Arxiu d'etiquetes: atmosfera

Los humanos lo hemos vuelto a hacer: el Antropoceno, otro hito (bochornoso) de la humanidad

Los libros de ciencia tendrán que modificarse de nuevo. A las ya conocidas épocas geológicas del Cámbrico, Jurásico o Pleistoceno habrá que añadir, desde ahora, otra más: el Antropoceno. A finales de agosto de este año se confirmó lo que era ya un secreto a voces: los humanos hemos intervenido tanto en los procesos terrestres que hemos llegado a cambiar incluso el propio ciclo natural del planeta. Las consecuencias ya las estamos sufriendo, y la huella humana quedará presente en nuestro planeta hasta después de nuestra desaparición.

INTRODUCCIÓN

La historia del hombre actual, el Homo sapiens sapiens, no fue sencilla en sus inicios. Se cree que aparecimos en el Paleolítico medio, hace unos 200.000 años atrás, en África. En aquellos tiempos el ser humano ya era un buen cazador, pero también era cazado, y aunque la especie era próspera y se expandía por el planeta, lo hacía a marchas forzadas y siempre a remolque de cambios climáticos severos. Tardó 100.000 años en salir de África y otros 80.000 hasta llegar a América. Durante todo ese tiempo y hasta prácticamente nuestros días, el ser humano estaba a merced de la Tierra y sus caprichos, la cual decidía a su antojo el destino de nuestros ancestros. No obstante, las glaciaciones acabaron, el Holoceno empezó y, con ello, un avance tecnológico sin precedentes. La revolución industrial transformó definitivamente al ser humano y su forma de interactuar con el mundo, y éste sufrió las devastadoras consecuencias de una especie ambiciosa e inconsciente de su enorme influencia global.

mamut
El ser humano ha sido, la mayor parte de su existencia, una especie nómada, con una fuerte dependencia de las condiciones ambientales que condicionaban sus presas. Con la agricultura y la ganadería se forman los primeros pueblos, que conducirán al estilo moderno de hoy en día. Fuente: Return of Kings.

¿QUÉ ES UNA ÉPOCA GEOLÓGICA Y CÓMO SE ENTRA O SE SALE DE ELLA?

A primera vista, puede parecer una mera cuestión sintáctica, o un capricho de geólogos. No obstante, designar una época geológica es importante a la hora de delimitar grandes periodos de tiempo que han gozado de condiciones ambientales similares. Por regla general, una época geológica suele durar no menos de 2 millones de años, y se usa el registro fósil en busca de una importante discontinuidad en el patrón típico de la biota de la época. Por lo tanto, una época suele terminarse al ocurrir un cambio brusco en el clima (el Pleistoceno termina con la última de las grandes glaciaciones) que conlleva a cambios en la biota (el meteorito que extinguió a los dinosaurios no avianos terminó con el período Cretácico).  Sin embargo, estos cambios bruscos deben darse de forma global y en un corto espacio de tiempo para que realmente pueda considerarse que se ha cambiado de época geológica.

geological-time-scale
La Tierra se divide en periodos que a su vez se dividen en épocas geológicas. Éstas están marcadas por periodos de tiempo relativamente estables y/o con una biota característica. Suelen terminarse por eventos que comportan cambios drásticos para los seres vivos a escala planetaria. Fuente: philipmarshall.net.

EL ANTROPOCENO

El término no es nuevo (empezó a utilizarse a mediados del siglo XIX, en plena revolución industrial) pero recobró importancia a principios del año 2000, de la mano de Paul Crutzen. Este químico, junto con otros colegas, descubrió los compuestos que estaban acabando con la capa de ozono, lo que le permitió ganar el Premio Nobel de Química. En su discurso, tuvo especial interés en recalcar que el Holoceno “había terminado para siempre” para dar paso al Antropoceno, la época de los humanos. Su artículo en Nature sobre el Antropoceno sentó cátedra, y desde entonces multitud de científicos han usado, sin ningún tipo de reparo, este término para referirse a la época en la que vivimos. El 29 de agosto de 2016, la comisión de expertos del Antropoceno votó, en el Congreso Geológico Internacional (IGC, por sus siglas en inglés) a favor de establecer, formalmente, el Antropoceno como una nueva época geológica.
Grinding Shop
La revolución industrial cambió el curso de la Tierra para siempre. Ingentes cantidades de combustibles fósiles fueron quemados y sus productos emitidos a la atmósfera. El sistema productivo dio un giro, priorizando la producción y, con ello, a hacer un uso sin precedentes de los recursos del planeta. En la foto, trabajadores británicos en una fábrica de productos agrarios en 1928. Fuente: Daily mail.

PERO, ¿POR QUÉ ESTAMOS EN EL ANTROPOCENO?

Como comentábamos antes, para cambiar de época debe evidenciarse un cambio en las condiciones ambientales a escala global. Y eso es lo que está ocurriendo desde la década de los años 50 del siglo pasado, fecha en la que oficialmente se ha marcado el inicio del Antropoceno. En este artículo de Science, investigadores de todo el mundo recopilaron pruebas geológicas que demostraban con total certeza que el ser humano ha cambiado tanto el planeta que ya debe hablarse de otra época geológica. Los investigadores también señalaron a los productos de las numerosas pruebas atómicas de los años 50 como el punto de partida del Antropoceno.
mushroom-cloud-of-first-hydrogen-bomb-test
Las pruebas nucleares de los años 50, como ésta en la que se testó la primera bomba de hidrógeno (Ivy Mike) provocó la emisión de grandes cantidades de materiales radioactivos en la atmósfera. Estas partículas fueron asentándose y eso ha permitido a los investigadores disponer de pruebas para demostrar el impacto de las acciones humanas a escala global. Fuente: CBC.

EVIDENCIAS DEL ANTROPOCENO

Desde el inicio de la revolución industrial, hace más de dos siglos, numerosos depósitos antropogénicos  han ido sedimentando en la corteza terrestre, desde nuevos minerales y rocas hasta alumnio, cemento y derivados del petroleo como los plásticos. Justo después de estas lineas, las principales evidencias esgrimidas por los investigadores para justificar el cambio de época:

Los altos niveles de hidrocarburos aromáticos policíclicos (PAHs), bifenilos policlorados (PCBs), plásticos, fertilizantes y plaguicidas en sedimentos. La combustión de petróleo, carbón y otros productos derivados de la madera son el origen de grandes cantidades de PAHs en la atmosfera, que acaban asentándose en la corteza terrestre y los seres vivos. Por lo que respecta a los fertilizantes, nutrientes tan poco abundantes en el suelo como el nitrógeno y el fósforo se han duplicado en el último siglo,  debido al creciente número de campos de cultivo, que en muchos de los casos siguen el modelo intensivo para maximizar la producción. Por otra parte, los plásticos ya están presentes en todo el mundo. Su alta resistencia a la degradación impide su reciclaje natural, lo que provoca que grandes cantidades pasen a los sedimentos y, sobre todo, al mar, donde forma auténticas islas de plástico, como la conocida Gran Isla de Plástico del Pacífico.

plastics
El plástico es el producto derivado del petróleo más extendido en la Tierra. Su impacto sobre el medioambiente es uno de los más graves en la actualidad, y su sedimentación a escala global dejará restos de nuestra presencia hasta miles de años después de nuestra desaparación. Fuente: The Guardian.

Los elementos radiactivos de las pruebas nucleares. A la detonación de la bomba atómica de la Trinidad en 1945 en Nuevo México (EUA), le siguió una gran lista de otras pruebas nucleares, en plena Guerra Fría. Como resultado, grandes cantidades de carbono-14 y de plutonio-239, entre otras moléculas, fueron lanzadas a la atmósfera y sedimentadas años después en muchas partes del globo, constituyendo una prueba fehaciente del gran impacto humano en la Tierra.

sediment
Este core, extraído por los geólogos que han determinado que estamos en una nueva época, muestra la acumulación de material de origen humano en los sedimentos de un lago de Groenlandia. En él se encontraron pesticidas, nitrógeno radioactivo, metales pesados,  incrementos de la concentración de gases de efecto invernadero y plásticos. Fuente: Science.

Las altas concentraciones de  CO2 y CH4 en la atmosfera. A partir de 1850 y sobre todo en las décadas siguientes, los niveles de estos gases en la atmósfera rompieron con el patrón típico del Holoceno, llegándose a alcanzar, en nuestro siglo, las 400 ppm (partes por millón) de CO2, un aumento de más de 150 puntos respecto a la situación pre-industrial. Este aumento de CO2 atmosférico tiene un impacto directo sobre la temperatura de la Tierra. Se cree que la temperatura global se ha incrementado entorno a 1ºC desde el año 1900, y que aumentará entre 1,5 y 3,5 °C para el año 2100.

aumento-co2
En este gráfico se muestra el aumento sin precedentes del CO2, metano y óxido de nitrógeno en la atmósfera. Si bien es cierto que el más conocido y el que tiene mayor impacto a gran escala es el CO2, los otros dos gases tienen un mayor poder de limitación de la disipación del calor hacia el espacio. El aumento de estos gases está estrechamente relacionado con el aumento de la temperatura mundial. Fuente: CSIRO.

El aumento del ratio de extinción de seres vivos en todas las partes del mundo como consecuencia de las actividades humanas. Desde el año 1500 la extinción de especies por parte de los seres humanos ha aumentado, pero es a partir del siglo XIX en adelante cuando las extinciones se hacen presentes en la totalidad del planeta. La distribución de las especies se ha visto alterada debido a actividades humanas como la agricultura o la deforestación y por la introducción de especies invasoras, que provocan cambios en las costumbres de las especies autóctonas y suelen llegar a desplazarlas e incluso extinguirlas. Este elevado ratio de extinción sin precedentes es considerado para muchos como un símbolo inequívoco de que estamos ante la sexta extinción masiva de la Tierra.

ratio-extincion
Desde el inicio de la revolución industrial, el ritmo de extinción de los vertebrados es 100 veces mayor que en el pasado. A este ritmo, se estima que para los siguientes siglos el número de especies que se extinguirán alcanzará el 75% de las existentes. La línea negra punteada de este gráfico muestra el ritmo de extinción pre-industrialización, mientras que las demás hacen referencia al porcentaje acumulado de especies extintas desde el año 1500. Fuente: Science.

FUTURO

Sea cual sea el destino de la humanidad y de las acciones futuras llevadas a cabo para paliar el cambio climático, lo que está claro es que la huella humana quedará indeleble en la superficie terrestre durante millones de años, de forma parecida a la que dejaron las extinciones en masa del Pérmico o del Cretácico. Los estratos mostrarán las insensateces y los excesos llevados a cabo por nosotros, quizás como advertencia para la siguiente especie que se atreva a  relevar a la humanidad de su condición como especie dominante. 

BIBLIOGRAFÍA

Ricard-castellà

Els humans ho hem tornat a fer: l’Antropocè, una nova fita (vergonyosa) de la humanitat

Els llibres de ciència hauran de modificar-se de nou. A les ja conegudes èpoques geològiques del càmbric, juràssic o pleistocè caldrà afegir-ne, des d’ara, una altra més: l’Antropocè. A finals d’agost d’aquest any es va confirmar el que ja es temia: els humans hem intervingut tant en els processos terrestres que hem arribat a canviar fins i tot el propi cicle natural del planeta. Les conseqüències ja les estem patint, i l’empremta humana quedarà present en el nostre planeta fins després de la nostra desaparició.

INTRODUCCIÓ

La història de l’home actual, l’Homo sapiens sapiens, no va ser senzilla en els seus inicis. Es creu que vam aparèixer en el Paleolític mitjà, fa uns 200.000 anys, a l’Àfrica. En aquells temps l’ésser humà ja era un bon caçador, però també era una bona presa, i encara que l’espècie era pròspera i s’expandia pel planeta, ho feia a marxes forçades i sempre a remolc de canvis climàtics severs. Va trigar 100.000 anys a sortir d’Àfrica i 80.000 fins a arribar a Amèrica. Durant tot aquest temps i fins pràcticament els nostres dies, l’ésser humà estava a mercè de la Terra i els seus capricis, la qual decidia al seu antull el destí dels nostres avantpassats. No obstant això, les glaciacions van acabar, l’Holocè va començar i, amb això, un avanç tecnològic sense precedents. La revolució industrial va transformar definitivament a l’ésser humà i la seva forma d’interactuar amb el món, i aquest va sofrir les devastadores conseqüències d’una espècie ambiciosa i inconscient de la seva enorme influència global.

mamut
L’ésser humà ha estat, la major part de la seva existència, una espècie nòmada, amb una forta dependència de les condicions ambientals que condicionaven les seves preses. Amb l’agricultura i la ramaderia es formen els primers pobles, que conduiran a l’estil modern d’avui en dia. Font: Return of Kings.

¿QUÈ ÉS UNA ÈPOCA GEOLÒGICA Y COM S’ENTRA O ES SURT D’ELLA?

En un primer moment pot semblar una simple qüestió sintàctica, o un caprici de geòlegs. No obstant això, designar una època geològica és important a l’hora de delimitar grans períodes de temps que han gaudit de condicions ambientals similars. Per regla general, una època geològica sol durar no menys de 2 milions d’anys, i s’usa el registre fòssil per buscar discontinuïtats en el patró típic de la biota de l’època. Per tant, una època geològica sol acabar-se amb un canvi brusc en el clima (el Plistocè acaba amb l’última de les grans glaciacions) que comporta, de retruc, canvis en la biota (el meteorit que va extingir els dinosaures no avians va acabar amb el període Cretaci). No obstant això, aquests canvis bruscs s’han de donar de forma global i en un curt espai de temps perquè realment pugui considerar-se que s’ha canviat d’època geològica.

geological-time-scale
La Terra es divideix en períodes que, al seu torn, es divideixen en èpoques geològiques. Aquestes estan marcades per períodes de temps relativament estables i / o amb una biota característica. Solen acabar-se per esdeveniments que comporten canvis dràstics per als éssers vius a escala planetària. Font: philipmarshall.net.

L’ANTROPOCÈ

El terme no és nou (va començar a utilitzar-se a mitjans del segle XIX, en plena revolució industrial) però va recobrar importància a principis de l’any 2000, de la mà de Paul Crutzen. Aquest químic, juntament amb altres col·legues, va descobrir els compostos que estaven acabant amb la capa d’ozó, el que li va permetre guanyar el Premi Nobel de Química. En el seu discurs, va tenir especial interès en recalcar que l’Holocè “havia acabat per sempre” per donar pas a l’Antropocè, l’època dels humans. El seu article a Nature sobre l’Antropocè va sentar càtedra, i des de llavors multitud de científics han fet servir sense cap tipus d’inconvenient aquest terme per referir-se a l’època en què vivim. El 29 d’agost de 2016, la comissió d’experts de l’Antropocè va votar, al Congrés Geològic Internacional (IGC, per les seves sigles en anglès) per formalment establir l’Antropocè com a nova època geològica.

Grinding Shop
La revolució industrial va canviar el curs de la Terra per sempre. Ingents quantitats de combustibles fòssils van ser cremats i els seus productes emesos a l’atmosfera. El sistema productiu va donar un gir, prioritzant la producció i, amb això, a fer un ús sense precedents dels recursos del planeta. A la foto, treballadors britànics en una fàbrica de productes agraris al 1928. Font: Daily mail.

PERÒ, PER QUÈ ESTEM A L’ANTROPOCÈ?

Com comentàvem abans, per canviar d’època s’ha d’evidenciar un canvi en les condicions ambientals a escala global. I això és el que està passant des de la dècada dels anys 50 del segle passat, data en què oficialment s’ha marcat l’inici del Antropocè. En aquest article de Science, investigadors de tot el món van recopilar proves geològiques que demostraven amb total certesa que l’ésser humà ha canviat tant el planeta que ja s’ha de parlar d’una altra època geològica. Els investigadors també van assenyalar als productes de les nombroses proves atòmiques dels anys 50 com el punt de partida de l’Antropocè.

mushroom-cloud-of-first-hydrogen-bomb-test
Les proves nuclears dels anys 50, com aquesta en la qual es va testar la primera bomba d’hidrogen (Ivy Mike) va provocar l’emissió de grans quantitats de materials radioactius a l’atmosfera. Aquestes partícules van anar assentant-se i això ha permès als investigadors disposar de proves per demostrar l’impacte de les accions humanes a escala global. Font: CBC.

EVIDÈNCIES DE L’ANTROPOCÈ

Des de l’inici de la revolució industrial, fa més de dos segles, nombrosos dipòsits antropogènics han anat sedimentant en l’escorça terrestre, des de nous minerals i roques fins alumini, ciment i derivats del petroli com els plàstics. Just després d’aquestes línies, les principals evidències esgrimides pels investigadors per justificar el canvi d’època:

Els alts nivells d’hidrocarburs aromàtics policíclics (PAHs), bifenils policlorats (PCB), plàstics, fertilitzants i plaguicides en sediments. La combustió de petroli, carbó i altres productes derivats de la fusta són l’origen de grans quantitats de PAHs en l’atmosfera, que acaben assentant-se en l’escorça terrestre i als éssers vius. Pel que fa als fertilitzants, nutrients tan poc abundants al sòl com són el nitrogen i el fòsfor s’han duplicat en l’últim segle degut al creixent nombre de correus, molts dels quals intensius, per tal de maximitzar la producció. D’altra banda, els plàstics ja són presents a tot el món. La seva alta resistència a la degradació impedeix el seu reciclatge natural, el que provoca que grans quantitats passin als sediments i, sobretot, al mar, on forma autèntiques illes de plàstic, com la coneguda Gran Illa de Plàstic del Pacífic.

plastics
El plàstic és el producte derivat del petroli més estès a la Terra. El seu impacte sobre el medi ambient és un dels més greus en l’actualitat, i la seva sedimentació a escala global deixarà restes de la nostra presència fins a milers d’anys després de la nostra desaparició. Font: The Guardian.

Els elements radiactius de les proves nuclears. A la detonació de la bomba atòmica de la Trinitat el 1945 a Nou Mèxic (EUA), la va seguir, en plena Guerra Freda, una gran llista d’altres proves nuclears. Com a resultat, grans quantitats de carboni-14 i plutoni-239, entre d’altres molècules, van ser llançades a l’atmosfera i sedimentades anys després en moltes parts del planeta, constituint una prova inqüestionable del gran impacte humà sobre la Terra.

sediment
Aquest core, extret pels geòlegs que han determinat que estem en una nova època, mostra l’acumulació de material d’origen humà en els sediments d’un llac de Groenlàndia. En ell es van trobar pesticides, nitrogen radioactiu, metalls pesants, increments de la concentració de gasos d’efecte hivernacle i plàstics. Font: Science.

Les altes concentracions de CO2 i CH4 a l’atmosfera. A partir de 1850 i sobretot en les dècades següents, els nivells d’aquests gasos a l’atmosfera van trencar amb el patró típic de l’Holocè, arribant-se a aconseguir, en el nostre segle, les 400 ppm (parts per milió) de CO2, un augment de més de 150 punts respecte a la situació preindustrial. Aquest augment de CO2 atmosfèric té un impacte directe sobre la temperatura de la Terra. Es creu que la temperatura global s’ha incrementat al voltant d’1ºC des de l’any 1900, i que augmentarà entre 1,5 i 3,5 ° C per a l’any 2100.

aumento-co2
En aquest gràfic es mostra l’augment sense precedents del CO2, el metà i l’òxid de nitrogen a l’atmosfera. Si bé és cert que el més conegut i el que té més impacte a gran escala és el CO2, els altres dos gasos tenen un major poder de limitació de la dissipació del calor cap a l’espai. L’augment d’aquests gasos està estretament relacionat amb l’augment de la temperatura mundial. Font: CSIRO.

L’augment de la ràtio d’extinció d’éssers vius en totes les parts del món com a conseqüència de les activitats humanes. Des de l’any 1500 l’extinció d’espècies per part dels éssers humans ha augmentat, però és a partir del segle XIX en endavant quan les extincions es fan presents en la totalitat del planeta. La distribució de les espècies s’ha vist alterada a causa d’activitats humanes com l’agricultura o la desforestació i per la introducció d’espècies invasores, que provoquen canvis en els costums de les espècies autòctones i solen arribar a desplaçar-les o fins i tot extingir-les. Aquest elevat ràtio d’extinció sense precedents és considerat per molts com un símbol inequívoc de que estem davant de la sisena extinció massiva de la Terra.

ratio-extincion
Des de l’inici de la revolució industrial, el ritme d’extinció dels vertebrats és 100 vegades més gran que en el passat. A aquest ritme, s’estima que pels següents segles el nombre d’espècies que s’extingiran arribarà al 75% de les existents. La línia negra puntejada d’aquest gràfic mostra el ritme d’extinció pre-industrialització, mentre que les altres fan referència al percentatge acumulat d’espècies extintes des de l’any 1500. Font: Science.

FUTUR

Sigui quin suigui el destí de la humanitat i de les accions futures dutes a terme per pal·liar el canvi climàtic, el que està clar és que l’empremta humana quedarà indeleble en la superfície terrestre durant milions d’anys, de manera semblant a la que van deixar les extincions en massa del Pèrmic o del Cretaci. Els estrats mostraran les insensateses i els excessos duts a terme per nosaltres, potser com advertència per a la següent espècie que s’atreveixi a rellevar a la humanitat de la seva condició com a espècie dominant.

Fotosíntesi i vida vegetal

En aquest article parlarem de la fotosíntesi i de les primeres formes de vida vegetal. En la sistemàtica actual , el nom de planta s’ajusta a plantes principalment del medi terrestre, en canvi, el terme vegetal és més antic i de connotació aristotèlica que fa referència a organismes amb funcions fotosintètiques. Però, com en tot, hi ha excepcions. 

La paraula planta va sorgir fa moltíssim temps. Però, prèviament, Aristòtil va ser qui va diferenciar els éssers vius en tres grans grups:

  • Vegetals (ànima vegetativa): realitzen la nutrició i reproducció.
  • Animals (ànima sensitiva): nutrició, reproducció, percepció, moviment i desig.
  • Ésser humà: afegeix a la llista anterior la capacitat de raonament.
Aristotle_Dominiopublico
Aristòtil (Domini públic)

Aquesta manera simplista de percebre el món ha perdurat durant molt de temps, tot i que ha anat variant amb els estudis de diferents autors com Linné o Whittaker, entre d’altres.

Una classificació molt actual és la proposada en 2012, The Revised Classification of Eukaryotes. J. Eukariot. Microbiol. 59 (5): 429-493; i ens revela un veritable àrbre de la vida.

image description
Sina ;. Adl, et al. (2012) The revised classification of Eukaryotes.  J Eukaryot Microbiol.; 59 (5): 429-493

¿QUÈ ÉS LA FOTOSÍNTESI? ¿ÉS UN PROCÉS ÚNIC?

La fotosíntesi és un procés metabòlic que permet utilitzar l’energia lumínica per transformar compostos simples i inorgànics en complexos orgànics. Per això és necessari un conjunt de pigments fotosintètics  que captin els raigs de llum i que mitjançant una sèrie de reaccions químiques puguin realitzar processos interns que donin lloc a compostos orgànics.

Aquesta opció nutritiva ha sigut desenvolupada per molts organismes en múltiples grups i branques de l’arbre de la vida dels eucariotes I entre ells trobem als Archaeplastida, el llinatge d’organismes que ha donat peu a les plantes terrestres.

Les plantes terrestres (Embryophyta) es poden definir fàcilment, però i les algues? En general, es diu que són organismes eucariotes que viuen principalment en medi aquàtic i que tenen organització relativament simple (colònies simples o amb òrgans senzills), però això no és sempre cert. Per aquest motiu, tot els grups d’Archeaplastida que queden fora del concepte de planta terrestre (petit grup dins dels Archaeplastida) es denominen “algues“.

També hi ha procariotes fotosintètics dins del domini Eubacteria, i es en aquests on la fotosíntesi presenta una gran variabilitat. En canvi, en els eucariotes és única: la fotosíntesi oxigénica.

El domini eubacteria és molt ampli, i en les seves ramificacions hi ha fins a 5 grans grups d’organismes fotosintètics: Chloroflexi, Firmicutes, Chlorobi, Proteobacteria i Cianobacteris. Aquests últims són els únics eubactèris que realitzen una fotosíntesi oxigénica; amb alliberació d’oxigen de les molècules d’aigua i utilitzant com a donar d’electrons l’hidrogen de l’aigua. La resta duu a terme la fotosíntesi anoxigénica on el donador d’electrons és el sofre o sulfur d’hidrogen, però mai alliberen O2 i molt rarament intervé l’aigua en el procés; és per això que es coneixen com les bactèries vermelles o porpres del sofre.

La fotosíntesi és, probablement més antiga que la vida mateixa. La oxigénica que està circumscrita a aquest grup de bactèries és probablement posterior, però va resultar imprescindible per al desenvolupament de la vida en el nostre planta, ja que va transformar l’atmosfera en una molt més oxigenada i gràcies a això la vida a la Terra ha pogut evolucionar.

SONY DSC
Amazones, el pulmó de la Terra (Autor: Christian Cruzado; Flickr)

¿QUINS PIGMENTS S’UTILITZEN?

Els cianobacteris comparteixen pigments amb les plantes terrestres i la resta d’eucariotes fotosintètics. Aquests pigments són principalment clorofil·les a i b (les universals), essent la c i d només presents en alguns grups. A més hi ha dos pigments que també són universals: els carotens, que actuen com antenes que transfereixen l’energia a les clorofil·les i protegeixen el centre de reacció contra l’autooxidació, i les ficobiliproteínes (ficocianina, ficoeritrina, etc.), que apareixen tant en cianobacteris com en altres grups fotosintètics i s’encarreguen de capturar l’energia lumínica.

Però, perquè hi ha aquesta variabilitat de pigments accessoris? perquè cada pigment té un espectre d’absorció diferent, i al presentar diferents molècules es pot recollir molt millor l’espectre de la llum solar, és a dir, la captació d’energia és molt més eficient.

La resta de bacteris fotosintètics anoxigènics no tenen clorofil·les, i, en el seu lloc, tenen molècules especifiques de procariotes, les bacterioclorofil·les.

Pigment_spectra.png
Espectre d’absorció de diferents pigments (Font: York University)

¿On es situen els pigments?

En organismes amb fotosíntesi oxigénica, els cianobacteris i els eucariotes fotosintètics, els pigments es troben en estructures complexes. En els cianobacteris, en el citoplasma perifèric hi ha una sèrie de sacs aplanats concèntrics denominats tilacoides, els quals només estan rodejats per una membrana. Al lumen tilacoïdal és on es localitzen els pigments. En els eucariotes, en canvi, trobem els cloroplasts: orgànuls intracel·lulars propis dels eucariotes fotosintètics on es realitza la fotosíntesi, que tenen com a mínim dues membranes, encara que poden ser més, i que presenten diversos tilacoides disposats de diferents maneres segons els organismes. Tots dos grups, per tant, realitzen la fotosíntesi oxigénica i tenen tilacoides; la diferencia és que en els eucariotes, els tilacoides es troben a l’interior dels cloroplasts.

Plagiomnium_affine_laminazellen
Cél·lules vegetals en les que són visibles els cloroplasts (Autor: Kristian Peters – Fabelfroh)

En canvi, en organismes amb fotosíntesi anoxigénica hi ha diverses opcions.Les bactèries porpres contenen pigments en cromatòfors, una espècie de vesícules al centre o la perifèria de la cèl·lula. Per una altra banda, en les bactèries verdes (Chlorobi y Chloroflexi) es troben vesícules aplanades a la perifèria de la cèl·lula sobre la membrana plasmàtica on estan les bacterioclorofil·les. En Heliobacterium, el pigment està adossat a la cara interna de la membrana plasmàtica. Generalment no són estructures complexes, i acostumen a presentar membranes simples.

ORIGEN DELS ORGANISMES FOTOSINTÉTICS

L’evidència fòssil dels primers organismes fotosintètics són els estromatòlits (3,2 Ga).Són unes estructures formades per capes fines superposades d’organismes juntament amb els seus depòsits de carbonat càlcic. Aquestes formacions apareixen en zones someres, de mars càlids i ben irradiats. Encara que moltes tenen forma de columna, s’observen desviacions, ja que s’orienten cara al Sol. En el seu moment, van tenir una importància capital en la construcció de formacions d’esculls i, també, en els canvis de composició de l’atmosfera. Actualment hi ha alguns que encara segueixen vius.

1301321830_947d538a4d_o.jpg
Estromatòlits (Autor:Alessandro, Flickr)

REFERÉNCIES

  • Apunts obtinguts en diverses assignatures durant la realització del Grau de Biologia Ambiental (Universitat Autònoma de Barcelona) y el Màster de Biodiversitat (Universitat de Barcelona).
  • Font Quer, P. (1953): Diccionario de Botánica. Editorial Labor, Barcelona.
  • Izco, J., Barreno, E., Brugués, M., Costa, M., Devesa, J. A., Fernández, F., Gallardo, T., Llimona, X., Parada, C., Talavera, S. & Valdés, B. (2004) Botánica 2.ªEdición. McGraw-Hill, pp. 906.
  • Willis, K.J. & McElwain, J.C. (2014) The Evolution of Plants (second edition). Oxford University Press, 424 pp.

Difusió-català

Les plantes i el canvi climàtic

Des de fa uns quants anys hem sentit parlar del canvi climàtic. Avui dia ja és una evidència i també una preocupació. No només ens afecta a nosaltres, als humans, sinó que també a tota la vida. S’ha parlat bastant de l’escalfament global, però potser no s’ha fet tanta transmissió del que succeeix amb la vegetació. Són moltes coses les que es veuen afectades pel canvi climàtic i la vegetació també n’és una d’elles. A més, els canvis produïts en aquesta també ens afecten a nosaltres. Però, quins són aquests canvis?, com els pot regular la vegetació? I, com podem ajudar a mitigar-los a través d’aquesta?

CANVIS EN LA VEGETACIÓ

Distribució dels biomes

En general, degut al canvi climàtic s’espera un increment de les precipitacions a algunes parts del planeta, mentre que en d’altres s’espera un descens. També es denota un increment global de la temperatura. Això comporta un desplaçament en la localització dels biomes, les grans unitats de vegetació (per exemple: selves, boscos tropicals, tundres, etc.).

biomes
Triangle dels biomes segons altitud, latitud i humitat (Imatge de Peter Halasaz).

Per una altra banda, existeix una tendència al augment de la distribució de les espècies en els rangs septentrionals (latituds altes) i un detriment en regions meridionals (latituds baixes). Això porta greus problemes associats; el canvi en la distribució de les espècies afecta a la seva conservació i la seva genètica. En conseqüència, les poblacions situades als marges meridionals, que han estat considerades molt importants per a la conservació a llarg termini de la diversitat genètica i pel seu potencial evolutiu, es veuen en perill per aquesta pèrdua. I, en canvi, els rangs septentrionals es veurien afectats per l’arribada d’altres espècies competidores que podrien desplaçar a les presents, essent doncs invasores.

Distribució de les espècies

Dins l’escenari del canvi climàtic, les espècies tenen una certa capacitat per reajustar la seva distribució i per adaptar-se a aquest.

Però, quin tipus d’espècies podrien estar responent més ràpidament a aquest canvi? Es dedueix que aquelles amb un cicle de vida més ràpid i una capacitat de dispersió major seran les que mostrin una major adaptació i responguin millor. Això podria comportar una pèrdua de les plantes amb ritmes més lents.

Galactites tomentosa
La calcida blanca (Galactites tomentosa) una planta de cicle ràpid i amb gran dispersió (Imatge de Ghislain118).

Un factor que facilita el reajustament en la distribució és la presència de corredors naturals: aquests són parts del territori geogràfic que permeten la connectivitat i desplaçament d’espècies d’un lloc a un altre. Són importants per evitar que aquestes quedis aïllades i puguin desplaçar-se cap a noves regions.

Un altre factor és el gradient altitudinal, aquest proporciona molts refugis per a les espècies, facilita la presència de corredors i permet la redistribució de les espècies en altitud. Per tant, en aquells territoris on hi hagi més rang altitudinal es veurà afavorida la conservació.

En resum, la capacitat de les espècies per fer front al canvi climàtic depèn de les característiques pròpies de l’espècie i les del territori. I, per contra, la vulnerabilitat de les espècies al canvi climàtic es produeix quan la velocitat que aquestes presenten per poder desplaçar la seva distribució o adaptar-se és menor a la velocitat del canvi climàtic.

A nivell intern

El canvi climàtic també afecta a la planta com a organisme, ja que li produeix canvis al seu metabolisme i a la seva fenologia (ritmes periòdics o estacionals de la planta).

Un dels factors que porta a aquest canvi climàtic és l’increment de la concentració de diòxid de carboni (CO2) a l’atmosfera. Això podria produir un fenomen de fertilització de la vegetació. Amb l’augment de COa l’atmosfera s’incrementa també la captació d’aquest per les plantes, augmentat així la fotosíntesi i permetent una major assimilació. Però, no és tot avantatges, perquè per això es produeix una pèrdua d’aigua important, degut a que els estomes (estructura que permeten l’intercanvi de gasos i la transpiració) romanen oberts molt temps per incorporar aquest CO2. Per tant, hi ha efectes contraposats i la fertilització dependrà de la planta en sí, com també del clima local. Molts estudis han demostrat que diverses plantes reaccionen diferent a aquest increment de CO2, ja que el compost afecta a varis processos fisiològics i per tant les respostes no són úniques . Per tant, ens trobem amb un factor que altera el metabolisme de les plantes i que no es pot predir com seran els seus efectes sobre elles. A més, aquest efecte fertilitzat està limitat per la quantitat de nutrients presents i sense ells la producció es frena.

fotosíntesi
Procés de fotosíntesi (Imatge de At09kg).

Per un altre costat, no hem d’oblidar que el canvi climàtic també altera el règim estacional (les estacions de l’any) i que això afecta al ritme de la vegetació, a la seva fenologia. Això pot comportar repercussions inclús a escala global; per exemple, podria produir un desajust en la producció de plantes cultivades per a l’alimentació.

PLANTES COM A REGUALADORES DEL CLIMA

Encara que no es pot parlar de les plantes com a reguladores del clima global, esta clar que hi ha una relació entre el clima i la vegetació. Però, aquesta relació és un tant complicada perquè la vegetació té tan efectes d’escalfament com de refredament del clima.

La vegetació disminueix l’albedo; els colors foscos absorbeixen més la radiació solar i per tant menys llum solar es reflecteix cap al exterior. A més. al ser organismes amb superfície rugosa s’augmenta l’absorció. En conseqüència, si hi ha més vegetació, la temperatura local (calor transferida) augmenta més.

Però, per altra banda, al augmentar la vegetació hi ha més evapotranspiració (conjunt de l’evaporació d’aigua d’una superfície i la transpiració a través de la planta). De manera que el calor es consumeix en passar l’aigua líquida a forma gasosa, el que comporta un refredament. A més, l’evapotranspiració també ajuda augmentar les precipitacions locals.

Biophysical effects of landcover
Efectes biofísics de diferents usos del sòl i la seva acció sobre el clima local (Imatge de Jackson et al. 2008. Environmental Research Letters.3: article 0440066).

Per tant, és un efecte ambigu i en determinats entorns pesa més l’efecte de refredament, mentre que en altres té més rellevància el d’escalfament.

MITIGACIÓ

Avui dia hi ha varies propostes per reduir el canvi climàtic, però com poden ajudar les plantes?

Les comunitats vegetals poden actuar com a embornals, reserves de carboni, ja que a través de l’assimilació de COajuden a compensar les emissions. Un maneig adequat dels ecosistemes agraris i dels boscos pot ajudar a la captació i emmagatzematge del carboni. Per altra banda, si s’aconsegueix reduir la desforestació i augmentar la protecció d’habitats naturals i boscos, es reduirien les emissions i s’estimularia aquest efecte embornal. Tot i així, existeix el risc de que aquests embornals es puguin convertir en fonts d’emissió; per exemple, degut a un incendi.

Finalment, presentar els biocombustibles: aquests, a diferència dels combustibles fòssils (com el petroli), són recursos renovables, ja que es tracta de cultius de plantes destinats al ús de combustible. Encara que no aconsegueixen retirar CO2 de l’atmosfera ni redueixen emissions de carboni, eviten l’increment d’aquest a l’atmosfera. Per aquest motiu no arribarien a ser una tècnica del tot mitigadora, però mantenen el balanç d’emissió i captació neutre. El problema és que poden generar efectes colaterals a nivell social i ambiental, com l’increment de preus d’altres cultius o la desforestació per a instaurar aquests cultius, cosa que no hauria de succeir.

800px-Canaviais_Sao_Paulo_01_2008_06
Cultiu de canya de sucre (Saccharum officinarum) a Brasil per produir biocombustible (Imatge de Mariordo).

Difusió-català

REFERÈNCIES

Las plantas y el cambio climático

Desde hace unos cuantos años hemos oído hablar del cambio climático. Hoy en día ya es una evidencia y también una preocupación. No solo nos afecta a nosotros, a los humanos, sino también a toda la vida. Se ha hablado bastante del calentamiento global, pero quizá no se haya hecho tanta transmisión de lo que sucede con la vegetación. Son muchas cosas las que se ven afectadas por el cambio climático y la vegetación también es una de ellas. Además, los cambios producidos en esta también nos afectan a nosotros. Pero, ¿cuáles son estos cambios?, ¿cómo los puede regular la vegetación? Y, ¿cómo podemos ayudar a mitigarlos a través de esta?

CAMBIOS EN LA VEGETACIÓN

Distribución de los biomas

En general, debido al cambio climático se espera un incremento de las precipitaciones en algunas partes del planeta, mientras que en otras se espera un descenso. También se denota un incremento global de la temperatura. Esto conlleva a un desplazamiento en la localización de los biomas, las grandes unidades de vegetación (por ejemplo: selvas, bosques tropicales, tundras, etc.).

biomes
Triangulo de los biomas según altitud, latitud y humedad (Imagen de Peter Halasaz).

Por otro lado, existe una tendencia al aumento de la distribución de especies en los rangos septentrionales (altas latitudes) y un detrimento en regiones meridionales (baja latitud). Esto conlleva graves problemas asociados; el cambio en la distribución de las especies afecta a su conservación y a su diversidad genética. En consecuencia, las poblaciones situadas en los márgenes meridionales, que han estado consideradas muy importantes para la conservación a largo plazo de la diversidad genética y por su potencial evolutivo, se ven en peligro por esta perdida. Y, en cambio, los rangos septentrionales se verían afectados por la llegada de otras especies competidoras que podrían desplazar a las ya presentes, siendo pues invasoras.

Distribución de las especies

Dentro del escenario del cambio climático, las especies tienen una cierta capacidad para reajustar su distribución y para adaptarse a este.

Pero, ¿qué tipo de especies podrían estar respondiendo más rápidamente a este cambio? Se deduce que aquellas con un ciclo de vida más rápido y una capacidad de dispersión mayor serán las que muestren mayor adaptación y respondan mejor. Esto podría conllevar a una pérdida de las plantas con ritmos más lentos.

Galactites tomentosa
La cardota (Galactites tomentosa) una planta de ciclo rápido y con gran dispersión (Imagen de Ghislain118).

Un factor que facilita el reajuste en la distribución es la presencia de corredores naturales: estos son partes del territorio geográfico que permiten la conectividad y desplazamiento de especies de un lado a otro. Son importantes para evitar que estas queden aisladas y puedan desplazarse hacia nuevas regiones.

Otro factor es el gradiente altitudinal, el cual proporciona muchos refugios para las especies, facilita la presencia de corredores y permite la redistribución de las especies en altitud. Por lo tanto, en aquellos territorios dónde haya mayor rango altitudinal se verá favorecida la conservación.

En resumen, la capacidad de las especies para hacer frente al cambio climático depende de las características propias de la especie y de las del territorio. Y, por el contrario, la vulnerabilidad de las especies al cambio climático se produce cuando la velocidad que estas presentan para poder desplazar su distribución o adaptarse es menor a la velocidad del cambio climático.

A nivel interno

El cambio climático también afecta a la planta como organismo, ya que le produce cambios en su metabolismo y en su fenología (ritmos periódicos o estacionales de la planta).

Uno de los efectos que empujan a este cambio climático es el incremento de la concentración de dióxido de carbono (CO2) en la atmosfera. Esto podría producir un fenómeno de fertilización de la vegetación. Con el aumento de CO2 en la atmosfera se incrementa también la captación de este por las plantas, aumentando así la fotosíntesis y permitiendo una mayor asimilación. Esto, pero, no son todo ventajas, porque para ello se produce una pérdida de agua importante, debido a que los estomas (estructuras que permiten el intercambio de gases y la transpiración) permanecen largo tiempo abiertos para incorporar este CO2. Por lo tanto, hay efectos contrapuestos y la fertilización dependerá de la planta en sí, como también del clima de ese lugar. Muchos estudios han demostrado que diversas plantas reaccionan diferente a este incremento del CO2, ya que el compuesto afecta a varios procesos fisiológicos y por lo tanto las respuestas no son únicas. Por lo tanto, nos encontramos con un factor que altera el metabolismo de las plantas y que no se puede predecir cómo serán sus efectos sobre ellas. Además, este efecto fertilizante está limitado por la cantidad de nutrientes presentes y sin ellos la producción se frena.

fotosíntesi
Proceso de fotosíntesis (Imagen de At09kg).

Por otro lado, no debemos olvidar que el cambio climático también altera el régimen estacional (las estaciones del año) y que esto afecta al ritmo de la vegetación, a su fenología. Esto puede tener repercusiones incluso a escala global; por ejemplo, podría producir un desajuste en la producción de plantas cultivadas para la alimentación.

PLANTAS COMO REGULADORAS DEL CLIMA

Aunque no se puede hablar de las plantas como reguladoras del clima global, está claro que hay una relación entre el clima y la vegetación. Sin embargo, esta relación es un tanto complicada porque la vegetación tiene tanto efectos de enfriamiento como de calentamiento del clima.

La vegetación disminuye el albedo; los colores oscuros absorben más la radiación solar y por lo tanto se refleja menos luz solar hacía el exterior. Además, al ser organismos de superficie rugosa se aumenta la absorción. En consecuencia, cuanta más vegetación, la temperatura local (calor transferido) aumenta más.

Pero, por otro lado, al aumentar la vegetación hay más evapotranspiración (conjunto de la evaporación de agua de una superficie y la transpiración a través de la plantas). De manera que el calor se gasta en pasar el agua líquida a gaseosa, lo que conlleva a un enfriamiento. Además, la evapotranspiración también ayuda aumentar las precipitaciones locales.

Biophysical effects of landcover
Efectos biofísicos de diferentes usos del suelo y su acción sobre el clima local. (Imagen de Jackson et al. 2008. Environmental Research Letters.3: article 0440066).

Por lo tanto es un efecto ambiguo y en determinados ambientes pesa más el efecto de enfriamiento, mientras que en otros tiene más relevancia el de calentamiento.

MITIGACIÓN

Hoy en día hay varias propuestas para reducir el cambio climático, pero ¿cómo pueden ayudar las plantas?

Las comunidades vegetales pueden actuar como sumideros, reservas de carbono, ya que a través de la asimilación de COayudan a compensar las emisiones. Un manejo adecuado de los ecosistemas agrarios y los bosques puede ayudar a la captación y almacenamiento del carbono. Por otro lado, si se lograra reducir la deforestación y aumentar la protección de hábitats naturales y bosques, se reducirían las emisiones y se estimularía este efecto sumidero. Aun así, existe el riesgo de que estos sumideros puedan convertirse en fuentes de emisión; por ejemplo, debido a incendios.

Finalmente, presentar los biocombustibles: estos, a diferencia de los combustibles fósiles (como el petróleo), son recursos renovables, ya que se trata de cultivos de plantas destinados al uso como combustibles. Aunque no logran retirar CO2 de la atmosfera ni reducen emisiones de carbono, evitan el incremento de este en la atmosfera. Por este motivo no llegaría a ser una medida del todo mitigadora, pero mantienen el balance de emisión y captación neutro. El problema es que pueden generar efectos colaterales a nivel social y ambiental, como el incremento de precios de otros cultivos o la deforestación para instaurar estos cultivos, cosa que no debería suceder.

800px-Canaviais_Sao_Paulo_01_2008_06
Cultivo de caña de azucar (Saccharum officinarum) en Brasil para producir biocombustible (Imagen de Mariordo).

Difusió-castellà

REFERENCIAS