teoria Heliocèntrica (la Terra gira al voltant del Sol), o la Teoria Gravitatòria de Newton, però en l’imaginari popular se segueix creient que la Teoria de l’Evolució formulada per Charles Darwin (i Alfred Russell Wallace) és simplement una hipòtesi i que no evidències que la recolzin. Amb els nous avenços científics seva teoria ha estat millorada i detallada, però més de 150 anys després, ningú ha pogut demostrar que sigui incorrecta, just al contrari.

QUINES PROVES TENIM DE QUE L’EVOLUCIÓ ÉS CERTA?

Les evidències són múltiples i en aquest article no podrem aprofundir en elles. Algunes de les proves de les que disposem són:

  • Registre paleontològic: l’estudi dels fòssils ens informa sobre les semblances i diferències d’espècies de fa milers o milions d’anys respecte les actuals i permet establir parentius entre elles.
  • Anatomia comparada: la comparació de certes estructures que són molt semblants entre organismes diferents, permet establir si tenen un avantpassat comú (estructures homòlogues, per exemple, cinc dits en alguns vertebrats) si han desenvolupat adaptacions similars (estructures anàlogues, per exemple, les ales de les aus i els insectes), o si han perdut la seva funció (òrgans vestigials, per exemple l’apèndix).
anatomia comparada, órganos homólogos
Òrgans homòlegs en humans, gats, balenes i ratpenats
  • Embriologia: l’estudi d’embrions de grups emparentats mostra una gran semblança en les fases més primerenques del desenvolupament.
  • Biogeografia: l’estudi de la distribució geogràfica dels éssers vius revela que les espècies habiten en general les mateixes regions que els seus avantpassats, encara que hi hagi altres regions amb climes similars.
  • Bioquímica i genètica: les similituds i diferències químiques permeten establir relacions de parentiu entre diferents organismes. Per exemple, espècies més emparentades entre si presenten una estructura del seu ADN més semblant que altres més llunyanes. Tots els éssers vius compartim una part d’ADN, és a dir, part de les teves instruccions” també es troben en una mosca, un planta, o un bacteri, prova que tots els éssers vius tenim un avantpassat comú.

ÉS CERT QUE ELS ORGANISMES S’ADAPTEN AL MEDI I ESTAN DISSENYATS PER VIURE EN EL SEU HÀBITAT?

Les dues expressions, freqüentment utilitzades, impliquen que els éssers vius tenen un paper actiu per adaptar-se al medi o “algúels ha dissenyat perquè visquin perfectament on són. És el típic exemple de Lamarck i les seves girafes: a força d’estirar el coll per arribar a les fulles dels arbres més altes, com a resultat actualment les girafes tenen aquest coll per donar-li aquest ús. En tenir una necessitat, s’adapten a ella. És justament al revés: és el medi qui selecciona els més aptes, és a dir, la natura “selecciona” els que siguin més eficaços per sobreviure, i per tant reproduir-se. És el que es coneix com a selecció natural, un dels mecanismes principals de l’evolució. S’han de complir tres requisits perquè actuï:

  • Variabilitat fenotípica: hi ha d’haver diferències entre individus. Algunes girafes tenien el coll lleugerament més llarg que altres, igual que hi ha persones més altes, baixes, d’ulls blaus o marrons.
  • Eficàcia biològica: aquesta diferència, ha de suposar un avantatge. Per exemple, les girafes amb un coll lleugerament més llarg podien sobreviure i reproduir-se, mentre les altres no.
  • Herència: aquests caràcters s’han de transmetre a la següent generació, amb la qual cosa els fills seran lleugerament diferents per a aquesta característica, mentre que la característica “coll curtes transmet cada vegada menys.
seleccion natural
La variabilitat en la població provoca que els individus amb característiques favorables es reprodueixin més i transmetin els seus gens a la següent generació, augmentant la proporció d’aquests gens. Imatge presa de Understanding Evolution.

Amb el pas dels anys aquests canvis és van acumulant, fins que les diferències genètiques són tan grans que algunes poblacions ja no es poden reproduir amb d’altres: hauria aparegut una nova espècie.
Si heu pensat que és un procés semblant a la selecció artificial que fem amb les diferents races de gossos, vaques que donin més llet, arbres que donin més fruits i més grans, enhorabona, teniu un pensament semblant al de Darwin ja que és va inspirar en uns quants d’aquests fets. Per tant, a els éssers vius som mers espectadors del procés evolutiu, dependents dels canvis del seu hàbitat i del seu material genètic.

¿PER QUÈ ELS ÉSSERS VIUS SÓN DIFERENTS ENTRE SI?

La variabilitat genètica permet que actuï la selecció natural. Els canvis en el material genètic (habitualment ADN) són causats per:

  • Mutacions: canvis en el genoma que poden tenir conseqüències negatives o letals per a la supervivència, indiferents o beneficioses per a la supervivència i reproducció. En l’últim cas aquests gens passaran a les següents generacions.
  • Flux genètic: és el moviment de gens entre poblacions (la migració d’individus permet aquest intercanvi al reproduir-se amb altres d’una població diferent).
  • Reproducció sexual: permet la recombinació de material genètic d’individus diferents, donant lloc a noves combinacions d’ADN.

Les poblacions amb més variabilitat genètica tindrien sobre el paper més possibilitats de supervivència en cas de succeir algun canvi en el seu hàbitat. Poblacions amb menys variabilitat (per exemple, per estar aïllades geogràficament) són més sensibles a qualsevol canvi, cosa que pot provocar la seva extinció.

L’evolució pot observar-se en éssers amb una taxa de reproducció molt elevada, per exemple bacteris, ja que acumulen mutacions més ràpidament. Has sentit alguna vegada que els bacteris es tornen resistents als nostres antibiòtics o alguns insectes als pesticides? Evolucionen tan ràpidament que en pocs anys han estat seleccionats els més adaptats per sobreviure als nostres antibiòtics.

¿SOM ELS ANIMALS MÉS EVOLUCIONATS?

De la Teoria de l’Evolució es desprenen diverses conseqüències, com l’existència d’un ancestre comú i que per tant, som animals. Encara actualment, fins i tot entre els més joves, hi ha la idea que som una cosa diferent entre els éssers vius i ens situem en un pedestal especial en l’imaginari col·lectiu. Aquest pensament antropocèntric ja li va valer a Darwin burles i enfrontaments més de 150 anys enrere.

caricatura, darwin, mono, orangutan
Caricatura de Darwin com un orangutan. Imatge de domini públic publicada per primera vegada el 1871

Utilitzem en el nostre llenguatge ser “més evolucionatcom a sinònim de més complex, i al considerar-nos una espècie que ha arribat a un alt nivell de comprensió del seu entorn, molta gent creu que l’evolució ha arribat a la seva fi amb nosaltres.

La pregunta un error de formulació: en realitat l’evolució no persegueix cap fi, simplement succeeix, i el fet que el pas de milions d’anys permet l’aparició d’estructures complexes, no vol dir que formes de vida més simples no estiguin perfectament adaptades a l’hàbitat on es troben. Bacteris, algues, taurons, cocodrils, etc., s’han mantingut molt semblants al llarg de milions d’anys. L’evolució és un procés que va començar a actuar en el moment que va aparèixer la vida i segueix actuant en tots els organismes, fins i tot en nosaltres, encara que hem modificat la manera en què actua la selecció natural (avenços mèdics, tecnològics, etc.).

¿LLAVORS SI VENIM DEL MICO, PER QUÈ ENCARA HI HA MICOS?

La veritat és que no venim del mico, som micos, o per ser més rigorosos, simis. No hem evolucionat a partir de cap primat existent. Com vam veure en un article anterior, humans i la resta de primats compartim un ancestre comú i la selecció natural ha anat actuant de manera diferent en cada un de nosaltres. És a dir, l’evolució l’hem de visualitzar com un arbre, on cada branca seria una espècie, i no com una línia recta.

darwin, árbol, evolución, darwin tree, arbre evolutiu
Primer esquema de l’arbre evolutiu de Darwin en el seu quadern de notes (1837). Imatge de domini públic.

Algunes branques deixen de créixer (les espècies s’extingeixen), mentre que altres segueixen diversificant-se. El mateix s’aplica per a la resta d’espècies, per si t’havies preguntat: “si els amfibis vénen dels peixos, per què hi ha encara els peixos?”. Actualment les anàlisis genètiques han aportat tal quantitat de dades que dificulten les relacions de parentiu de l’arbre clàssic de Darwin.

árbol filogenético, clasificación seres vivos, árbol de la vida
Classificació dels éssers vius basada en els tres dominis, Archaea, Bacteria i Eukarya segons dades de Carl R. Woese (1990). Dins d’Eukarya s’inclouen els regnes Protista, Fungi, Plantae i Animalia. Imatge de Rita Daniela Fernández.

L’evolució és un tema molt extens que segueix generant dubtes i controvèrsies. En aquest article hem intentat apropar a persones no iniciades alguns conceptes bàsics, en els quals podem aprofundir en el futur. Tens alguna pregunta sobre evolució? T’interessa aprofundir en algun tema que no haguem tractat? Pots deixar-nos els teus comentaris a continuació.

REFERÈNCIES

mireia querol rovira