Arxiu d'etiquetes: alien

Biology and extraterrestrial life

Frequently we can read on the news newly discovered planets that could harbor extraterrestrial life. Often we have new information about Mars, other worlds with water and extremely resistant living beings, like tardigrades. But is life possible outside the Earth? What is life? What is needed to sustain life? Astrobiology tries to answer this questions. Do you want to find out more?


Astrobiology is a set of different scientific disciplines that studies the existence of life in the universe. To achieve this it combines knowledge of biology, physics, chemistry, astronomy, ecology, geography, geology, planetary science and molecular biology. Within astrobiology, exobiology studies the possibilities of life outside our planet. It should not be confused with ufology, a pseudoscience. Astrobiology tries to answer such exciting questions as:
– What is life?
– How did life appear on Earth?
– How does life evolve, and what is its adaptability?
– What is the future of life on Earth and other places?
– Is there life in other worlds?

No, neither is this a Martian nor is it astrobiology. Source: Quo


Although it seems like a banal question, life is not easy to define. Apparently, we can recognize if something is alive or not if it can perform certain functions and has certain features. Living beings have vital functions:

  • Nutrition: they can obtain energy from the environment to grow, survive and reproduce.
  • Reproduction: they can create copies similar to themselves.
  • Interaction: they can perceive what is going on the environment and inside themselves.
  • Organization: living beings are formed by one or more cells
  • Variation: variability between individuals allows species to evolve.

Problems begin when with beings that don’t have all the characteristics. The most classic example would be viruses: they are unable to reproduce on their own and lack cellular structure. Another example would be erythrocytes (red blood cells) of mammals, cells without genetic material or mitochondria.

Microphotography of the Ebola virus under electronic microscope (Public photo of the CDC)


We only know one type of life: the terrestrial one. This is why astrobiologists need to take it as a reference to know what to look for elsewhere. Could there be other forms of life different than terrestrial? Maybe, but it would be almost impossible to recognize them. If you do not know what you are looking for, you may find it but do not realize it.

It is considered that in order for life to appear and develop, it is necessary:

  • A liquid where chemical reactions take place: on Earth, it is water.
  • An element with ease to form stable compounds: on Earth, it is carbon.
  • A source of energy: on Earth, it is the Sun.

We are looking for planets or satellites with these characteristics, although other possibilities such as liquid methane (in the case of Titan, a satellite of Saturn), ethane, sulfuric acid, ammonia or acetic acid as solvent are being considered. Life-based on other elements such as silicon, it is a recurring topic in science fiction stories.

Artistic representation of Titan’s methane lakes. Credit: Steven Hobbs


The celestial body has to fulfill a series of characteristics so that life can be sustained:

  • An abundance of chemical elements such as carbon, hydrogen, oxygen, and nitrogen to form organic compounds.
  • The planet/satellite has to be within the habitability area of its star (orbiting at a distance that allows a temperature suitable for life).
planet, star, habitable zone
Habitability area (green) according to the temperature of the star. Red: too hot, blue: too cold. Source: NASA / Kepler / D Mission. Berry
  • A source of energy enough to maintain the temperature and allow the formation of complex molecules.
  • An appropriate gravity to keep an atmosphere and not crush the living beings of the planet.
  • A magnetic field to divert the radiation incompatible with life.
The Earth’s magnetic field protects life from the solar wind. Source: ESA

In our Solar System, the candidates that possibly fulfill these characteristics are Mars, Europe and Ganymede (satellites of Jupiter), Enceladus and Titan (satellites of Saturn) and Triton (satellite of Neptune).


Living beings are formed by cells, and if we reduce the scale, by molecules, and atoms (like all matter). Why is life-based on carbon?

In fact, in the constitution of organisms 26 elements are involved, but 95% of living matter consists of carbon (C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P) and sulfur (S). We can imagine them as the “bricks of life”: by combining these building blocks, we can obtain complex organisms. These bricks can be joined to others by covalent bonds. Metaphorically, atoms can be imagined as spheres with hands which can be grasped by other hands. For example, the main energy source molecule for all living things is ATP (Adenosine triphosphate, C10H16N5O13P3).

enlaces químcos, moléculas, sulphur, phosphorus, hidrogen, oxigen, carbon, nitrogen, chemical bond
Schematic representation of carbon, hydrogen, oxygen, nitrogen and phosphorus atoms and their valences (possible bonds). Own production based on figure 6.3 of “Life in space” (see references)

The candidate element to sustain life would have to be an abundant element able to form a great amount of bonds with itself and with other elements. The 5 most abundant elements in the universe:

  • Helium: does not form compounds
  • Hydrogen and oxygen: they have 1 and 2 hands: they can only form very simple compounds
  • Nitrogen: can bind to 3 atoms, but no chains of several nitrogen atoms are known.
  • Carbon: it has 4 hands so it can be strongly bonded to other carbons with single, double, or triple bonds. This allows it to form long chains and three-dimensional structures and can still join to other atoms. This versatility allows constructing molecules chemically active and complex, just the complexity that makes life possible.
DNA chemical structure, double helix
DNA chemical structure where we can see the importance of carbon bonding to form rings and chains. Source

Could there be life in another place based on a different atom?



Since establishing 4 links is so useful, silicon is the first candidate for biologists and science fiction writers, even if it is not as abundant as carbon. Silicon (Si) can also form 4 bonds and is abundant on rocky planets like Earth, but …

  • The Si-Si bond is quite weak. In an aqueous medium, life based on silicon would not be sustained for a long time as many compounds dissolve in it, although it could be possible in another medium, such as liquid nitrogen (Bains, W.).
  • It is very reactive. Silane, for example (one silicon atom bonded to 4 hydrogens) spontaneously ignites at room temperature.
  • It is solid at most temperatures. Although it can easily form structures with oxygen (silica or silicon dioxide), the result is almost always a mineral (quartz): too simple and only reacts molten at 1000ºC.
  • It does not form chains or networks with itself, due to its greater size compared to carbon. Sometimes it forms long chains with oxygen (silicones), that perhaps could be joined to other groups to form complex molecules. The alien of the movie Alien has silicone tissues. The beings formed by silicones would be more resistant, which leads to speculate what kind of extreme conditions they could withstand.
Horta, a silicon-based form of life featured in the science fiction series Star Trek. Source


Let’s look at some characteristics of nitrogen and phosphorus:

  • Nitrogen: can only form 3 bonds with other molecules and is poorly reactive.
  • Phosphorus: its bonds are weak and multiple bonds uncommon, although it can form long chains. But it is too reactive.

By combining the two, stable molecules could be obtained, but the beings based on nitrogen and phosphorus would have other problems: the nitrogen compounds, from which they would have to feed, are not abundant in planets and the biological cycle would not be energetically favorable.


The most unlikely biochemistries could be based on these elements:

  • Boron: can form long chains and bind to other elements such as nitrogen, hydrogen or carbon
  • Sulfur: can form long chains, but because of its size is highly reactive and unstable.
  • Arsenic: is too large to form stable compounds, although its chemical properties are similar to those of phosphorus.

In 2010, the journal Science published a scientific research in which researchers claimed to have discovered a bacterium (GFAJ-1) capable of living only in arsenic, lethal to any living being. It broke the paradigm of biology by not using phosphorus (remember ATP and DNA structure) and opened up new study lines for astrobiology. In 2012, two independent investigations refuted the theory of researcher Felisa Wolfe-Simon and his team. Phosphorus remains essential for organisms to live and develop on Earth.

GFAJ-1 bacterium. Source

At the moment, these hypothetical biochemistries are nothing more than speculations, so astrobiologists are still looking for carbon-based life, although we already know that science never ceases to amaze us. Although we could identify life based on other elements if we ever find extraterrestrial life (or vice versa) the revolution will be so great that it won’t matter if they are carbon-based beings.








Tardigrades: animals with superpowers

The smallest bears in the world have almost superhero abilities. Actually, they are not bears: water bears is the popular name of tardigrades. They are virtually indestructible invertebrates: they can survive decades without water or food, to extreme temperatures and they have even survived into outer space. Meet the animal that seems to come from another planet and learn to observe them in your home if you have a microscope.


Oso de agua (Macrobiotus sapiens) en musgo. Foto coloreada tomada con microscopio electrónico de barrido (SEM): Foto de Nicole Ottawa & Oliver Meckes
Water bear (Macrobiotus sapiens) in moss. Colored photo taken with a scanning electron microscope (SEM). Photo by Nicole Ottawa & Oliver Meckes

Tardigrades or water bears, are a group of invertebrates 0.05-1.5 mm long that preferably live in damp places. They are especially abundant in the film of moisture covering mosses and ferns, although there are oceanic and freshwater species, so we can consider they live anywhere in the world. Even a few meters away from you, in the gap between tile and tile. In one gram of moss they have find up to 22,000 individuals. They are found in Antarctica under layers of 5 meters of ice, in warm deserts, hot springs, in mountains 6,000 meters high and abyssal ocean depths: they are  extremophiles. It is estimated that over 1,000 species exist.


Its popular name refers to their appearance, and the scientific name to their slow movements. Their bodies are divided into five segments: cephalic, with its tube-shaped mouth (proboscis) with two internal stilettos and sometimes simple eyes (ommatidia) and sensory hairs, and the remaining 4 segment with a pair of legs per segment. Each leg has claws for anchoring to the ground.

Vista ventral de un tardígrado donde seobservan los cinco segmentos del cuerpo. Foto de Eye Of Science/Photo LIbrary
Bottom view of a Tardigrade where the five segments of the body are observed. Colored photo taken with a scanning electron microscope (SEM). Photo by Eye Of Science/Science Photo Library
Tardigrade. Coloured scanning electron micrograph (SEM) of a freshwater tardigrade or water bear (Echiniscus sp.). Tardigrades, are tiny invertebrates that live in coastal waters and freshwater habitats, as well as semi-aquatic terrestrial habitats like damp moss. They require water to obtain oxygen by gas exchange. In dry conditions, they can enter a cryptobiotic tun (or barrel) state of dessication to survive. Tardigrades feed on plant and animal cells and are found throughout the world, from the tropics to the cold polar waters.
Tardigrade (Echiniscus sp.) In which you can see the claws. Colored photo taken with a scanning electron microscope (SEM). Photo de Eye Of Science/Science Photo Library

Look at this video of Craig Smith to see tardigrade’s movements in more detail:


With its mouth stilettos, tardigrades perforate plants and absorbe the products of photosynthesis, but they can also feed absorbing the cellular content of other microscopic organisms such as bacteria, algae, rotifers, nematodes… Some are predators too and can eat whole microorganisms.

Their digestive system is basically the mouth and a pharynx with powerful muscles to make sucking motions that opens directly into the intestine and anus. Some species defecate only when they shed.

Detalle de la boca de un tardígrado. Foto de
Detail of the mouth of a tardigrade. Colored image of scanning electron microscope (SEM). Photo by Eye Of Science/Science Photo Library


They have no circulatory or respiratory system: gas exchange is made directly by the body surface. They are covered by a rigid cuticle which can be of different colors and is shed as they grow. With each moult, they lose oral stilettos, to be segregated again. They are eutelic animals: to grow they only increase the size of their cells, not their number, that remains constant throughout life


Tardigrades generally have separate sexes (are dioecious) and reproduce by eggs (are oviparous), but there are also hermaphrodites and parthenogenetic species (females reproduce without being fertilized by any male). Fertilization is external and development is direct: they don’t have larval stages.

tardigrade egg, ou tardigrad
Tardigrade egg. Colored image of scanning electron microscope (SEM). Photo by Eye of Science/Science Photo Library


The tardigrades are incredibly resilient animals that have survived the following conditions:

  • Dehydration: they can survive for 30 years under laboratory conditions without a single drop of water. Some sources claim that resist up to 120 years or have been found in ice 2000 years old and have been able to revive, although it is likely to be an exaggeration.
  • Extreme temperature: if you boil one tardigrade survives. If you put it to temperatures near the absolute zero (-273ºC), survives. Their survival rate ranges from -270ºC to 150ºC.
  • Extreme pressure: they are capable of supporting from vacuum to 6,000 atmospheres, ie 6 times the pressure in the deepest point on Earth, the Mariana Trench (11,000 meters deep).
  • Extreme radiation: tardigrades can withstand bombardment of radiation at a dose 1000 times the lethal to a human.
  • Toxic substances: if they are immersed in ether or pure alcohol, survive.
  • Outer space: tardigrades are the only animals that have survived into space without any protection. In 2007 the ESA (European Space Agency) within the TARDIS project (Tardigrades In Space) left tardigrades (Richtersius coronifer and Milnesium tardigradum) for 12 days on the surface of the Foton-M3 spacecraft and they survived the space travel. In 2011 NASA did the same placing them in the outside of the space shuttle Endeavour and the results were corroborated. They survived vacuum, cosmic rays and ultraviolet radiation 1,000 times higher than that of the Earth’s surface. The project Biokis (2011) of the Italian Space Agency (ASI) studied the impact of these trips at the molecular level.


The tardigrades are able to withstand such extreme conditions because they enter cryptobiosis status when conditions are unfavorable. It is an extreme state of anabiosis (decreased metabolism). According to the conditions they endure, the cryptobiosis is classified as:

  • Anhydrobiosis: in case of environmental dehydration, they enter a “barrel status” because adopt barrel shaping to reduce its surface and wrap in a layer of wax to prevent water loss through transpiration. To prevent cell death they synthesize trehalose, a sugar substitute for water, so body structure and cell membranes remain intact. They reduce the water content of their body to just 1% and then stop their metabolism almost completely (0.01% below normal).

    Tardígrado deshidratado. Foto de Photo Science Library
    Tardigrade dehydrated. Photo by Photo Science Library
  • Cryobiosis: in low temperatures, the water of living beings crystallizes, it breaks the structure of cells and the living being die. Tardigrades use proteins to suddenly freeze water cells as small crystals, so they can avoid breakage.
  • Osmobiosis: it occurs in case of increase of the salt concentration of the environment.
  • Anoxybiosis: in the absence of oxygen, they enter a state of inactivity in which leave their body fully stretched, so they need water to stay perky.

Referring to exposures to radiation, which would destroy the DNA, it has been observed that tardigrades are able to repair the damaged genetic material.

These techniques have already been imitated in fields such as medicine, preserving rat hearts to “revive” them later, and open other fields of living tissue preservation and transplantation. They also open new fields in space exploration for extraterrestrial life (Astrobiology) and even in the human exploration of space to withstand long interplanetary travel, ideas for now, closer to science fiction than reality.


The sparse fossil record, the unclear evolutionary relatedness and great resistance, led to hypothesis speculating with the possibility that tardigrades have come from outer space. It is not a crazy idea, but highly unlikely. Panspermia is the hypothesis that life, or rather, complex organic molecules, did not originate on Earth, but travelled within meteorites in the early Solar System. Indeed, amino acids (essential molecules for life) have been found in meteorites composition, so panspermia is a hypothesis that can not be ruled out yet.

Foto de Eye Of Science/Photolife Library
Photo by Eye Of Science/Photolife Library

But it is not the case of tardigrades: their DNA is the same as the rest of terrestrial life forms and recent phylogenetic studies relate them to onychophorans (worm-like animals), aschelminthes and arthropods. What is fascinating is that is the animal with more foreign DNA: up to 16% of its genome belongs to fungi, bacteria or archaea, obtained by a process called horizontal gene transfer. The presence of foreign genes in other animal species is usually not more than 1%. Could be this fact what has enabled them to develop this great resistance?


Being so common and potentially livIng almost anywhere, if you have a simple microscope,  you can search and view living tardigrades by yourself:

    • Grab a piece of moss of a rock or wall, it is better if it is a little dry.
    • Let it dry in the sun and clean it of dirt and other large debris.
    • Put it upside down in a transparent container (such as a petri dish),  soak it with water and wait a few hours.
    • Remove moss and look for tardigrades in the water container (put it on a black background for easier viewing). If lucky, with a magnifying glass you’ll see them moving.
    • Take them with a pipette or dropper, place them on the slide and enjoy! You could see things like this:



Tardígrados: Animales con superpoderes

Los osos más pequeños del mundo tienen capacidades dignas de superhéroes. En realidad, no son osos propiamente dichos: los osos de agua en realidad son los tardígrados. Son animales invertebrados prácticamente indestructibles: sobreviven décadas sin agua ni alimento, a temperaturas extremas e incluso han sobrevivido al espacio exterior. Conoce al animal que parece llegado de otro planeta y aprende a observarlo en tu casa si dispones de un microscopio.


Oso de agua (Macrobiotus sapiens) en musgo. Foto coloreada tomada con microscopio electrónico de barrido (SEM): Foto de Nicole Ottawa & Oliver Meckes
Oso de agua (Macrobiotus sapiens) en musgo. Foto coloreada tomada con microscopio electrónico de barrido (SEM): Foto de Nicole Ottawa & Oliver Meckes

Los tardígrados u osos de agua, son un grupo de invertebrados de 0,05-1,5 mm que viven preferiblemente en lugares húmedos. Son especialmente abundantes en la película de humedad que recubre musgos y helechos, aunque no faltan especies oceánicas y de agua dulce, por lo que podemos considerar que viven en cualquier parte del mundo. Incluso a escasos metros de ti, en el hueco entre baldosa y baldosa. En un gramo de musgo se han llegado a encontrar hasta 22.000 ejemplares. Se han encontrado en la Antártida bajo capas de 5 metros de hielo, en desiertos cálidos, en fuentes termales, en montañas de 6.000 metros de altura y a profundidades oceánicas abisales. Se trata pues de animales extremófilos. Se calcula que existen más de 1.000 especies.


Su nombre popular hace referencia a su aspecto y el científico a la lentitud de sus movimientos. Tienen el cuerpo dividido en 5 segmentos: el cefálico, donde tienen la boca en forma de trompa (probóscide) con dos estiletes internos y en ocasiones ojos simples  (omatidios) y pelos sensoriales,  y los 4 restantes con un par de patas por segmento. Cada pata posee unas garras para anclarse al terreno.

Vista ventral de un tardígrado donde seobservan los cinco segmentos del cuerpo. Foto de Eye Of Science/Photo LIbrary
Vista ventral de un tardígrado donde se observan los cinco segmentos del cuerpo. Imagen coloreada de microscopio electrónico de barrido (SEM). Foto de Eye Of Science/Science Photo Library
Tardigrade. Coloured scanning electron micrograph (SEM) of a freshwater tardigrade or water bear (Echiniscus sp.). Tardigrades, are tiny invertebrates that live in coastal waters and freshwater habitats, as well as semi-aquatic terrestrial habitats like damp moss. They require water to obtain oxygen by gas exchange. In dry conditions, they can enter a cryptobiotic tun (or barrel) state of dessication to survive. Tardigrades feed on plant and animal cells and are found throughout the world, from the tropics to the cold polar waters.
Tardígrado (Echiniscus sp.) en el que se le pueden observar las garras. Imagen coloreada de microscopio electrónico de barrido (SEM). Foto de Eye Of Science/Science Photo Library

Observa en este vídeo de Craig Smith los movimientos del tardígrado con más detalle:


Gracias a los estiletes de su boca, perforan los vegetales de los que se alimentan y succionan los productos de la fotosíntesis, pero también pueden alimentarse absorbiendo el contenido celular de otros organismos microscópicos como bacterias, algas, rotíferos, nematodos… Algunos son depredadores y pueden ingerir microorganismos enteros.

Su aparato digestivo es básicamente la boca, una faringe con potentes músculos para hacer los movimientos de succión que se abre directamente al intestino y el ano. Algunas especies sólo defecan cuando mudan.

Detalle de la boca de un tardígrado. Foto de
Detalle de la boca de un tardígrado. Imagen coloreada de microscopio electrónico de barrido (SEM). Foto de Eye Of Science/Science Photo Library


No poseen aparato circulatorio ni respiratorio: el intercambio de gases se hace directamente por la superficie del cuerpo. Están cubiertos por una cutícula rígida que puede ser de distintos colores y que van mudando a medida que crecen. Con cada muda, pierden los estiletes bucales, que serán segregados de nuevo. Son organismos eutélicos: para crecer solamente aumentan el tamaño de sus células, no su número, que permanece constante a lo largo de su vida


Los tardígrados en general tienen sexos separados (son dioicos) y se reproducen por huevos (son ovíparos), pero también hay especies hermafroditas y partenogénenéticas (las hembras se reproducen sin ser fecundadas por ningún macho). La fecundación es externa y su desarrollo es directo, es decir, no presentan fases larvarias.

tardigrade egg, ou tardigrad
Huevo de tardígrado. Imagen coloreada de microscopio electrónico de barrido (SEM). Foto de Eye of Science/Science Photo Library


Los tardígrados son animales increíblemente resistentes que han superado las siguientes condiciones:

  • Deshidratación: pueden sobrevivir durante 30 años en condiciones de laboratorio sin una sola gota de agua. Hay fuentes que aseguran que resisten hasta 120 años o que se han encontrado en hielos de 2000 años de antigüedad y han podido revivir, aunque probablemente sean exageraciones.
  • Temperaturas extremas: si hierves un tardígrado, sobrevive. Si lo sometes a temperaturas de casi el cero absoluto (-273ºC), sobrevive. Su rango de supervivencia va de -270ºC a 150ºC.
  • Presión extrema: son capaces de soportar desde el vacío hasta  6.000 atmósferas, es decir, 6 veces la presión que hay en el punto más profundo de la Tierra, la Fosa de las Marianas (11.000 metros de profundidad).
  • Radiación extrema: los tardígrados pueden soportar bombardeos de radiación en una dosis 1000 veces superior a la letal para un humano.
  • Sustancias tóxicas: si se les sumerge en éter o alcohol puro, sobreviven.
  • Espacio exterior: los tardígrados son los únicos animales que han sobrevivido al espacio exterior sin protección alguna. En 2007 la ESA (Agencia Espacial Europea), dentro del proyecto TARDIS (Tardigrades In Space) expuso tardígrados (Richtersius coronifer y Milnesium tardigradum) durante 12 días en la superficie de la nave Foton-M3 y sobrevivieron al viaje espacial. En 2011 la NASA hizo lo propio colocándolos en el exterior del transbordador espacial Endeavour y se corroboraron los resultados. Sobrevivieron al vacío, a los rayos cósmicos y a una radiación ultravioleta 1000 veces superior a la de la superficie terrestre. El proyecto Biokis (2011)  de la Agencia Espacial Italiana (ASI) estudió el impacto de estos viajes a nivel molecular.


Los tardígrados son capaces de resistir estas condiciones tan extremas porque entran en estado de criptobiosis cuando las condiciones son desfavorables. Es un estado extremo de anabiosis (disminución del metabolismo). Según las condiciones que tienen que soportar, la criptobiosis se clasifica en:

  • Anhidrobiosis: en caso de deshidratación del medio, entran en “estado de tonel” ya que adoptan forma de barril para reducir su superficie y se envuelven en una capa de cera para evitar la pérdida del agua por transpiración. Para evitar la muerte de las células, sintetizan trehalosa, un azúcar que sustituye al agua de su cuerpo y mantiene intacta la estructura de las membranas celulares. Reducen el contenido de agua de su cuerpo hasta sólo un 1% y seguidamente detienen su metabolismo casi por completo (0,01% por debajo de lo normal).

    Tardígrado deshidratado. Foto de Photo Science Library
    Tardígrado deshidratado. Foto de Photo Science Library
  • Criobiosis: en caso de someterse a bajas temperaturas, el agua de casi cualquier ser vivo cristaliza, rompe la estructura de las células y el ser vivo muere. Pero los tardígrados utilizan proteínas que congelan bruscamente el agua de las células en forma de pequeños cristales, con lo que logran evitar su rotura.
  • Osmobiosis: se da en caso de aumento de la concentración salina del medio.
  • Anoxibiosis: en caso de falta de oxígeno, entran en un estado de inactividad en el que dejan su cuerpo totalmente estirado, por lo que necesitan agua para mantenerse turgentes.

En el caso de las exposiciones  a las radiaciones, que destruirían el ADN, se ha observado que los tardígrados son capaces de reparar el material genético dañado.

Estas técnicas ya han sido imitadas en campos como la medicina, conservando órganos de ratas para posteriormente “revivirlos” y pueden abrir otras vías de conservación de tejidos vivos y trasplantes. También abren nuevos campos en la exploración espacial de vida extraterrestre (astrobiología) e incluso en la exploración humana del espacio para resistir largos viajes interplanetarios, en ideas por el momento, más cercanas a la ciencia ficción que a la realidad.


El escaso registro fósil, su parentesco evolutivo poco claro y su gran resistencia, provocaron hipótesis que especulaban con la posibilidad que los tardígrados hayan venido del espacio exterior.  No se trata de una idea descabellada, aunque altamente improbable. La panspermia es la hipótesis por la cual la vida, o mejor dicho, las moléculas orgánicas complejas, no se originaron en la Tierra, sino que llegaron gracias a meteoritos durante los inicios del Sistema Solar. De hecho, se han encontrado meteoritos con aminoácidos (moléculas indispensables para la vida) en su composición, por lo que la panspermia es una hipótesis que no se puede descartar todavía.

Foto de Eye Of Science/Photolife Library
Foto de Eye Of Science/Photolife Library

Pero no es el caso de los tardígrados: su ADN es igual al del resto de seres vivos terrestres y los últimos estudios filogenéticos los emparentan con los onicóforos (animales parecidos a gusanos), asquelmintos y artrópodos. Lo fascinante es que es el animal con más ADN ajeno: hasta el 16% de su genoma pertenece a hongos, bacterias o arqueas, obtenidos por un proceso llamado transferencia genética horizontal. La presencia de genes ajenos en otras especies animales no suele ser más del 1%. ¿Será esto lo que le ha permitido desarrollar esta gran resistencia?


Al ser tan comunes y habitar potencialmente casi cualquier lugar, si dispones de un microscopio, por sencillo que sea, puedes buscar y ver tardígrados vivos con tus propios ojos:

    • Coge un trozo de musgo de una roca o muro, mejor si está un poco seco.
    • Déjalo secar al sol y límpialo de tierra y otros restos grandes.
    • Ponlo al revés en un recipiente transparente (como una placa de Petri), empápalo con agua y déjalo reposar unas horas.
    • Retira el musgo y busca los tardígrados en el agua del recipiente (ponlo en un fondo negro para ver más fácilmente). Si hay suerte, con una lupa podrás verlos moverse.
    • Cógelos con una pipeta o cuentagotas, colócalos en el portaobjetos y a ¡disfrutar! Podrías ver cosas parecidas a ésta:

Mireia Querol Rovira


Tardígrads: Animals amb superpoders

Els óssos més petits del món tenen capacitats dignes de superherois. En realitat, no són óssos pròpiament dits: els óssos d’aigua en realitat són els tardígrads. Són animals invertebrats pràcticament indestructibles: sobreviuen dècades sense aigua ni aliment, a temperatures extremes i fins i tot han sobreviscut a l’espai exterior. Coneix l’animal que sembla arribat d’un altre planeta i aprèn a observar-lo a casa teva si disposes d’un microscopi.


Oso de agua (Macrobiotus sapiens) en musgo. Foto coloreada tomada con microscopio electrónico de barrido (SEM): Foto de Nicole Ottawa & Oliver Meckes
Ós d’aigua (Macrobiotus sapiens) a sobre de molsa. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM): Foto de Nicole Ottawa & Oliver Meckes

Els tardígrads o óssos d’aigua, són un grup d’invertebrats de 0,05-1,5 mm que viuen preferiblement en llocs humits. Són especialment abundants en la pel·lícula d’humitat que recobreix molses i falgueres, encara que no falten espècies oceàniques i d’aigua dolça, per la qual cosa podem considerar que viuen arreu del món. Fins i tot a escassos metres de tu, entre rajola i rajola. En un gram de molsa s’han arribat a trobar fins a 22.000 exemplars. S’han trobat a l’Antàrtida a sota de capes de 5 metres de gel, en deserts càlids, en fonts termals, en muntanyes de 6.000 metres d’altura i a profunditats oceàniques abissals. Es tracta doncs d’animals extremòfils. Es calcula que existeixen més de 1.000 espècies.


El seu nom popular fa referència al seu aspecte i el científic a la lentitud dels seus moviments. Tenen el cos dividit en 5 segments: el cefàlic, on tenen la boca en forma de trompa (probòscide) amb dos estilets interns i en ocasions ulls simples (ommatidis) i pèls sensorials, i els 4 restants amb un parell de potes per segment. Cada pota té urpes per ancorar-se al terreny.

Vista ventral de un tardígrado donde seobservan los cinco segmentos del cuerpo. Foto de Eye Of Science/Photo LIbrary
Vista ventral d’un tardígrad on s’observen els cinc segments del cos. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library
Tardigrade. Coloured scanning electron micrograph (SEM) of a freshwater tardigrade or water bear (Echiniscus sp.). Tardigrades, are tiny invertebrates that live in coastal waters and freshwater habitats, as well as semi-aquatic terrestrial habitats like damp moss. They require water to obtain oxygen by gas exchange. In dry conditions, they can enter a cryptobiotic tun (or barrel) state of dessication to survive. Tardigrades feed on plant and animal cells and are found throughout the world, from the tropics to the cold polar waters.
Tardígrad (Echiniscus sp.) en el que es poden observar les urpes. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

Observa en aquest vídeo de Craig Smith els moviments dels tardígrads amb més detall:


Gràcies als estilets de la seva boca, perforen els vegetals dels quals s’alimenten i succionen els productes de la fotosíntesi, però també es poden alimentar absorbint el contingut cel·lular d’altres organismes microscòpics com bacteris, algues, rotífers, nematodes… Alguns són depredadors i poden ingerir microorganismes sencers.

El seu aparell digestiu és bàsicament la boca i una faringe amb potents músculs per fer els moviments de succió que s’obre directament a l’intestí i l’anus. Algunes espècies només defequen quan muden.

Detalle de la boca de un tardígrado. Foto de
Detall de la boca d’un tardígrao. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library


No posseeixen aparell circulatori ni respiratori: l’intercanvi de gasos es fa directament per la superfície del cos. Estan coberts per una cutícula rígida que pot ser de diferents colors i que van mudant a mesura que creixen. Amb cada muda, perden els estilets bucals, que seran segregats de nou. Són organismes eutèlics: per créixer només augmenten la mida de les seves cèl·lules, no el seu número, que roman constant al llarg de la seva vida


Els tardígrads en general tenen sexes separats (són dioics) i es reprodueixen per ous (són ovípars), però també hi ha espècies hermafrodites i partenogénenètiques (les femelles es reprodueixen sense ser fecundades per cap mascle). La fecundació és externa i el seu desenvolupament és directe, és a dir, no presenten fases larvàries.

tardigrade egg, ou tardigrad
Ou de tardígrad. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library


Els tardígrads són animals increïblement resistents que han superat les següents condicions:

  • Deshidratació: poden sobreviure durant 30 anys en condicions de laboratori sense una sola gota d’aigua. Hi ha fonts que asseguren que resisteixen fins a 120 anys o que s’han trobat en gels de 2000 anys d’antiguitat i han pogut reviure, tot i que probablement siguin exageracions.
  • Temperatures extremes: si bulls 1 tardígrad, sobreviu. Si el sotmets a temperatures de gairebé el zero absolut (-273ºC), sobreviu. El seu rang de supervivència va de -270ºC a 150ºC.
  • Pressió extrema: són capaços de suportar des del buit fins a 6.000 atmosferes, és a dir, 6 vegades la pressió que hi ha al punt més profund de la Terra, la Fossa de les Marianes (11.000 metres de profunditat).
  • Radiació extrema: els tardígrads poden suportar bombardejos de radiació en una dosi 1000 vegades superior a la letal per un humà.
  • Substàncies tòxiques: si se’ls submergeix en èter o alcohol pur, sobreviuen.
  • Espai exterior: els tardígrads són els únics animals que han sobreviscut a l’espai exterior sense cap protecció. El 2007 l’ESA (Agència Espacial Europea), dins del projecte TARDIS (Tardigrades In Space) va exposar tardígrads (Richtersius coronifer i Milnesium tardigradum) durant 12 dies a la superfície de la nau Foton-M3 i van sobreviure al viatge espacial. El 2011 la NASA va fer el mateix col·locant-los a l’exterior del transbordador espacial Endeavour i es van corroborar els resultats. Van sobreviure al buit, als rajos còsmics i a una radiació ultraviolada 1000 vegades superior a la de la superfície terrestre. El projecte Biokis (2011) de l’Agència Espacial Italiana (ASI) va estudiar l’impacte d’aquests viatges a nivell molecular.


Els tardígrads són capaços de resistir aquestes condicions tan extremes perquè entren en estat de criptobiosi quan les condicions són desfavorables. És un estat extrem d’anabiosi (disminució del metabolisme). Segons les condicions que han de suportar, la criptobiosi es classifica en:

  • Anhidrobiosi: en cas de deshidratació del medi, entren en “estat de barril” ja que adopten aquesta forma per reduir la seva superfície i s’emboliquen en una capa de cera per evitar la pèrdua de l’aigua per transpiració. Per evitar la mort de les cèl·lules, sintetitzen trehalosa, un sucre que substitueix a l’aigua del seu cos i manté intacta l’estructura de les membranes cel·lulars. Redueixen el contingut d’aigua del seu cos fins a només un 1% i seguidament detenen el seu metabolisme gairebé per complet (0,01% per sota del normal).

    Tardígrado deshidratado. Foto de Photo Science Library
    Tardígrad deshidratat. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library
  • Criobiosi: en cas de sotmetre’s a baixes temperatures, l’aigua de gairebé qualsevol ésser viu cristal·litza, trenca l’estructura de les cèl·lules i l’ésser viu mor. Però els tardígrads utilitzen proteïnes que congelen bruscament l’aigua de les cèl·lules en forma de petits cristalls, de manera que aconsegueixen evitar el seu trencament.
  • Osmobiosi: es dóna en cas d’augment de la concentració salina del medi.
  • Anoxibiosi: en cas de manca d’oxigen, entren en un estat d’inactivitat en el que deixen el seu cos totalment estirat, de manera que necessiten aigua per mantenir-se turgents.

En el cas de les exposicions a les radiacions, que destruirien l’ADN, s’ha observat que els tardígrads són capaços de reparar el material genètic malmès.

Aquestes tècniques ja han estat imitades en camps com la medicina, conservant òrgans de rates per posteriorment “reviure’ls” i poden obrir altres vies de conservació de teixits vius i trasplantaments. També obren nous camps en l’exploració espacial de vida extraterrestre (astrobiologia) i fins i tot en l’exploració humana de l’espai per resistir llargs viatges interplanetaris, en idees de moment, més properes a la ciència ficció que a la realitat.


L’escàs registre fòssil, el seu parentiu evolutiu poc clar i la seva gran resistència, van provocar hipòtesis que especulaven amb la possibilitat que els tardígrads hagin vingut de l’espai exterior. No es tracta d’una idea sense cap ni peus, encara que altament improbable. La panspèrmia és la hipòtesi per la qual la vida, o millor dit, les molècules orgàniques complexes, no es van originar a la Terra, sinó que van arribar gràcies a meteorits durant els inicis del Sistema Solar. De fet, s’han trobat meteorits amb aminoàcids (molècules indispensables per a la vida) en la seva composició, de manera que la panspèrmia és una hipòtesi que no es pot descartar encara.

Foto de Eye Of Science/Photolife Library
Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

Però no és el cas dels tardígrads: el seu ADN és igual al de la resta d’éssers vius terrestres i els últims estudis filogenètics els emparenten amb els onicòfors (animals semblants a cucs), asquelmints i artròpodes. El que és fascinant és que és l’animal amb més ADN aliè: fins al 16% del seu genoma pertany a fongs, bacteris o arquees, obtinguts per un procés anomenat transferència genètica horitzontal. La presència de gens aliens a altres espècies animals no sol ser més de l’1%. Serà això el que li ha permès desenvolupar aquesta gran resistència?


En ser tan comuns i habitar potencialment gairebé qualsevol lloc, si disposes d’un microscopi, per senzill que sigui, pots buscar i veure tardígrads vius amb els teus propis ulls:

    • Agafa un tros de molsa d’una roca o mur, millor si està una mica sec.
    • Deixa’l assecar al sol i neteja’l de terra i altres restes grans.
    • Posa’l a l’inrevés en un recipient transparent (com una placa de Petri), mulla’l amb aigua i deixa-ho reposar unes hores.
    • Retira la molsa i busca els tardígrads a l’aigua del recipient (posa-ho en un fons negre per veure més fàcilment). Si hi ha sort, amb una lupa els podràs veure movent-se
    • Agafa’ls amb una pipeta o comptagotes, col·loca’ls en el portaobjectes i a gaudir! Podries veure coses semblants a aquesta:

Mireia Querol Rovira


What is an exotic species and an invasive species?

The concept of exotic species is being more present in the press due to some famous cases like apple snails, monk parakeets, American minks, pond sliders and red swamp crayfishes in Spain. Here we will focus on defining the concept of exotic and invasive species and what we can do to avoid their presence. 


An exotic species, known also as introduced, alien, non-native or non-indigenous species, is that foreign species that have been introduced in a zone out of its natural distribution. This introduction usually happens for human causes, either voluntarily or involuntarily. The opposite concept is indigenous species.

It is necessary not confusing the first concept with the concept invasive species. A species is invasive when, being exotic or indigenous, the increase of its population supposes an environmental problem, so put in danger the rest of the species present in the specific zone. Despite most of the invasive species are exotic, there are also some cases in which can be indigenous. To give an example, if in a forest disappears the main predator of a particular species, this can increase the number of individuals, so it can become an invasive species.

Les espècies (Foto extreta de Swapsushias).
The concept of exotic and invasive species are different, but most invasive species are exotic (Picture from Swapsushias).

It’s advisable to highlight that the establishment of exotic species in a specific zone is not easy, so the ecosystems have some filters that have to be exceeded. The first barrier that have to be exceeded is the geographical separation between the origin and the arrival point. Then, it can just establish if it has the ability of surviving in the new habitat and of reproducing. Finally, the species would be able to spread and, in this way, it is an exotic species that can become invasive.


The presence of exotic species, by itself, not necessarily represent a problem. Imagine a field of potatoes or corn, which come form America and don’t suppose an environmental problem by themselves. In most of the cases, the problem is when they become invasive species, which represent a worldwide problem, especially in islands and archipelagos, for the impact that they suppose:

  • Alteration and degradation of habitat.
  • Biodiversity loss.
  • They can suppose a health problem.
  • They can suppose a negative impact on economy, for the negative effect on natural resources and on tourism.


According to the Spanish Catalogue of Invasive Exotic Species, inside the Spanish territory there are 13 invasive exotic species of algae, 75 of plants, 14 of non-arthropod invertebrates, 26 of arthropods, 19 of fishes, 4 of amphibians, 4 of reptiles, 17 of birds and 15 of mammals.

El musclo zebra és una de les moltes espècies exòtiques invasores presents a Espanya (Foto extreta de El mon d'en Cotildu).
Zebra mussel (Dreissena polymorpha) is one of the many invasive exotic species present in Spain (Picture from El mon d’en Cotildu).


  1. Acquisition of pets:
    • To acquire pets in specialised shops to guarantee the legal and healthy security.
    • Don’t abandon or free exotic species in the nature.
    • Don’t acquire invasive species.
  2. In the garden:
    • Plant indigenous species.
    • Never throw ornamental plants, aquarium plants or pieces of exotic plants in humid zones or rivers.
  3. Travelling:
    • Don’t transport animals, plants or seeds without declaring them from a country to another.
    • Clean the soles of your boots and your equipment before doing hiking in a new zone.
  4. Fishing:
    • Don’t transport water from a place to another.
    • Don’t use exotic bait.