Arxiu d'etiquetes: bacteri

Microbiologia Bàsica (I): un món invisible

Anton van Leeuwenhoek va afirmar, el 7 de Setembre de 1674, haver observat uns animálculs en una petita gota d’aigua. A què es referia amb aquest concepte? En molts dels nostres articles n’hi farem referència. Així que, no ho dubtis, segueix llegint i descobreix aquest fascinant món invisible. 

EL MÓN MICROSCÒPIC

“Aquests animálculs són imperceptibles a simple vista i abunden de manera que l’aigua pareix estar viva”. Aquestes paraules foren les emprades per Anton van Leeuwenhoek per descriure el món microscòpic que acabava de descobrir. Amb un rudimentari microscopi va descriure els primers microorganismes procariotes. Cal destacar que Robert Hooke ja havia descrit algunes hifes microscòpiques.

o_Leeuwenhoek
Dibuixos de Leeuwenhoek sobre els seus animálculs. (Imatge: Miguel Vicente, Madrimasd).

El terme microorganisme fa referència a un grup d’organismes molt heterogeni que tenen en comú una mida tan petita que no es poden veure a simple vista (només amb instruments adients com els microscopis). Aquests poden ser procariotes (bacteris), eucariotes (protozous, algues, fongs…) i estructures biològiques acel·lulars com els virus. Aquests organismes es mesuren mitjançant submúltiples del metre, concretament el micròmetre (mil·lèssima part d’un mil·límetre) o el nanòmetre (milionèssima part d’un mil·límetre).

mc3baltiplos-delmetro
Taula dels submúltiples del metre (Imatge: Parque Ciencia).

Aquesta mida microscòpica té els seus avantatges gràcies a  l’elevada relació superfície/volum. Aquest factor té un important efecte en la biologia d’aquests organismes. Per exemple, les cèl·lules més petites tenen una major capacitat de divisió i creixen més ràpidament. Per altra banda, aquesta mida afavoreix a l’evolució més ràpida dels organismes, ja que la seva freqüència de mutació és més gran. També tenen una major capacitat d’adaptació al medi, ja que presenten un intercanvi de nutrients més ràpid que altres cèl·lules més grans.

En aquest article, analitzem les diferents mides dels organismes que podem trobar en aquest grup tan gran. A la imatge que es troba a continuació, trobem una comparativa senzilla i molt interessant.

tamaño
Escala de tamany de diferents microorganismes i cèl·lules. (Foto: Isabel Etayo).

BACTERIS

Aquest grup es caracteritza per presentar mides compreses entre els 0,2 i més de 700 μm. Cal recordar que els bacteris presenten morfologies molt variades i per tant, alguns es mesuren en funció del diàmetre i d’altres en funció de la longitud. La mida d’un procariota estàndard es d’entre 0,5 i 4 μm. Escherichia coli, model d’estudi, presenta una longitud de 2 μm, així doncs, en un espai tan petit com el punt  final d’aquesta oració, hi trobaríem unes 500 E.coli.

universidad_granada
Esquema comparatiu de la mida de diferents bacteris. (Imatge: Universidad de Granada).

El bacteri més gran conegut fins al moment és Thiomargarita namibiensis. Va ser descoberta l’any 1999 a Namíbia i presenta un diàmetre de 750 μm, fet que la fa visible a simple vista (ja que el límit de visió humana és de 0,1 mm). Generalment aquests microorganismes tenen mides tan grans com a mecanisme per l’acumulació de nutrients, en aquest cas sofre. Un altre exemple molt interessant és Epilopiscium fishelsoni amb una mida de 600 μm de longitud. A la part dreta de la imatge següent, podem veure la comparació entre una E.coli i Epulopiscium.

t-nami
A. Imatge de Thiomargarita namibiensis, aproximadament uns 750 micrómetres. B. Comparació entre Epulopiscium fishelsoni i E.coli. (Fotos: Science Policy)

Podríem creure que tenir una mida microscòpica només pot tenir avantatges, però òbviament ha d’existir un límit de mida (en el cas dels bacteris es tracta de 0,15 μm). Un dels bacteris més petits és Mycoplasma pneumoniae amb un diàmetre de 0,2μm. Si seguim amb l’exemple del pun final, en el seu diàmetre d’1 mm podríem trobar 5000 bacteris de la mida de Mycoplasma pneumoniae.

VIRUS

En general, aquestes formes acel·lulars presenten mides molt més petites que els bacteris i es mesuren en nanòmetres. Solen tenir una mida entre els 20 i 300 nm. Per tant, els virus són gairebé 100 vegades més petits que E.coli, per exemple.

fig1
Comparació de les mides de diferents virus i E.coli. (Imatge: Diversidad microbiana)

El virus més gran que es coneix pertany a la família dels Mimivirus. Aquests presenten de mitjana un diàmetre de 600 nm, és a dir, 0,6 μm (són més grans que els bacteris més petites). A la imatge inferior, podem observar una comparativa entre la grandària d’un Mimivirus i Rickettsia conorii (bacteri que provoca la febre botonosa del mediterrani als humans).

mimi-conorii
Comparació entre Mimivirus i Rickettsia conorii. (Imatge: Bytes Size Biology)

Alguns virus, com el de la Polio, tenen una mida molt petita (uns 20 nm). Si poguéssim observar la quantitat de partícules víriques (0,02 micròmetres)  hi ha al punt final (1 mm de diàmetre), trobaríem unes 50000 partÍcules.

EUCARIOTES MICROSCÒPICS

En els organismes microscòpics eucariòtics la mida és molt variable. La mitjana de dimensió dels protozous, per exemple, és de 250  μm. Tot i això, podem trobar protozous molt petits  (entre 2 i 3  μm, com Leishmania o Babesia) o grans i en certs casos, visibles a simple vista (com per exemple, Porospora gigantea). Les formes més petites de Leishmania poden viure en centenars dins un macròfag de 30 μm de diàmetre (Imatge inferior).

preview
Amastigotas de Leishmania a l’interior d’un macròfag (fletxa negra). La barra representa uns 20 micròmetres. (Imatge: Thatawan Pothirat).

En el cas dels fongs microscòpics, com els llevats, les mides oscil·len entre 6 i 20  μm. El llevat més conegut, Saccharomyces cerevisiae, presenta un diàmetre d’entre 6 i 12  μm en funció del seu estat de maduració.

_2a858f0f_1360aa12e70__8000_00000000
Mida de las cèl·lules de Saccharomyces cerevisiae. (Imatge: Easy notes).

 

·

“Cap vista més plaent han conegut els meus ulls, que aquesta de tantes criatures vives dins una petita gota d’aigua”. Anton van Leeuwenhoek va descobrir l’any 1674 un increïble i fascinant món invisible.

REFERÈNCIES

  • Brock, Biología de los microorganismos. Editorial Pearson.
  • Ignacio López-Goñi. Virus y Pandemias. Editorial Naukas.
  • Imatge de portada: Escuela y ciencia.

Maribel-català

Guerra Biològica: les armes silencioses

La sospita d’un possible atac biològic ha augmentat en els darrers anys el nivell de pànic i terror a les grans nacions. Però, què són realment les armes biològiques? Quins organismes s’utilitzen en la seva fabricació? Existeix la possibilitat de patir un atac bioterrorista? En aquest nou article donem resposta a aquestes i més preguntes. 

INTRODUCCIÓ

Es defineix Guerra biològica com la utilització de microorganismes i substàncies derivades de les seves activitats metabòliques amb finalitat  bèl·lica. Si aquests organismes són utilitzats de forma clandestina i criminal contra la població, estem parlant de Bioterrorisme. Les armes biològiques són considerades armes de destrucció massiva. Són armes difícils de controlar i silencioses, ja que el temps per poder detectar un atac biològic és llarg a causa de l’existència de períodes d’incubació dels organismes.

Al llarg de la historia, s’han observat diferents casos on s’han emprat aquest tipus d’armes. Per exemple, els Mongols llançaven els cadàvers afectats per la pesta contra els murs de les ciutats enemigues; a la Guerra de Paraguai l’any 1867, els soldats abocaven cadàvers contaminats amb còlera als pous per contagiar per l’aigua el seu enemic. En el segle XX amb l’auge de l’estudi de la Bacteriologia, molts països van començar a investigar i produir armes biològiques. Es crearen grans instal·lacions com el Fort Detrick als Estats Units i el laboratori Biopreparat a Rússia. L’any 1972 va tenir lloc la Convenció per la prohibició del desenvolupament, producció i distribució d’armes biològiques on es va signar un acord de prohibir la producció d’armes d’aquest tipus. Tot i això, són molts els casos d’atacs amb armes biològiques, com per exemple l’atac bioterrorista que sofriren alguns civils als Estats Units amb àntrax. El resultat va ser de cinc víctimes mortals i un augment significatiu del pànic front aquest tipus d’atacs.

Hi ha molts tipus d’armes biològiques que es classifiquen en funció del seu objectiu (humans, animals o plantes) o el seu agent biològic (bacteris, virus, toxines). En aquest article analitzarem l’armament utilitzat  contra els humans segons el seu component biològic. A la següent taula apareixen alguns exemples d’organismes utilitzats, tot i que l’ ONU amplia la llista fins a 31 possibles candidats. Cal destacar, que si tenim en compte els organismes modificats genèticament, la llista augmenta de forma exponencial.

tabla_organismos
Exemples d’organismes i toxines utilitzats com armes biològiques. Autor Duraipandian Thavaselvam

ARMES BACTERIOLÒGIQUES

Aquest tipus d’armes estan compostes per bacteris o les seves formes de resistència (espores). La majoria dels organismes es troben fàcilment a la natura i alguns d’ells, són modificats genèticament per millorar les seves característiques: major capacitat d’infecció, resistencia a les condicions del medi, etc.

L’organisme més conegut com a arma biològica és Bacillus anthracis. Se’l coneix popularment com àntrax. Aquest bacteri bacil·lar forma espores resistents que poden mantenir-se infeccioses al medi durant anys. Pot infectar per tres vies diferents: lesions de la pell, mitjançant la ingestió de les espores o respirant-les. El darrer cas és el més perillós i el més utilitzat en atacs bioterroristes. Tot i això, cal destacar que aquest bacteri no és capaç de transmetre’s de persona a persona. Per tant, es tractaria d’una arma biològica amb un objectiu concret.

anthrax
Microfotografia de Bacillus anthracis. El cercle vermell indica les endospores. (Foto pública del CDC)

La característica més valorada d’una arma biològica és que es pogués disseminar per l’aire i contagiar-se persona a persona. Aquestes característiques les compleix el bacteri Yersinia pestis, una altra forta candidata a arma perillosa. És la responsable de la coneguda com a Pesta negra, que al segle XIV va matar a gairebé 50 milions de persones. Existeixen tres tipus de pesta: bubònica (la més comuna i transmesa per la picada d’una puça), la septicèmica i la pneumònica (la més virulenta i la més interessant, ja que es transmet per l’aire). Actualment Yersinia pestis està controlada amb antibiòtics, però s’han creat al laboratori variants resistents a aquests fàrmacs. Això suposaria que la medicina actual no serviria per a neutralitzar-la.

yersinia_cdc
Microfotografia elèctronica d’escàner (SEM) de Yersinia pestis. (Foto pública de la CDC)

Bacteris del gènere Brucella (causants de la brucel·losis humana), Fracinella tularensis (causant de tularèmia), Vibrio cholerae (que produeix la malaltia de còlera) i altres microorganismes patògens naturals dels humans són considerats possibles armes biològiques. Aquests darrers, es troben classificats en categories menys perilloses per factors com la immunització prèvia de la població. Cal insistir, però, que molts experts afirmen que qualsevol bacteri modificat genèticament podria suposar una arma biològica molt perillosa.

ARMES VÍRIQUES

Els virus són partícules infeccioses que només es poden multiplicar a l’interior d’altres cèl·lules. Tenen diferents mecanismes específics per entrar i infectar aquestes cèl·lules diana i replicar-se al seu interior. Aquestes característiques fan que siguin considerades armes biològiques perfectes. Molts d’ells són patògens naturals dels humans. Necessiten petites dosis infectives per produir la malaltia i es poden contagiar de diferents formes de persona a persona.

El virus més conegut utilitzat com a possible arma biològica és el de la Verola. Els humans són els únics portadors naturals d’aquest virus. És molt contagiós i té una gran virulència (capacitat d’infecció). Actualment es considera eradicat, però es van conservar dues mostres a laboratoris dels Estats Units i Rússia. Teòricament s’havien d’eliminar a finals del 1993, però ningú va assegurar que això hagués succeït. Com a arma biològica, el virus de la verola seria molt perillós, ja que la majoria de la població no està immunitzada i la seva dispersió podria generar una nova pandèmia.

smallpox-virus-cdc
Microfotografia amb microscopi electrònic del virus de la Verola. (Foto pública de la CDC).

Un altre virus que els darrers anys ha adquirit molta importància és el virus de l’Ebola. Aquest produeix febres hemorràgiques amb una alta taxa de mortalitat. El seu diagnòstic és complicat i es coneix poc sobre el seu cicle biològic. Aquestes característiques fan que el virus sigui un candidat perfecte per a crear una arma biològica. Tot i així, cal destacar que parlem d’un virus fràgil que s’elimina al cap de poques hores d’estar al medi. Presenta una gran dificultat de dispersió (un cop s’ha detectat), ja que no es transmet per l’aire. No existeix cura, però es pot tractar en fases inicials mitjançant un sèrum amb anticossos. Altres virus productors de febres hemorràgiques com el Marburg o virus de la família Araviridae també són considerats possibles armes biològiques.

virusebola_cdc
Microfotografia amb microscopi electrònic del virus de l’Ebola (Foto pública de la CDC)

TOXINES

Hi ha una gran quantitat de toxines que podrien ser utilitzades com a arma biològica. Presenten altes taxes de mortalitat, són molt tòxiques i de fàcil producció. Un exemple molt conegut és el de la toxina botulínica produïda per Clostridium butolinum. Aquestes són les responsables del botulisme. Una altra toxina molt perillosa és la Ricina (que s’extreu de l’arbust Ricinus communis) que ja ha estat utilitzada com arma biològica, no te antídot i segons la CDC, és un dels verins més potents que es coneixen.

Mitjançant la modificació genètica s’ha aconseguit que bacteris incapaços de sintetitzar aquestes toxines, com Escherichia coli, les puguin produir. Així, doncs, cada vegada és més fàcil produir-les en grans quantitats.

·

No ens atabalem! Les nacions actuals tenen extensos programes de biodefensa i prevenció. La investigació i coneixement d’aquests organismes és la solució a un possible atac biològic. 

REFERÈNCIES

Maribel-català

Evolució per a principiants 2: la coevolució

Després de l’èxit d’Evolució per a principiants, seguim amb un article per seguir coneixent aspectes bàsics de l’evolució biològica. Per què hi ha insectes que semblen orquídies i viceversa? Per què gaseles i guepards són gairebé igual de ràpids? Per què el teu gos t’entén? En altres paraules, què és la coevolució?

QUÈ ÉS LA COEVOLUCIÓ?

Ja sabem que és inevitable que els éssers vius estableixen relacions de simbiosi entre ells. Uns depenen d’altres per sobreviure, i alhora, de l’accés a elements del seu entorn com aigua, llum o aire. Aquestes pressions mútues entre espècies fan que evolucionin conjuntament i segons evolucioni una espècie, obligarà al seu torn a l’altra a evolucionar. Vegem alguns exemples:

POL·LINITZACIÓ

El procés més conegut de coevolució el trobem en la pol·linització. Va ser de fet el primer estudi coevolutiu (1859), a càrrec de Darwin, encara que ell no utilitzés aquest terme. Els primers en utilitar-lo van ser Ehrlich i Raven (1964).

Els insectes ja existien molt abans de l’aparició de plantes amb flor, però el seu èxit es va deure al descobriment que el pol·len és una bona reserva d’energia. Al seu torn, les plantes troben en els insectes una manera més eficaç de transportar el pol·len cap a una altra flor. La pol·linització gràcies al vent (anemofilia) requereix més producció de pol·len i una bona dosi d’atzar perquè almenys algunes flors de la mateixa espècie siguin fecundades. Moltes plantes han desenvolupat flors que atrapen als insectes fins que estan coberts de pol·len i els deixen escapar. Aquests insectes presenten pèls en el seu cos per permetre aquest procés. Al seu torn alguns animals han desenvolupat llargs apèndixs (becs dels colibrís, espiritrompes de certes papallones…) per accedir al nèctar.

Polilla de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock
Arna de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock

És famós el cas de l’arna de Darwin (Xanthopan morganii praedicta) de la qual ja hem parlat en una ocasió. Charles Darwin, estudiant l’orquídia de Nadal (Angraecum sesquipedale), va observar que el nèctar de la flor es trobava a 29 cm de l’exterior. Va intuir que hauria d’existir un animal amb una espiritrompa d’aquesta mida. Onze anys després, el mateix Alfred Russell Wallace el va informar que havia esfinxs de Morgan amb trompes de més de 20 cm i un temps més tard es van trobar a la mateixa zona on Darwin havia estudiat aquesta espècie d’orquídia (Madagascar). En honor de tots dos es va afegir el “praedicta” al nom científic.

També existeixen les anomenades orquídies abelleres, que imiten femelles d’insectes per assegurar la seva pol·linització. Si vols saber més sobre aquestes orquídies i la de Nadal, no et perdis aquest article de l’Adriel.

Anoura fistulata, murcielago, bat
El ratpenat Anoura fistulata i la seva llarga llengua. Foto de Nathan Muchhala

Però moltes plantes no només depenen dels insectes, també algunes aus (com els colibrís) i mamífers (com ratpenats) són imprescindibles per a la seva fecundació. El rècord de mamífer amb la llengua més llarga del món i segon vertebrat (per darrere del camaleó) se l’emporta un ratpenat de l’Equador (Anoura fistulata); seva llengua mesura 8 cm (el 150% de la longitud del seu cos). És l’únic que pol·linitza una planta anomenada Centropogon nigricans, malgrat l’existència d’altres espècies de ratpenats en el mateix hàbitat de la planta. Això planteja la pregunta sobre si l’evolució està ben definida i es dóna entre parells d’espècies o per contra és difusa i es deu a la interacció de múltiples espècies.

RELACIONS DEPREDADOR-PRESA

El guepard (Acinonyx jubatus) és el vertebrat més ràpid sobre la terra (fins a 115 km/h). La gasela de Thomson (Eudorcas thomsonii), el segon (fins a 80 km/h). Els guepards han de ser prou ràpids per capturar alguna gasela (però no totes, a risc de desaparèixer ells mateixos) i les gaseles prou ràpides per escapar alguna vegada i reproduir-se. Sobreviuen les més ràpides, així que al seu torn la naturalesa selecciona els guepards més ràpids, que són els que sobreviuen al poder menjar. La pressió dels depredadors és un factor important que determina la supervivència d’una població i quines estratègies ha de seguir la població per sobreviure. Així mateix, els depredadors hauran de trobar solucions a les possibles noves formes de vida de les seves preses per tenir èxit.

Guepardo persiguiendo una gacela. Foto de Federico Veronesi

Guepard perseguint una gasela de Thomson a Kenya. Foto de Federico Veronesi

El mateix succeeix amb altres relacions depredador-presa, paràsit-hoste o herbívors-plantes, ja sigui amb el desenvolupament de la velocitat o altres estratègies de supervivència com verins, punxes…

HUMANS I GOSSOS… I BACTERIS

La nostra relació amb els gossos, que data de temps prehistòrics, també és un cas de coevolució. Això ens permet, per exemple, crear llaços afectius amb només mirar-los. Si vols ampliar la informació, et convidem a llegir aquest article passat on vam tractar el tema de l’evolució de gossos i humans en profunditat.

Un altre exemple és la relació que hem establert amb els bacteris del nostre sistema digestiu, indispensables per a la nostra supervivència. O també amb els patògens: han coevolucionat amb els nostres antibiòtics, de manera que en usar-los indiscriminadament, s’ha afavorit la resistència d’aquestes espècies de bacteris als antibiòtics.

IMPORTÀNCIA DE LA COEVOLUCIÓ

La coevolució és un dels principals processos responsables de la gran biodiversitat de la Terra. Segons Thompson, és la responsable que hi hagi milions d’espècies en lloc de milers.

Les interaccions que s’han desenvolupat amb la coevolució són importants per a la conservació de les espècies. En els casos on l’evolució ha estat molt estreta entre dues espècies, l’extinció d’una portarà a l’altra gairebé amb seguretat també a l’extinció. Els humans alterem constantment els ecosistemes i per tant, la biodiversitat i evolució de les espècies. Amb només la disminució d’una espècie, afectem moltes més. És el cas de la llúdriga marina (Enhydra lutris), que s’alimenta d’eriçons.

Nutria marina (Enhydra lutris) comiendo erizos. Foto de Vancouver Aquarium
Llúdriga marina (Enhydra lutris) menjant eriçons. Foto de Vancouver Aquarium

En ser caçada per la seva pell, el segle passat els eriçons van augmentar de nombre, van arrasar poblacions senceres d’algues (consumidores de CO2, un dels responsables de l’escalfament global), les foques que trobaven refugi en les algues ara inexistents, eren més caçades per les orques… la llúdriga és doncs una espècie clau per a l’equilibri d’aquest ecosistema i del planeta, ja que ha evolucionat conjuntament amb els eriçons i algues.

De les relacions coevolutives entre flors i animals depèn la pol·linització de milers d’espècies, entre elles moltes d’interès agrícola, de manera que no cal perdre de vista la gravetat de l’assumpte de la desaparició d’un gran nombre d’abelles i altres insectes en els últims anys. Un complex cas de coevolució que ens afectaria directament és la reproducció de la figuera.

EN RESUM

Com hem vist, la coevolució és el canvi evolutiu entre dues o més espècies que interactuen, de manera recíproca i gràcies a la selecció natural.

Perquè hi hagi coevolució s’ha de complir:

  • Especificitat: l’evolució de cada caràcter d’una espècie es deu a pressions selectives del caràcter de l’altra espècie.
  • Reciprocitat: els caràcters evolucionen de manera conjunta.
  • Simultaneïtat: els caràcters evolucionen al mateix temps.

REFERENCIAS

mireia querol rovira