Arxiu d'etiquetes: ATP

Biología y vida extraterrestre

Frecuentemente aparecen nuevas noticias sobre planetas de reciente descubrimiento que podrían albergar vida extraterrestre. El avance científico no para de arrojar nueva información sobre Marte, otros mundos con agua y seres vivos extremadamente resistentes, como los tardígrados. ¿Pero podría existir la vida fuera de la Tierra? ¿Qué es la vida? ¿Qué se necesita para que se mantenga? De ello se encarga la astrobiología. ¡Conócela!

ASTROBIOLOGÍA Y EXOBIOLOGÍA

La astrobiología es un conjunto de distintas disciplinas científicas que estudia la existencia de la vida en el universo. Para ello combina conocimientos de biología, física, química, astronomía, ecología, geografía, geología, ciencia planetaria y biología molecular. Dentro de la astrobiología, la exobiología estudia científicamente las posibilidades de vida fuera de nuestro planeta. No hay que confundirla con la ufología, una pseudociencia. La astrobiología intenta responder a preguntas tan apasionantes como:
– ¿Qué es la vida?
– ¿Cómo apareció la vida en la Tierra?
– ¿Cómo evoluciona, se desarrolla la vida y cuál es su adaptabilidad?
– ¿Cuál es el futuro de la vida en la Tierra y otros lugares?
– ¿Existe vida en otros mundos?

No, ni esto es un marciano ni es astrobiología. Fuente: Quo

¿QUÉ ES LA VIDA?

Aunque parezca una pregunta banal, la vida no es fácil de definir. Aparentemente podemos reconocer si los seres están vivos o no si realizan ciertas funciones y poseen ciertas características:

  • Nutrición: obtienen energía del exterior para mantener su medio interno constante (homeostasis).
  • Reproducción: pueden crear copias de sí mismos.
  • Relación: se relaciona con el medio y otros seres vivos.
  • Organización: los seres vivos estan formados por una o más células.
  • Variación: la variabilidad entre individuos permite a las especies evolucionar.

Los problemas empiezan cuando encontramos seres que no cumplen todas las características. El ejemplo más clásico serían los virus: son incapaces de reproducirse por sí mismos y carecen de estructura celular. Otro ejemplo serían los eritrocitos (glóbulos rojos) de mamíferos, células sin  material genético ni mitocondrias.

Microfotografía al microscopio electrónico del virus del Ébola (Foto pública de la CDC)

¿QUÉ SE NECESITA PARA QUE EXISTA VIDA?

Sólo conocemos un tipo de vida: el terrestre. Es por ello que los astrobiólogos necesitan tomarlo como referencia para saber qué buscar en otros lugares. ¿Podrían existir otras formas de vida distintas a las terrestres? Quizá, pero sería casi imposible reconocerlas. Si no sabes qué buscas, puede que lo encuentres pero no te des cuenta.

Se considera que para que aparezca y se desarrolle la vida se necesita:

  • Un líquido dónde tengan lugar reacciones químicas: en la Tierra, es el agua.
  • Un elemento con facilidad para formar compuestos estables: en la Tierra, es el carbono.
  • Una fuente de energía: en la Tierra, es el Sol.

Partiendo de esta base, se buscan planetas o satélites con estas características, aunque no se descartan otras posibilidades como metano líquido (es el caso de Titán, satélite de Saturno), etano, ácido sulfúrico, amoníaco o ácido acético como solvente, o formas de vida basadas en otros elementos como el silicio, una constante en relatos de ciencia-ficción.

Representación artística de los lagos de metano de Titán. Crédito: Steven Hobbs

¿QUÉ SE NECESITA PARA QUE SE MANTENGA LA VIDA?

El cuerpo celeste en cuestión también tiene que cumplir una serie de características para que la vida pueda mantenerse:

  • Abundancia de elementos químicos como el carbono, hidrógeno, oxígeno y nitrógeno para formar compuestos orgánicos.
  • Que el planeta/satélite se encuentre dentro de la zona de habitabilidad de su estrella. Resumidamente, que orbite a una distancia que permita unas temperaturas ni muy altas ni muy bajas.
Zona de habitabilidad (verde) según la temperatura de la estrella. Rojo: demasiado caliente, azul: demasiado frío. Fuente: NASA/Misión Kepler/D. Berry
  • Una fuente de energía suficiente para mantener la temperatura y permitir la formación de moléculas complejas.
  • Una gravedad adecuada para mantener una atmósfera y no aplastar a los seres vivos del planeta.
  • Que el planeta tenga un campo magnético para desviar la radiación incompatible con la vida proveniente de su estrella.
El campo magnético terrestre protege la vida del viento solar. Fuente: ESA

En nuestro Sistema Solar, los candidatos que posiblemente cumplen estas características son Marte, Europa y Ganimedes (satélites de Júpiter), EncéladoTitán (satélites de Saturno) y Tritón (satélite de Neptuno).

¿POR QUÉ EL CARBONO?

Los seres vivos estamos formados por células, y ésta a su vez, si vamos reduciendo la escala, de moléculas y átomos (como toda la materia). ¿Por qué la vida está basada en el carbono?

En realidad, en la constitución de los organismos intervienen 26 elementos, pero el 95% de la materia viva se compone de carbono (C), hidrógeno (H), nitrógeno (N), oxígeno (O), fósforo (P) y azufre (S). Podemos imaginarlos como los “ladrillos de la vida”: combinando estas piezas básicas, podemos obtener organismos complejos. Estos ladrillos pueden unirse a otros mediante enlaces covalentes. Metafóricamente, los átomos los podemos imaginar con esferas con manos los cuales se pueden agarrar a otras manos libres. Por ejemplo, la principal molécula de fuente de energía para todos los seres vivos es el ATP (Adenosín trifosfato, de fórmula C10H16N5O13P3).

enlaces químcos, moléculas, sulphur, phosphorus, hidrogen, oxigen, carbon, nitrogen, chemical bond
Representación esquemática de los átomos de carbono, hidrógeno, oxígeno, nitrógeno y fósforo y sus valencias (enlaces posibles). Producción propia basada en la figura 6.3 de “La vida en el espacio” (ver referencias)

El elemento candidato a sustentar la vida tendría que ser un elemento abundante capaz de formar gran cantidad de enlaces consigo mismo y con otros elementos. De los 5 elementos más abundantes en el universo:

  • Helio: no forma compuestos
  • Hidrógeno y oxígeno: tienen 1 y 2 manos, por lo que sólo pueden formar compuestos muy sencillos.
  • Nitrógeno: puede unirse a 3 átomos, pero no se conocen cadenas de varios átomos de nitrógeno.
  • Carbono: tendría 4 manos, con lo que puede unirse fuertemente con otros carbonos con enlaces simples, dobles, o triples. Esto le permite formar cadenas larguísimas y estructuras tridimensionales y aún le pueden “sobrar” manos con los que unirse a nitrógeno, oxígeno y azufre, fósforo, hidrógeno. Esta versatilidad permite construir moléculas químicamente activas y complejas, justamente la complejidad que hace posible la vida.
estructura química del adn, moléculas
Estructura química del ADN, donde se puede observar la importancia de la capacidad del carbono de formar largas cadenas y anillos. Fuente

¿Podría haber vida en otro lugar basada en un átomo distinto?

ALTERNATIVAS AL CARBONO

EXTRATERRESTRES DE SILICIO

Como establecer 4 enlaces es tan útil, el silicio es el primer candidato por el que apuestan biólogos y escritores de ciencia ficción, aunque no sea tan abundante como el carbono. El silicio (Si) también puede formar 4 enlaces y es abundante en planetas rocosos como la Tierra, pero…

  • El enlace Si-Si es bastante débil. En un medio acuoso, la vida basada en silicio no se mantendría durante mucho tiempo ya que muchos compuestos se disuelven en ella, aunque podría ser posible en otro medio, como nitrógeno líquido (Bains, W.).
  • Es muy reactivo. El silano por ejemplo (equivalente del metano, pero con un átomo de silicio en lugar de carbono) se enciende espontáneamente a temperatura ambiente.
  • Es sólido a la mayoría de temperaturas. Aunque puede formar estructuras con el oxígeno (sílice o dióxido de silicio), el resultado casi siempre es un mineral (cuarzo): demasiado simple y sólo reacciona fundido a 1000ºC.
  • No forma cadenas ni redes consigo mismo, debido a su mayor tamaño respecto el carbono. En ocasiones forma cadenas largas con oxígeno (siliconas), a las que quizá se podrían unir a otros grupos para formar moléculas complejas. Justamente el extraterrestre de la película Alien, el octavo pasajero posee tejidos de silicona. Los seres formados por siliconas serían más resistentes, lo cual lleva a especular qué tipo de condiciones extremas podrían soportar.
Horta, una forma de vida basada en el silicio aparecida en la serie de ciencia ficción Star Trek. Fuente

EXTRATERRESTRES DE NITRÓGENO Y FÓSFORO

Veamos algunas características del nitrógeno y fósforo por separado:

  • Nitrógeno: sólo puede formar 3 enlaces con otras moléculas y es poco reactivo.
  • Fósforo: sus enlaces son débiles y los enlaces múltiples poco comunes, aunque puede formar largas cadenas. El problema es que es demasiado reactivo.

Combinando los dos, se podrían obtener moléculas estables, pero los seres basados en nitrógeno y fósforo tendrían otros problemas: los compuestos de nitrógeno, de los cuales tendrían que alimentarse, no se encuentran en suficiente cantidad en los planetas y el ciclo biológico no sería favorable energéticamente hablando.

EXTRATERRESTRES DE BORO, AZUFRE Y ARSÉNICO

Las bioquímicas más improbables podrían basarse en estos elementos:

  • Boro: puede formar cadenas largas y unirse a otros elementos como el nitrógeno, hidrógeno o carbono
  • Azufre: puede formar cadenas largas, pero por su tamaño es altamente reactivo e inestable.
  • Arsénico: es demasiado grande para formar compuestos estables, aunque sus propiedades químicas son parecidas a las del fósforo.

En 2010, la revista Science publicó un estudio en el que se afirmaba haber descubierto una bacteria (GFAJ-1) capaz de vivir sólo de arsénico, letal para cualquier ser vivo. Rompía el paradigma de la biología al no usar el fósforo (recordad el ATP y la estructura del ADN) y abría nuevas vidas de estudio para la astrobiología. En 2012, dos investigaciones independientes refutaban la teoría de la investigadora Felisa Wolfe-Simon y su equipo. El fósforo sigue siendo esencial para que los organismos puedan vivir y desarrollarse en la Tierra.

La bacteria GFAJ-1. Fuente

Por el momento, estas bioquímicas hipotéticas no son más que especulaciones, por lo que los astrobiólogos siguen buscando vida basada en el carbono, aunque ya sabemos que la ciencia nunca nos deja de sorprender. Aunque pudiéramos identificar vida basada en otros elementos, si algún día encontramos vida extraterrestre (o viceversa) la revolución será tan grande que aunque sea basada en el carbono, dará mucho que hablar.

REFERENCIAS

Mireia Querol Rovira

SaveSaveSaveSaveSaveSave

SaveSaveSaveSave

SaveSave

SaveSave

Biologia i vida extraterrestre

Freqüentment apareixen noves notícies sobre planetes de recent descobriment que podrien albergar vida extraterrestre. L’avenç científic no para de llançar nova informació sobre Mart, altres móns amb aigua i éssers vius extremadament resistents, com els tardígrads. ¿Però podria existir la vida fora de la Terra? Què és la vida? Què es necessita perquè es mantingui? D’això se n’encarrega l’astrobiologia. Coneix-la!

ASTROBIOLOGIA I EXOBIOLOGIA

L’astrobiologia és un conjunt de diferents disciplines científiques que estudia l’existència de la vida a l’univers. Combina coneixements de biologia, física, química, astronomia, ecologia, geografia, geologia, ciència planetària i biologia molecular. Dins de l’astrobiologia, l’exobiologia estudia científicament les possibilitats de vida fora del nostre planeta. Cal no confondre-la amb la ufologia, una pseudociència. L’astrobiologia intenta respondre a preguntes tan apassionants com:
– ¿Què és la vida?
– Com va aparèixer la vida a la Terra?
– Com evoluciona, es desenvolupa la vida i quina és la seva adaptabilitat?
– Quin és el futur de la vida a la Terra i altres llocs?
– Existeix vida en altres móns?

No, ni això és un marcià ni es astrobiologia. Font

QUÈ ÉS LA VIDA?

Encara que sembli una pregunta banal, la vida no és fàcil de definir. Aparentment podem reconèixer si els éssers són vius o no si realitzen certes funcions i posseeixen certes característiques:

  • Nutrició: obtenen energia de l’exterior per mantenir el seu medi intern constant (homeòstasi).
  • Reproducció: poden crear còpies de si mateixos
  • Relació: es relacionen amb el medi i altres éssers vius
  • Organització: els éssers vius estan formats per una o més cèl·lules.
  • Variació: la variabilitat entre individus permet a les espècies evolucionar.

Els problemes comencen quan trobem éssers que no compleixen totes les característiques. L’exemple més clàssic serien els virus: són incapaços de reproduir-se per si mateixos i no tenen estructura cel·lular. Un altre exemple serien els eritròcits (glòbuls vermells) de mamífers, cèl·lules sense material genètic ni mitocondris.

Microfotografia amb microscopi electrònic del virus de l’Èbola (Foto pública de la CDC)

QUÈ ES NECESSITA PER QUE EXISTEIXI VIDA?

Només coneixem un tipus de vida: el terrestre. És per això que els astrobiòlegs necessiten prendre-ho com a referència per saber què buscar en altres llocs. Podrien existir altres formes de vida diferents a les terrestres? Potser, però seria gairebé impossible reconèixer-les. Si no saps què busques, pot ser que ho trobis però no te n’adonis.

Es considera que perquè aparegui i es desenvolupi la vida es necessita:

  • Un líquid on tinguin lloc reaccions químiques: a la Terra, és l’aigua.
  • Un element amb facilitat per formar compostos estables: a la Terra, és el carboni.
  • Una font d’energia: a la Terra, és el Sol.

Partint d’aquesta base, es busquen planetes o satèl·lits amb aquestes característiques, tot i que no es descarten altres possibilitats com metà líquid (és el cas de Tità, satèl·lit de Saturn), età, àcid sulfúric, amoníac o àcid acètic com a solvent, o formes de vida basades en altres elements com el silici, una constant en relats de ciència-ficció.

Representació artística dels llacs de metà de Tità. Crèdit: Steven Hobbs

QUÈ ES NECESSITA PERQUÈ ES MANTINGUI LA VIDA?

El cos celest en qüestió també ha de complir una sèrie de característiques perquè la vida es pugui mantenir:

  • Abundància d’elements químics com el carboni, hidrogen, oxigen i nitrogen per formar compostos orgànics.
  • Que el planeta/satèl·lit es trobi dins de la zona d’habitabilitat de la seva estrella. Resumidament, que orbiti a una distància que permeti unes temperatures ni molt altes ni molt baixes.
Zona d’habitabilitat (verd) segons la temperatura de l’estrella. Vermell: massa calenta, blau: massa fred. Font: NASA / Missió Kepler / D. Berry 
  • Una font d’energia suficient per mantenir la temperatura i permetre la formació de molècules complexes.
  • Una gravetat adequada per mantenir una atmosfera i no aixafar als éssers vius del planeta
  • Que el planeta tingui un camp magnètic per desviar la radiació incompatible amb la vida provinent de la seva estrella.
El camp magnètic terrestre protegeix la vida del vent solar. Font: ESA

 En el nostre Sistema Solar, els candidats que possiblement compleixen aquestes característiques són Mart, Europa i Ganimedes  (satèl·lits de Júpiter), Encèlad i Tità (satèl·lits de Saturn) i Tritó (satèl·lit de Neptú).

PER QUÈ EL CARRBONI?

Els éssers vius estem formats per cèl·lules, i aquestaes al seu torn, si anem reduint la escala, de molècules i àtoms (com tota la matèria). Per què la vida està basada en el carboni?

En realitat, en la constitució dels organismes intervenen 26 elements, però el 95% de la matèria viva es compon de carboni (C), hidrogen (H), nitrogen (N), oxigen (O), fòsfor (P) i sofre (S). Podem imaginar-los com els “maons de la vida”: combinant aquestes peces bàsiques, podem obtenir organismes complexos. Aquests maons poden unir-se a altres mitjançant enllaços covalents. Metafòricament, els àtoms els podem imaginar com esferes amb mans els quals es poden agafar a altres mans lliures. Per exemple, la principal molècula de font d’energia per a tots els éssers vius és l’ATP (trifosfat d’adenosina), de fórmula C10H16N5O13P3.

 

enlaces químcos, moléculas, sulphur, phosphorus, hidrogen, oxigen, carbon, nitrogen, chemical bond
Representació esquemàtica dels àtoms de carboni, hidrogen,oxigen, nitrogen, fòsfor i les seves valències (enllaços possibles). Producció pròpia basada en la figura 6.3 de “La vida en el espacio” (veure referències)

 

L’element candidat a sustentar la vida hauria de ser un element abundant, capaç de formar gran quantita td’enllaços am si mateix i amb altres elements. Dels 5 elements més abundants a l’univers:

  • Heli:  no forma compostos.
  • Hidrogen i oxigen: tenen 1 i 2 mans, de manera que només poden formar compostos molt senzills.
  • Nitrogen: pot unir-se a 3 àtoms, però no es coneixen cadenes de diversos àtoms de nitrogen.
  • Carboni: té 4 mans, per la qual cosa pot unir-se fortament amb altres carbonis amb enllaços simples, dobles, o triples. Això li permet formar cadenes llarguíssimes i estructures tridimensionals i encara li poden “sobrar” mans amb les quals unir-se a nitrogen, oxige, sofre, fòsfor i hidrogen. Aquesta versatilitat permet construir molècules químicament actives i complexes, justament la complexitat que fa possible la vida.
estructura química de l'ADN, molècules
Estructura química de l’ADN, on es pot observar la importància de la capacitat del carboni de formar llargues cadenes i anells. Font

Podria haver vida en un altre lloc basada en un àtom diferent?

ALTERNATIVES AL CARBONI

EXTRATERRESTRES DE SILICI

Com establir 4 enllaços és tan útil, el silici és el primer candidat pel qual aposten astrobiòlegs i escriptors de ciència ficció, encara que no sigui tan abundant com el carboni. El silici (Si) també pot formar 4 enllaços i és abundant en planetes rocosos com la Terra, però…

  • L’enllaç Si-Si és bastant feble. En un medi aquós, la vida basada en silici no es mantindria durant molt de temps ja que molts compostos es dissolen en ella, encara que podria ser possible en un altre mitjà, com nitrogen líquid (Bains, W.).
  • És molt reactiu. El silà per exemple (equivalent del metà, però enlloc de carboni amb un àtom de silici) crema espontàniament a temperatura ambient.
  • És sòlid a la majoria de temperatures. Forma molt fàcilment estructures amb l’oxigen (sílice o diòxid de silici), però el resultat gairebé sempre és un mineral (quars): massa simple i només reacciona fos a 1000ºC.
  • No forma cadenes ni xarxes amb si mateix, per la seva major grandària respecte el carboni. De vegades forma cadenes llargues amb oxigen (silicones), a les que potser es podrien unir a altres grups per formar molècules complexes. Justament l’extraterrestre de la pel·lícula Alien, el vuitè passatger posseeix teixits de silicona. Els éssers formats per silicones serien més resistents, la qual cosa porta a especular quin tipus de condicions extremes podrien suportar.
Horta, una forma de vida basada en el silici apareguda a la sèrie de ciència ficció Star Trek. Font

EXTRATERRESTRES DE NITROGEN I FÒSFOR

Vegem algunes característiques del nitrogen i fòsfor per separat:

  • Nitrogen: només pot formar 3 enllaços amb altres molècules i és poc reactiu.
  • Fòsfor:  els seus enllaços són febles i els enllaços múltiples poc comuns, encara que pot formar llargues cadenes. El problema és que és massa reactiu.

Combinant els dos, es podrien obtenir molècules estables, però els éssers basats en nitrogen i fòsfor tindrien altres problemes: els compostos de nitrogen, dels quals haurien d’alimentar-se, no es troben en suficient quantitat en els planetes i el cicle biològic no seria favorable energèticament parlant.

EXTRATERRESTRES DE BOR, SOFRE I ARSÈNIC

Les bioquímiques més improbables podrien basar-se en aquests elements:

  • Bor: pot formar cadenes llargues i unir-se a altres elements com el nitrogen, hidrogen o carboni.
  • Sofre: pot formar cadenes llargues, però per la seva grandària és altament reactiu i inestable.
  • Arsènic: és massa gran pa ra formar compostos estables, tot i que les seves propietats químiques són semblants a les del fòsfor.

El 2010, la revista Science va publicar un estudi en el qual s’afirmava haver descobert un bacteri (GFAJ-1) capaç de viure només d’arsènic, letal per a qualsevol ésser viu. Trencava el paradigma de la biologia en no fer servir el fòsfor (recordeu l’ATP i l’estructura de l’ADN) i obria noves vides d’estudi per a l’astrobiologia. El 2012, dues investigacions independents refutaven la teoria de la investigadora Felisa Wolfe-Simon i el seu equip. El fòsfor segueix sent essencial perquè els organismes puguin viure i desenvolupar-se en la Terra.

El bacteri GFAJ-1. Font

De moment, aquestes bioquímiques hipotètiques no són més que especulacions, de manera que els astrobiòlegs continuen buscant vida basada en el carboni, encara que ja sabem que la ciència mai ens deixa de sorprendre. Encara que poguéssim identificar vida basada en altres elements, si algun dia trobem vida extraterrestre (o viceversa) la revolució serà tan gran que encara que sigui basada en el carboni, donarà molt que parlar.

REFERÈNCIES

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

Bioluminescence: shining light

Some of the most commented images of landscapes are the known as “seas of stars” of Jervis Bay (Australia) or the caves of stars in New Zealand. Places that glow in the dark. Is it a photomontage? In fact, it is a natural process whereby organisms that have the ability to shine with their own light.

fig1
A fascinating sea of stars in Jervis Bay (image: maxres) B. Waitomo Glowworms cave in New Zealand (image: Forevergone).

WHAT IS BIOLUMINESCENCE?

Although it seems a magical landscape of a fairy tale, this is not a magical process. The bioluminescence is a type of chemiluminescence (chemical production process of light) by which living organisms are capable of producing light. It must not be confused with fluorescence. The latter is characterized by the reception of aphoton of the medium which then is sent, while the bioluminescence is the production of lightby the same body.

Species of all kingdoms have this capability: bacteria, fungi, fish, insects etc. It is estimatedthat 90% of the species that live in the deepest regions of the ocean are capable ofproducing light. Marc Arenas talks about these fascinating organisms in his two articles “Voyage to thebottom os the deep sea I and II“. At ground level this number drops, yet we all know thecase of fireflies (family Lampyridae) and bioluminescent fungi (genus Amarillia, Mycena…).

mycena chlorophos_national geographic
Firefly (Fam Lampyridae) and fungus Mycena chlorophos. (Image: National Geographic)

The bioluminescence reaction is an oxidation that produces no heat. The organisms present a protein known as Luciferine which by the action of an enzyme luciferase, it is oxidized. In the next image we see a simple representation of this reaction. The luciferase allows Luciferine protein join to the oxygen. The resulting energy of this oxidation is emitted as light. To carry out this process organisms have to spend energy, consuming ATP (energy molecule used for the functioning of the cells).

bioluminescence-luciferin
The bioluminescence scheme (Image: the HuffPostworks)

There are two different types of bioluminescence: intracellular (the chemical reaction occurs in specialized bodies) and extracellular (molecules are synthesized in the body and are then expelled to the outside where the reaction occurs). In the case of the intracellular, we can find those organisms that synthesize the necessary molecules or those that have a symbiotic relationship with luminescent bacteria.

BIOLUMINESCENCE FUNCTIONS

As we have said, the majority of organisms that have the ability to synthesize its own light live in dark places (caves, deep ocean…). These creatures have had to adapt to these harsh conditions. The bioluminescence is used for a wide variety of situations.

    • Intraspecific communication. Used for communication between organisms of the same species, e.g. for mating. In the article “How do insects communicate?” Irene tells of the different methods used, including bioluminescence, used by the fireflies.
    • Defense. There are certain living organisms that being disturbed or attacked produce light intracellularly or extracellularly to scare away the predator. A very interesting example is Vampire squid (Vampyrotethis infernalis) that spits out a bioluminescent mucus to fool predators.
    • Attracting the prey. Certain organisms possess organs producing light that attract their prey. As for example the belonging to the genus Lophiiformes.
    • Camouflage. In certain cases the bioluminescence is used for camouflage in the shadows of the ocean, it would be the case of lantershark.

BIOLUMINESCENCE IN MICROORGANISMS

Many microorganisms have the ability to produce their own light, and their intentions are not very different from the of higher organisms. In certain cases, the bioluminescence is used as a method of detoxification of the oxygen, i.e., a simple way to remove the excess oxygen. In others, used as a method of communication.

Some dinoflagellates, such as  Pyrodinium bahamense, have the ability to produce light when environmental conditions have been very favourable and its population has undergone exponential growth. At that time, when the water is moved the light reaction occurs as it would be the case of the famous beaches of stars.
fig_1a
Overgrowth of dinoflagellates which produce bioluminescence in the sea. (Image: Ies Rey Pelayo)
In the specialized organs of certain animals are strains of bacteria such as Vibrio fischeri or Photobacterium. These microorganisms receive nutrients from the animals and as a result of their metabolic activity,  produce light.
fischeri
Image of the Hawaiian squid (Euprymna scolopes) and magnification of its light organ. Inside it, we can see bioluminescent bacteria Vibrio fischeri. (Image: Eric Stabb)
In many cases, the production of bacterial light is conditioned with population density, i.e. only produces light when there are many bacteria. This system of regulation is called quorum sensing.  But, what is it?

 QUORUM SENSING

Microorganisms release inducing substances (favor a process) to the environment. When the concentration of these substances is very large due to a high population density, activate certain processes regulated genetically, as it would be the case of the bioluminescence.
This is a form of communication among microorganisms, since many processes depend on population density. In the case of Vibrio Fischeri, this only produces light when the population density has reached a certain size. When inducing molecules come in contact with bacteria, begins a genetic process that regulates the production of the enzyme luciferase and, therefore, the bioluminescence.
luxI picture
Image of the bioluminescence simplified genetic process regulated by quorum sensing. (Image: Cornell Institute for Biology teachers).

BIOTECHNOLOGY AND BIOLUMINESCENCE

Biomimicry, science uses nature as a source of inspiration to create technologies that solve human problems, it has the adaptation of these mechanisms of lighting as next frontier. Do you imagine to replace the streetlights by bioluminescent trees?
Currently it is not possible yet, but there are large companies that focus their efforts on changing cities electricity by cheaper and renewable energy. Through the genetic modification of plants, it would introduce the gene responsible for the bioluminescence and these plants would be capable of producing light.
Trees
Recreation of the lighting of the future with bioluminescent plants. (Image: iluminet)
This form of energy, apart from reducing energy costs and pollution, is quick and simple to maintain. Only through a nutrient-rich gel and a colony of Vibrio fischeri could have a brilliant and continuous lighting. Is this the new way of lighting in our cities?

 ·

Nature is majestic and continues to give us lessons, you just have to learn to observe.

REFERENCES

  • Brock, biología de los microorganismos. Michael T, Madigan. Ed. Pearson. (Spanish)
  • Ocean Today. NOAA.
  • The bioluminescence Web Page.
  • Cover Photo: Andy Hutchinson

Maribel-anglès

Bioluminiscencia: brillando con luz propia

Algunas de las imágenes de paisajes más comentadas son las conocidos como “mares de estrellas” de Jervis Bay (Australia) o las cuevas de estrellas (Nueva Zelanda). Lugares que brillan en la oscuridad. ¿Es un fotomontaje? No, en realidad se trata de un proceso natural por el que los organismos brillan con luz propia. 

fig1
A. Imagen de Jervis Bay (Foto: maxres) B. Imagen de Waitomo Glowworms cave en Nueva Zelanda (Foto: Forevergone).

LA BIOLUMINISCENCIA

Aunque así lo parezca, este no es un proceso mágico. La bioluminiscencia es un tipo de quimioluminiscencia (proceso químico de producción de luz) por el cual los organismos vivos son capaces de producir luz. A diferencia de la fluorescencia, la bioluminiscencia es propia de los organismos, es decir, son ellos mismos quién la producen.

Muchas especies, sobre todo marinas, presentan esta capacidad. Se estima que un 90% de las especies que habitan en las regiones más profundas del océano son capaces de producir luz. Marc Arenas habla sobre estos fascinantes organismos en sus dos articulos de viaje a las produndidades I y II.  A nivel terrestre este número desciende, aún así todos conocemos el caso de las luciérnagas (família Lampyridae) y los hongos bioluminiscentes (género Amarillia, Mycena…).

mycena chlorophos_national geographic
Luciérnaga (Fam Lampyridae) y hongos Mycena chlorophos. (Imagen: National Geographic)

La reacción de bioluminiscencia es una oxidación acalorífica, es decir, que no produce calor. Los organismos presentan una proteína conocida como Luciferina que mediante la acción de una enzima Luciferasa se oxida. En la imagen siguiente podemos ver una representación sencilla de esta reacción. La luciferasa permite que la proteína luciferina se una al oxigeno. La energía resultante de esta oxidación se da en forma de luz. Llevar a cabo este proceso tiene un coste para los organismos, ya que se consume ATP (molécula energética utilizada para el funcionamiento de las células).

bioluminescence-luciferin
Esquema de la bioluminiscencia (Imagen: the HuffPostworks)

Existen dos tipos diferentes de bioluminiscencia: intracelular (la reacción química se da en órganos especializados conocidos como fototrofos) y extracelular (las moléculas se sintetizan en el organismo y luego son expulsadas hacia el exterior donde se da la reacción). En el caso de la intracelular podemos encontrar aquellos organismos que sintetizan las moléculas necesarias o aquellos que mantienen una relación simbiótica con bacterias luminiscentes.

¿PARA QUÉ SIRVE LA BIOLUMINISCENCIA?

Como hemos dicho, la mayoría de organismos que presentan la capacidad de sintetizar luz propia viven en lugares oscuros (cuevas, el fondo oceánico…). Estas criaturas se han tenido que adaptar a estas duras condiciones. La bioluminiscencia se utiliza para una gran variedad de situaciones.

  • Comunicación intraespecífica. Se utiliza para la comunicación entre organismos de la misma especie, por ejemplo para el apareamiento. En el articulo “¿Como se comunican los insectos? ” Irene nos habla de los diferentes métodos que utilizan, entre ellos la bioluminiscencia utilizada por las luciérnagas.
  • Defensa. Hay ciertos organismos que al verse perturbados o atacados producen luz intracelularmente o extracelularmente para espantar al depredador. Un ejemplo muy interesante es el Calamar vampiro (Vampyroteuthis infernalis) que escupe un moco bioluminiscente para despistar a sus depredadores.
  • Atracción de la presa. Ciertos organismos poseen órganos productores de luz que atraen a sus presas. Como por ejemplo los pertenecientes al género Lophiiformes.
  • Camuflaje. En ciertos casos la bioluminiscencia se utiliza para camuflarse en las sombras del océano, como seria el caso de los Peces hacha.

BIOLUMINISCENCIA EN LOS MICROORGANISMOS

Muchos microorganismos tienen la capacidad de producir luz propia y sus intenciones no son muy diferentes a la de los organismos superiores. En ciertos casos, la bioluminiscencia es utilizada como método de detoxificación del oxigeno, es decir, una mera forma de eliminar el oxigeno sobrante. En otros, se utiliza como método de comunicación.

Algunos dinoflagelados, como por ejemplo Pyrodinium bahamense, tienen la capacidad de producir luz cuando las condiciones ambientales han sido muy favorables y su población ha sufrido un crecimiento exponencial. En ese momento, cuando el agua es movida se produce la reacción luminosa, como seria el caso de las famosas playas de estrellas.

fig_1a
Crecimiento excesivo de dinoflagelados que producen bioluminiscencia en la orilla del mar. (Imagen: Ies Rey Pelayo)

En los órganos especializados de ciertos animales encontramos cepas bacterianas como Vibrio fischeri o Photobacterium. Estos organismos reciben nutrientes del organismo superior y como resultado de su actividad metabólica producen luz.

fischeri
Imagen del Calamar hawaiano (Euprymna scolopes) y ampliación de su órgano luminoso. En el interior podemos observar bacterias Vibrio fischeri bioluminiscentes. (Imagen: Eric Stabb)

En muchos casos, la producción de luz bacteriana está condicionada por la densidad poblacional, es decir, solo se produce luz cuando hay muchas bacterias. Ese sistema de regulación se denomina quorum sensing o percepción de quorum. ¿De que se trata?

QUORUM SENSING

En la percepción de quorum, los microorganismos liberan al medio substancias autoinductoras (favorecen un determinado proceso). Cuando la concentración de estas substancias es muy grande debido a una gran densidad poblacional, se activan ciertos procesos regulados genéticamente, como seria el caso de la bioluminiscencia.

Esta es una forma de comunicación entre los microorganismos, ya que muchos procesos dependen de la densidad poblacional. En el caso de Vibrio fischeri, ésta solo produce luz cuando la densidad poblacional ha llegado a un determinado tamaño. Cuando las moléculas autoinductoras se ponen en contacto con las bacterias, se inicia un proceso genético que regula la producción de la enzima luciferasa y, por tanto, la bioluminiscencia.

luxI picture
Imagen del proceso genético simplificado de la bioluminiscencia depediente del quorum. (Imagen: Cornell Institute for Biology teachers).

BIOTECNOLOGIA Y BIOLUMINISCENCIA

La biomimética, ciencia que utiliza a la naturaleza como fuente de inspiración para crear tecnologías que resuelvan problemas humanos, tiene como próxima frontera la adaptación de estos mecanismos de iluminación. ¿Imagináis substituir las farolas por arboles bioluminiscentes? Actualmente no es posible aún, pero existen grandes empresas que centran sus esfuerzos en cambiar la electricidad de las ciudades por energías más baratas y renovables. Mediante la modificación genética de las plantas, se introduciría el gen responsable de la bioluminiscencia y estas plantas serían capaces de producir luz.

Trees
Recreación da la iluminación del futuro con plantas bioluminiscentes. (Imagen: iluminet)

Esta forma de energía, aparte de reducir el gasto energético y la contaminación, es rápida y sencilla de mantener. Solo mediante un gel rico en nutrientes y una colonia de Vibrio fischeri podríamos tener una iluminación brillante y continua. ¿Será entonces esta la nueva forma de iluminación de nuestras ciudades?

·

La naturaleza es majestuosa y sigue dándonos lecciones, sólo hay que aprender a observar. 

REFERENCIAS

  • Brock, biología de los microorganismos. Michael T, Madigan. Ed. Pearson.
  • Ocean Today. NOAA. (Inglés)
  • The bioluminescence Web Page. (Inglés)
  • Imagen portada: Andy Hutchinson

Maribel-castellà

 

Bioluminescència: brillant amb llum pròpia

Des de fa temps, unes de les imatges més comentades i fascinants són les que mostren paisatges coneguts com a “Mars d’estrelles” a Jervis Bay (Australia) o les “coves estrellades” a Nova Zelanda. Milers de llumets brillant a la més fosca obscuritat. Es tracta d’un fotomuntatje? No, en realitat es tracta d’un procés natural pel qual els organismes brillen amb llum pròpia. 

fig1
A. Mar d’estrelles a Jervis Bay (Imatge: maxres) B. Waitomo Glowworms cave a Nueva Zelanda (imatge: Forevergone).

LA BIOLUMINESCÈNCIA

Aquest procés, tot i parèixer sortir d’un conte de fades, és un procés químic pel qual els organismes vius tenen la capacitat de fer llum. Es tracta d’un tipus de quimioluminescència. Cal destacar, però, que a diferència de la fluorescència, la bioluminescència és pròpia dels organismes vius, és a dir, són ells mateixos qui creen la llum.

Moltes espècies, sobretot marines, presenten aquesta capacitat. Es creu que un 90% de les espècies que habiten regions abissals tenen la capacitat de produir llum. El nostre company Marc Arenas parla d’aquests organismes de les grans profunditats als seus articles “Viatge a les profunditats I i II“. En l’àmbit terrestre el nombre d’organismes bioluminescents descendeix, però tot i així tots coneixem les cuques de llum (Fam Lampyridae) i els fongs bioluminescents (gènere Amarillia, Mycena…).

mycena chlorophos_national geographic
Cuca de LLum (Fam Lampyridae) i Fong Mycena chlorophos. (Imatge: National Geographic)

La reacció de bioluminescència és una oxidació acalorífica, és a dir, que no produeix calor. Els organismes presenten una proteïna coneguda com a Luciferina que mitjançant l’acció de l’enzim luciferasa s’oxida en presència d’oxigen. A la imatge inferior podem observar aquest procés de manera molt senzilla. L’enzim permet que les molècules d’oxigen s’uneixin a la luciferina. L’energia resultant es dóna en forma lumínica. Per dur a terme aquesta reacció es necessita un cost energètic en forma d’ATP (molècula energètica que utilitzen les cèl·lules).

bioluminescence-luciferin
Esquema de la bioluminescència (Imatge: the HuffPostworks)

Existeixen dos tipus diferents de bioluminescència: intracel·lular (la reacció es dóna en òrgans especialitzats) i extracel·lular (les molècules es sintetitzen a l’organisme però s’alliberen a l’exterior perquè es mesclin i es produeixi la reacció). En el cas de la intracel·lular podem trobar aquells organismes que tenen la capacitat de sintetitzar la luciferina o aquells que mantenen una relació simbiòtica amb bacteris bioluminescents.

FUNCIONS DE LA BIOLUMINESCÈNCIA

Més enrera hem comentat que la majoria d’organismes que tenen la capacitat de fer llum pròpia viuen en llocs molt foscos (fons dels oceans, coves…). Per aquests organismes, la bioluminescència és emprada en moltes situacions:

  • Comunicació intraespecífica. S’utilitza per comunicar-se entre organismes de la mateixa espècie, com per exemple per la selecció de parella reproductiva. A l’article “Com es comuniquen els insectes?”, la meva companya Irene parla dels diferents mètodes utilitzats, entre ells la bioluminescència de les cuques de llum.
  • Defensa. Hi ha certs organismes que quan es veuen pertorbats o atacats produeixen llum per fer fora al depredador. Un exemple molt interessant és el del Calamar vampir (Vampyroteuthis infernalis) que escup una espècie de moc bioluminescent per despistar als depredadors.
  • Atracció de les preses. Alguns tenen òrgans productors de llum que criden l’atenció  a les preses cap a ells, com per exemple els peixes del gènere Lopiiformes.
  • Camuflatge. En certs casos, la bioluminescència s’utilitza per camuflar-se a les llums i ombres del oceà, com seria el cas del tauró de l’espècie Etmopterus pusillus.

BIOLUMINESCÈNCIA I MICROORGANISMES

La capacitat de produir llum és característica que apareix a quasi tots els regnes. També existeixen una gran varietat de microorganismes que presenten les molècules necessàries per dur a terme la reacció. Les funcions de la bioluminescència en els microorganismes són generalment per la comunicació i com a resultat de l’eliminació de l’oxigen sobrant (detoxificació).

Alguns dinoflagelats, com per exemple Pyrodinium bahamense, tenen la capacitat de produir llum quan les condicions ambientals han estat molt favorables i la seva població ha sofert un creixement exponencial. En aquest moment, quan l’aigua es mou es produeix la reacció lluminosa, com en el cas dels “Mars d’estrelles”.

fig_1a
Bioluminescència resultat del creixement excessiu de dinoflagelats (Imatge: Ies Rey Pelayo)

En els òrgans especialitzats de certs animals, trobem algunes espècies bacterianes com Vibrio fischeri o Photobacterium. Aquests microorganismes reben nutrients i protecció dels animals i com a resultat del seu metabolisme es produeix la reacció lumínica.

fischeri
Imatge del calamar Hawaià (Euprymna scolopes) i ampliació del seu òrgan lluminós. Al seu interior trobem Vibrio fischeri bioluminescent. (Imatge: Eric Stabb)

En molts casos, la producció de llum per part dels microorganismes està condicionada per la densitat poblacional d’aquests, és a dir, només es produeix llum quan hi ha molts microorganismes junts. Aquest sistema de regulació es coneix com percepció de quòrum o quorum sensing. En què consisteix?

QUORUM SENSING

Els microorganismes alliberen al medi una substància autoinductora (afavoreixen un determinat procés). Quan la concentració d’aquestes substàncies és molt gran, a causa  que hi ha una gran concentració de microorganismes junts, s’activen certs processos com la bioluminescència.

Aquesta és forma de comunicació entre els microorganismes, ja que molts processos depenen de la densitat poblacional. En el cas de Vibrio fischeri, aquesta només pot produir llum quan la densitat poblacional ha arribat a una mida determinada. Quan les molècules autoinductores es posen en contacte amb les parets bacterianes, s’inicia un procés genètic que regula la producció de l’enzim luciferasa i, per tant, la bioluminescència.

luxI picture
Esquema simplificat de la regulació genètica de bioluminescència dependent del quòrum (Imatge: Cornell Institute for Biology teachers).

BIOTECNOLOGIA I BIOLUMINESCÈNCIA

La biomimètica, ciència que utilitza la naturalesa com a font d’inspiració tecnològica, té com a pròxima frontera l’adaptació d’aquest procés d’il·luminació. Imagineu que es puguin substituir els fanals del carrer per arbres bioluminescents? Actualment no és possible, però existeixen grans empreses que intenten canviar l’electricitat de les grans ciutats per energies menys costoses i renovables. Mitjançant la modificació genètica podríem obtenir plantes amb la capacitat de produir llum per elles mateixes. Ciutats més verdes i sostenibles.

Trees
Recreació de la iluminació del futur amb plantes bioluminescents. (Imatge: iluminet)

Aquesta forma d’il·luminació, a part de reduir el cost energètic i la contaminació, és ràpida i fàcil de mantenir. Basta amb un gel ric en nutrients i una colònia de Vibrio fischeri per tenir una il·luminació brillant i continua. Estem parlant, doncs, d’una possible solució a la contaminació lumínica de les nostres ciutats?

·

La naturalesa és molt sàvia i ens segueix ensenyant coses, només cal aprendre a observar.

REFERÈNCIES

  • Brock, biología de los microorganismos. Michael T, Madigan. Ed. Pearson. (castellà)
  • Ocean Today. NOAA. (Anglès)
  • The bioluminescence Web Page. (Anglès)
  • Imatge portada: Andy Hutchinson.Maribel-català