Arxiu d'etiquetes: ARN

Descifrando el código genético

De la misma manera que Alan Turing descodificó Enigma, la máquina de cifrado que utilizaba el ejército alemán en la Segunda Guerra Mundial, varios científicos consiguieron descifrar el código genético. La solución a este entramado ha permitido entender cómo funcionan las células y hacer posible la manipulación genética.  

INTRODUCCIÓN

Un código es una serie de símbolos que por separado no representan nada, pero al combinarlos pueden generar un lenguaje comprensible solo para aquellos quienes lo entiendan. Esto es lo que pasa con el código genético.

Aunque nos parezca mentira, todos los seres vivos (a excepción de algunas bacterias) biológicamente funcionamos de la misma manera. Y es que ya lo decía Jacques Monod, que todo lo que se constata como veraz para E. coli también debe ser cierto para los elefantes.

Desde las células de la ballena azul, el animal más grande del planeta, hasta las células de un colibrí, pasando por los seres humanos, son iguales. Esto es gracias al código genético, que permite que la información de cada gen sea transmitida a las proteínas, las ejecutoras de esta información.

Este flujo de información fue nombrado por Francis Crick en 1958 como el dogma central de la biología (Figura 1). En él afirmaba que la información fluye del ADN al ARN, y después del ARN a las proteínas. Es así como se transmite y expresa la información genética unidireccionalmente. Sin embargo, posteriormente se añadieron modificaciones. Crick afirmaba que sólo el ADN puede duplicarse y transcribirse a ARN. No obstante, se ha visto que en virus también se produce la replicación de su ARN y que éste puede realizar una transcripción inversa para generar ADN de nuevo.

main-qimg-eee77f2b58be05c964ce0c04756f2cfb.png
Figura 1. Dogma central de la biología. En rojo se muestra el camino que señaló Francis Crick (replicación del ADN, transcripción a ARN y traducción a proteínas); y en gris las modificaciones posteriores (Fuente: Quora)

LOS 3 LENGUAJES DE LAS CÉLULAS

En el interior de las células se hablan tres idiomas diferentes, pero que se pueden llegar a relacionar mediante el código genético.

El que ya conocemos es el lenguaje del ácido desoxirribonucleico (ADN), enrollado en una doble cadena y compuesto por 4 letras que corresponden a las bases nitrogenadas: adenina (A), timina (T), citosina (C) y guanina (G).

Otro lenguaje muy parecido a este último es el del ARN. Difiere del ADN principalmente en tres aspectos: (i) se compone de una cadena única en vez de ser de doble cadena, (ii) sus azúcares son ribosas en vez de desoxirribosas (de ahí el nombre de ácido ribonucleico) y (iii) contiene la base uracilo (U) en vez de T. Ni el cambio de azúcar ni la sustitución de U por T altera el apareamiento con la base A, por lo que la síntesis de ARN puede ser realizada de manera directa sobre un molde de ADN.

El último lenguaje que nos resta por conocer es el de las proteínas, formado por 20 aminoácidos. Los aminoácidos constituyen todas y cada una de las proteínas de cualquier organismo vivo. El orden de los aminoácidos que forman la cadena de la proteína determina su función (Figura 2).

aminoacids.png
Figura 2. Tabla de los 20 aminoácidos (Fuente: Compound Interest)

EL CÓDIGO GENÉTICO

Como venimos diciendo, el código genético son las reglas que sigue la secuencia de nucleótidos de un gen, a través del intermediario ARN, para ser traducida a una secuencia de aminoácidos de una proteína. Existen varios tipos de ARN, pero el que nos interesa es el ARN mensajero (ARNm), imprescindible en el proceso de transcripción.

Las células decodifican el ARN leyendo sus nucleótidos en grupos de tres (Figura 3). Como que el ARNm es un polímero de cuatro nucleótidos diferentes hay 64 combinaciones posibles de tres nucleótidos (43). Esto nos lleva a una de las características del código genético: está degenerado. Esto significa que hay varios tripletes para un mismo aminoácido (codones sinónimos). Por ejemplo la prolina es codificada por los tripletes CCU, CCC, CCA y CCG.

genetic_code_med
Figura 3. El código genético, con la tabla de los 20 aminoácidos (Fuente: BioNinja)

El código genético no es ambiguo ya que cada triplete tiene su propio significado. Todos los tripletes tienen sentido, o bien codifican un aminoácido en particular o bien indican terminación de lectura. La mayoría de los aminoácidos se codifican por al menos dos codones. La metionina y el triptófano son los únicos aminoácidos que se codifican sólo por un codón. Pero cada codón codifica sólo para un aminoácido o señal de stop. Además, es unidireccional, todos los tripletes se leen en sentido 5’-3’.

El codón AUG sirve como codón de inicio en el que comienza la traducción. Sólo hay un codón de inicio que codifica para el aminoácido metionina, mientras que existen tres codones de stop (UAA, UAG y UGA). Estos codones hacen que el polipéptido (polímero formado por cadenas largas de aminoácidos) se libere del ribosoma, lugar donde ocurre la traducción.

La posición del codón de inicio determina el punto dónde comenzará la traducción del ARNm y su marco de lectura. Este último punto es importante porque la misma secuencia de nucleótidos puede codificar polipéptidos completamente diferentes dependiendo del marco en el que se lea (Figura 4). Sin embargo, sólo una de las tres pautas de lectura de un ARNm codifica la proteína correcta. El desplazamiento en el marco de lectura provoca que el mensaje ya no tenga sentido.

Marco de Lectura.png
Figura 4. Posibles marcos de lectura (Fuente: marcoregalia.com)

Como decíamos al principio, una de las principales características del código genético es que es universal, ya que casi todos los seres vivos lo utilizan (a excepción de algunas bacterias). Esto es importante porque un código genético compartido por tan diversos organismos proporciona una importante evidencia de un origen común de la vida en la Tierra. Las especies de la Tierra de hoy en día probablemente evolucionaron de un organismo ancestral en el cual ya se encontraba presente el código genético. Debido a que es esencial para la función celular, debería tender a permanecer sin cambios en las especies a través de las generaciones. Este tipo de proceso evolutivo puede explicar la notable similitud del código genético en los organismos presentes en la actualidad.

A pesar de que el ser humano en sí continua siendo un enigma para la ciencia, la revolución del desciframiento del código genético ha permitido adentrarnos en el funcionamiento de nuestro cuerpo, en concreto el de nuestras células, y traspasar las fronteras hacia la manipulación genética.

REFERENCIAS

  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Gotta Love Cells
  • BioNinja
  • Foto portada: eldiario.es

MireiaRamos-castella

Desxifrant el codi genètic

De la mateixa manera que Alan Turing va descodificar Enigma, la màquina de xifrat que utilitzava l’exèrcit alemany en la Segona Guerra Mundial, varis científics van aconseguir desxifrar el codi genètic. La solució a aquest entramat ha permès entendre com funcionen les cèl·lules i fer possible la manipulació genètica.

INTRODUCCIÓ

Un codi és una sèrie de símbols que per separat no representen res, però al combinar-los poden generar un llenguatge comprensible només per aquells qui l’entenen. Això és el que passa amb el codi genètic.

Tot i que ens pugui semblar mentida, tots els éssers vius (a excepció d’alguns bacteris) biològicament funcionem de la mateixa manera. I és que ja ho deia Jacques Monod, tot el que es constata com a veraç per E. coli també ha de ser cert pels elefants.

Des de les cèl·lules de la balena blava, l’animal més gran del planeta, fins a les cèl·lules d’un colibrí, passant pels éssers humans, són iguals. Això és gràcies al codi genètic, que permet que la informació de cada gen sigui transmesa a les proteïnes, les executores d’aquesta informació.

Aquest flux d’informació va ser anomenat per Francis Crick, el 1958, com el dogma central de la biologia (Figura 1). En ell afirmava que la informació flueix de l’ADN al ARN, i després de l’ARN a les proteïnes. És així com es transmet i s’expressa la informació genètica unidireccionalment. No obstant, posteriorment es van afegir modificacions. Cric afirmava que només l’ADN pot duplicar-se i transcriure’s a ARN. Però s’ha vist que en virus també es produeix la replicació del seu ARN i que aquest pot realitzar una transcripció inversa per generar ADN de nou.

main-qimg-eee77f2b58be05c964ce0c04756f2cfb
Figura 1. Dogma central de la biologia. En vermell es mostra el cami que va senyalar Francis Crick (replicació de l’ADN, transcripció a ARN i traducció a proteïnes); i en gris les posteriors modificacions (Font: Quora)

ELS 3 LLENGUATGES DE LES CÈL·LULES

A l’interior de les cèl·lules es parlen tres idiomes diferents, però que es poden arribar a relacionar a través del codi genètic.

El que ja coneixem és el llenguatge de l’àcid desoxiribonucleic (ADN), enrotllat en una doble cadena i format per 4 lletres que corresponen a les bases nitrogenades: adenina (A), timina (T), citosina (C) i guanina (G).

Un altre llenguatge molt semblant a aquest últim és el de l’ARN. Difereix de l’ADN principalment en tres aspectes: (i) es compon d’una cadena única en comptes de ser de doble cadena, (ii) els seus sucres són riboses en comptes de desoxiriboses (d’aquí el nom d’àcid ribonucleic) i (iii) conté la base uracil (U) en comptes de T. Ni el canvi de sucre ni la substitució de U per T altera l’aparellament amb la base A, pel que la síntesi d’ARN pot ser realitzada de manera directa sobre un motlle d’ADN.

L’últim llenguatge que ens resta per conèixer és el de les proteïnes, format per 20 aminoàcids. Els aminoàcids constitueixen totes i cada una de les proteïnes de qualsevol organisme viu. L’ordre dels aminoàcids que formen la cadena de la proteïna determina la seva funció (Figura 2).

aminoacids
Figura 2. Taula dels 20 aminoàcids (Font: Compound Interest)

EL CODI GENÈTIC

Com venim dient, el codi genètic són les regles que segueix la seqüència de nucleòtids d’un gen, a través de l’intermediari ARN, per ser traduïda a una seqüència d’aminoàcids d’una proteïna. Existeixen varis tipus d’ARN, però el que ens interessa és el ARN missatger (ARNm), imprescindible en el procés de transcripció.

Les cèl·lules descodifiquen l’ARN llegint els seus nucleòtids en grups de tres (Figura 3). Com que l’ARNm és un polímer de quatre nucleòtids diferents hi ha 64 combinacions possibles de tres nucleòtids (43). Això ens porta a una de les característiques del codi genètic: està degenerat. Això significa que hi ha varis triplet per un mateix aminoàcid (codons sinònims). Per exemple, la prolina és codificada pels triplets CCU, CCC, CCA i CCG.

genetic_code_med
Figura 3. El codi genètic amb els 20 aminoàcids (Font: BioNinja)

El codi genètic no és ambigu ja que cada triplet té el seu propi significat. Tots els triplets tenen sentit, o bé codifiquen un aminoàcid en particular o bé indiquen final de lectura. La majoria dels aminoàcids es codifiquen almenys per dos codons. La metionina i el triptòfan són els únics aminoàcids que es codifiquen només per un codó. Però cada codó codifica només per un aminoàcid o senyal d’stop. A més, és unidireccional, tots els triplets es llegeixen en sentit 5’-3’.

El codó AUG serveix com a codó d’inici per començar la traducció. Només hi ha un codó d’inici que codifica per l’aminoàcid metionina, mentre que existeixen tres codons stop (UAA, UAG i UGA). Aquests codons fan que el polipèptid (polímer format per cadenes llargues d’aminoàcids) s’alliberi del ribosoma, lloc on ocorre la traducció.

La posició del codó d’inici determina el punt on comença la traducció de l’ARNm i el seu marc de lectura. Aquest últim punt és important perquè la mateixa seqüència de nucleòtids pot codificar polipèptids completament diferents depenent del marc en el que es llegeix (Figura 4). No obstant, només una de les tres pautes de lectures d’un ARNm codifica la proteïna correcta. El desplaçament en el marc de lectura provoca que el missatge ja no tingui sentit.

Marco de Lectura
Figura 4. Possibles marcs de lectura (Font: marcoregalia.com)

Com dèiem al principi, una de les principals característiques del codi genètic és que és universal, ja que gairebé tots els éssers vius l’utilitzen (a excepció d’alguns bacteris). Això és important perquè un codi genètic compartit per tan diversos organismes proporciona una important evidència d’un origen comú de la vida a la Terra. Les espècies de la Terra d’avui en dia probablement van evolucionar d’un organisme ancestral en el qual ja es trobava present el codi genètic. Degut a que és essencial per la funció cel·lular, hauria de tenir a romandre sense canvis en les espècies a través de les generacions. Aquest tipus de procés evolutiu pot explicar la notable similitud del codi genètic en els organismes presents en l’actualitat.

Tot i que l’ésser humà en sí continua sent un enigma per la ciència, la revolució del desxiframent del codi genètic ha permès endinsar-nos en el funcionament del nostre cos, en concret el de les nostres cèl·lules, i traspassar les fronteres cap a la manipulació genètica.

REFERÈNCIES

  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Gotta Love Cells
  • BioNinja
  • Foto portada: eldiario.es

MireiaRamos-catala

La secuenciación del genoma humano

La genómica es una ciencia reciente, la cual ha tenido un importante auge en los últimos años, sobre todo gracias a las tecnologías avanzadas de secuenciación de ADN, a los avances en bioinformática y a las técnicas cada vez más sofisticadas para realizar análisis de genomas completos. Y de los genomas completos y su secuenciación os hablaré en este artículo, mencionando también el proyecto Genoma Humano, que permitió la secuenciación del genoma humano.

¿POR QUÉ SECUENCIAMOS?

La secuenciación es el conjunto de métodos y técnicas bioquímicas cuya finalidad es la determinación del orden de los nucleótidos (A, T, C y G). Su objetivo es obtener todos los nucleótidos ordenados del ADN de un organismo.

Los primeros organismos que se secuenciaron fueron dos bacterias, Haemophilus influenzae y Mycoplasma genitalium en el 1995. Sólo un año después se secuenció el genoma de un hongo (Saccharomyces cerevisiae).

A partir de aquí nace el proyecto de secuenciación de eucariotas: en 1998 se secuencia Caenorhabditis elegans (nematodo), en 2000 Drosophila melanogaster (mosca de la fruta) y en 2001 el genoma humano.

Pero ¿por qué secuenciamos? En el caso del genoma humano, hay la necesidad de conocerlo para que ayude a paliar o evitar enfermedades.

Algunos de los organismos que se han secuenciado son organismos modelos, los cuales tienen:

  • Importancia médica: hay organismos patógenos y conocemos las enfermedades que pueden causar.
  • Importancia económica: los organismos que los humanos consumimos, con técnicas moleculares los podemos mejorar.
  • Estudio de la evolución: en el año 2007 se secuenciaron más de 11 especies de Drosophila y se intentó entender la relación evolutiva de los cromosomas de éstas. También se ha hecho en mamíferos (Proyecto ENCORE).

¿QUÉ ENTENDEMOS POR GENOMA SECUENCIADO?

El genoma humano tiene 46 cromosomas, es decir, 23 parejas de cromosomas (22 parejas de cromosomas autosómicos y 1 pareja de cromosomas sexuales, XX o XY dependiendo de si es mujer u hombre).

El tamaño del genoma humano secuenciado es de 32.000Mb, es decir, los 23 cromosomas más el cromosoma Y.

El genoma humano se obtuvo de la mezcla de genomas humanos para obtener una representación del genoma de toda la humanidad.

PARADOJAS QUE ENCONTRAMOS EN EL GENOMA

Una paradoja es un hecho que parece contrario a la lógica. Con los genomas encontramos dos claras paradojas.

La primera paradoja hace referencia al valor C, el valor que representa la cantidad de ADN en el genoma. Como sería de esperar, cuanto más grande y complejo sea el organismo, más grande será el tamaño de su genoma. Pero esto no es así ya que no existe esta correlación. Esto se debe a que el genoma no solamente contiene genoma codificante y proteínas, sino que también contiene ADN repetitivo. Además, los genomas más compactados se encuentran en organismos menos complejos.

La segunda paradoja hace referencia al valor G, el valor que representa el número de genes. Tampoco encontramos correlación entre el número de genes y la complejidad. Un ejemplo claro es que en el genoma humano hay alrededor de 20.000 genes y Arabidopsis thaliana  (planta herbácea) tiene 25.000 genes. La explicación se encuentra en el mundo del ARN, que es más complejo de lo que se pensaba y tiene que ver con la regulación de los genes.

EL PROYECTO GENOMA HUMANO

El proyecto de secuenciación del genoma humano ha sido el mayor proyecto de investigación biomédica de la historia. Con un presupuesto de 3 mil millones de dólares y la participación de un Consorcio Público Internacional, formado por EEUU, Reino Unido, Japón, Francia, Alemania, China y otros países, tenía como objetivo último la consecución de la secuencia completa del genoma humano.

Empezó en 1990, pero la cosa se complicó cuando, en 1999, apareció en escena una empresa privada, Celera Genomics, presidida por el científico Craig J. Venter, que lanzó el reto de conseguir la secuencia humana en un tiempo récord, antes de lo previsto por el Consorcio Público.

Al final se decidió dejarlo en tablas. El Consorcio Público aceleró el proceso y obtuvo el borrador casi al mismo tiempo. El 26 de Junio de 2000, en un acto en la Casa Blanca con el presidente Bill Clinton, se encontraron los dos máximos representantes de las partes en competición, Craig Venter por Celera, y el director del Consorcio Público, Francis Collins. Se anunció de forma conjunta la consecución de dos borradores de la secuencia completa del genoma humano (Video 1, en inglés). Fue un momento histórico, como el descubrimiento de la doble hélice o la primera vez que el hombre pisó la Luna.

Video 1. Acto del anuncio del Genoma Humano en la Casa Blanca (Fuente: YouTube)

Las publicaciones correspondientes de ambas secuencias no aparecieron hasta febrero de 2001. El Consorcio Público publicó su secuencia en la revista Nature, mientras que Celera lo hizo en Science (Figura 1). Tres años después, en 2004, el Consorcio publicó la versión final o completa del genoma humano.

portadasGH
Figura 1. Portadas de las publicaciones de la secuencia borrador del genoma humano en las revistas NatureScience en febrero de 2001 (Fuente: Bioinformática UAB)

GENOMAS PERSONALES

El genoma que se obtuvo en 2001 es el genoma de referencia. A partir de aquí se ha entrado en la era de los genomas personales, con nombre y apellidos. Craig Venter fue el primero que secuenció su genoma y el siguiente fue James Watson, uno de los descubridores de la doble hélice.

Se tardó 13 años en secuenciar el genoma de referencia (HGP). Con el de Craig Venter se tardó mucho menos y con el de James Watson apenas unos meses.

APLICACIONES CLÍNICAS DE LA SECUENCIACIÓN

Sin llegar a secuenciar el genoma entero se han identificado genes causantes de enfermedades. El exoma no es el genoma entero, sino la parte del genoma que corresponde a los exones.

Un ejemplo es el caso de Nicholas Volker (Figura 2), el primer caso de medicina genómica. Este niño tenía una enfermedad inflamatoria intestinal grave e intratable de causa desconocida. Con la secuenciación del exoma se permitió descubrir una mutación en el gen XIAP del cromosoma X, que sustituye un aminoácido funcionalmente importante por otro. Un trasplante de médula de hueso le salvó la vida al paciente.

nicholas volker
Figura 2. Nicholas Volker con su libro One in a Billion, que cuenta su historia (Fuente: Rare & Undiagnosed Network)

REFERENCIAS

  • L. Pray. Eukaryotic genome complexity. Nature Education 2008; 1(1):96
  •  Brown. Genomes 3, 3rd edition (2007)
  • Bioinformática UAB
  • BT.com
  • E. A. Worthey et al. Making a definitive diagnosis: Successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genetics in Medicine 2011; 13, 255-262
  • Foto portada: Noticias InterBusca

MireiaRamos-castella

La seqüenciació del genoma humà

La genòmica és una ciència recent que ha tingut un important auge en els últims anys, sobretot gràcies a les tecnologies avançades de seqüenciació d’ADN, als avenços en bioinformàtica i a les tècniques cada cop més sofisticades per a realitzar anàlisis de genomes complets. I dels genomes complets i la seva seqüenciació és del que us parlaré en aquest article, fent esment al Projecte Genoma Humà, que va permetre la seqüenciació del genoma humà.

PER QUÈ SEQÜENCIEM?

La seqüenciació és el conjunt de mètodes i tècniques bioquímiques que tenen com a finalitat la determinació de l’ordre dels nucleòtids (A, T, C i G). El seu objectiu és obtenir tots els nucleòtids ordenats de l’ADN d’un organisme.

Els primers organismes que es van seqüenciar van ser dues bactèries, Haemophilus influenzae i Mycoplasma genitalium en el 1995. Només un any després es va seqüenciar el genoma d’un fong (Saccharomyces cerevisiae).

A partir d’aquí neix el projecte de seqüenciació d’eucariotes: el 1998 es seqüencia Caenorhabditis elegans (nematode), el 2000 Drosophila melanogaster (mosca de la fruita) i el 2001 el genoma humà.

Però, per què seqüenciem? En el cas del genoma humà hi ha la necessitat de conèixer-lo per ajudar a pal·liar o evitar malalties.

Alguns dels organismes que s’han seqüenciat són organismes models, els quals tenen:

  • Importància mèdica: hi ha organismes patògens i coneixem les malalties que poden causar.
  • Importància econòmica: els organismes que els humans consumim, amb tècniques moleculars els podem millorar.
  • Estudi de l’evolució: en l’any 2007 es van seqüenciar més d’11 espècies de Drosophila i es va intentar entendre la relació evolutiva dels cromosomes d’aquestes. També s’ha fet en mamífers (Projecte ENCORE).

QUÈ ENTENEM PER GENOMA SEQÜENCIAT?

El genoma humà té 46 cromosomes, és a dir, 23 parelles de cromosomes (22 parelles de cromosomes autosòmics i 1 parella de cromosomes sexuals, XX o XY depenent de si és dona o home).

La mida del genoma humà és de 32.000Mb, és a dir, els 23 cromosomes més el cromosoma Y.

El genoma humà es va obtenir de la barreja de genomes humans per obtenir una representació del genoma de tota la humanitat.

PARADOXES QUE TROBEM EN EL GENOMA

Una paradoxa és un fet que sembla contrari a la lògica. Amb els genomes trobem dues clares paradoxes.

La primera paradoxa fa referència al valor C, el valor que representa la quantitat d’ADN del  genoma. Com seria d’esperar, com més gran i complex sigui l’organisme, més gran serà la mida del seu genoma. Però això no és així ja que no existeix aquesta correlació. Això és degut a que el genoma no solament conté genoma codificant i proteïnes, sinó que també conté ADN repetitiu. A més, els genomes més compactats es troben en organismes menys complexos.

La segona paradoxa fa referència al valor G, el valor que representa el número de gens. Tampoc trobem una correlació entre el número de gens i la complexitat. Un exemple clar és que en el genoma humà hi ha al voltant de 20.000 gens i Arabidopsis thaliana (planta herbàcia) té 25.000 gens. L’explicació es troba en el món de l’ARN, que és més complex del que es pensava i té a veure amb la regulació dels gens.

EL PROJECTE GENOMA HUMÀ

El projecte de seqüenciació del genoma humà ha sigut el major projecte d’investigació biomèdica de la història. Amb un pressupost de 3 mil milions de dòlars i la participació d’un Consorci Públic Internacional, format per EEUU, Regne Unit, Japó, França, Alemanya, Xina i altres països, tenia com a objectiu la consecució de la seqüencia completa del genoma humà.

Va començar el 1990, però la cosa es va complicar quan, el 1999, va aparèixer en escena una empresa privada, Celera Genomics, presidida pel científic Craig Venter, que va llençar el repte d’aconseguir la seqüència humana en un temps rècord, abans del previst pel Consorci Públic.

Al final es va deixar en empat. El Consorci Públic va accelerar el procés i va obtenir l’esborrany quasi al mateix temps. El 26 de juny del 2000, en un acte a la Casa Blanca amb el president Bill Clinton, es van trobar els dos màxims representants de les parts en competició: Craig Venter per Celera i el director del Consorci Públic, Francis Collins. Es va anunciar de forma conjunta la consecució de dos esborranys de la seqüència completa del genoma humà (Vídeo 1, en anglès). Va ser un moment històric, com el descobriment de la doble hèlix o la primera vegada que l’home va trepitjar la Lluna.

Vídeo 1. Acte de l’anunci del Genoma Humà a la Casa Blanca (Font: YouTube)

Les publicacions corresponents d’ambdues seqüències no van aparèixer fins el febrer del 2001. El Consorci Públic va publicar la seva seqüència a la revista Nature, mentre que Celera ho va fer a Science (Figura 1). Tres anys després, el 2004, el Consorci va publicar la versió final o completa del genoma humà.

portadasGH
Figura 1. Portades de les publicacions de la seqüència esborrany del genoma humà en les revistes NatureScience el febrer de 2001 (Font: Bioinformática UAB)

GENOMES PERSONALS

El genoma que es va obtenir el 2001 és el genoma de referència. A partir d’aquí s’ha entrat a l’era dels genomes personals, amb nom i cognoms. Craig Venter va ser el primer que va seqüenciar el seu genoma i el següent va ser James Watson, un dels descobridors de la doble hèlix.

Es va trigar 13 anys en seqüenciar el genoma de referència (HGP). Amb el de Craig Venter es va trigar molt menys i amb el de Watson només uns mesos.

APLICACIONS CLÍNIQUES DE LA SEQÜENCIACIÓ

Sense arribar a seqüenciar el genoma sencer s’han identificat gens causants de malalties. L’exoma no és el genoma sencer, sinó la part del genoma que correspon als exons.

Un exemple és el cas de Nicholas Volker (Figura 2), el primer cas de medicina genòmica. Aquest nen tenia una malaltia inflamatòria intestinal greu i intractable de causa desconeguda. Amb la seqüenciació de l’exoma es va permetre descobrir una mutació en el gen XIAP del cromosoma X, que substitueix un aminoàcid funcionalment important per un altre. Un transplantament de medul·la òssia li va salvar la vida al pacient.

nicholas volker
Figura 2. Nicholas Volker amb el seu llibre One in a Billion, que explica la seva història (Font: Rare & Undiagnosed Network)

REFERÈNCIES

  • L. Pray. Eukaryotic genome complexity. Nature Education 2008; 1(1):96
  •  Brown. Genomes 3, 3rd edition (2007)
  • Bioinformática UAB
  • BT.com
  • E. A. Worthey et al. Making a definitive diagnosis: Successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genetics in Medicine 2011; 13, 255-262
  • Foto portada: Noticias InterBusca

MireiaRamos-catala