Arxiu d'etiquetes: bases nitrogenadas

Del laboratorio a la gran pantalla (II)

Como ya os dije en el anterior artículo sobre genética y cine, hay una gran variedad de largometrajes que tocan la genética. En el siguiente artículo tocaremos la ciencia ficción, con dos películas muy conocidas. ¡Cuidado: spoilers!

GATTACA (1997)

Dirección: Andrew Niccol

Reparto: Ethan Hawke, Uma Thurman, Jude Law

Género: Ciencia ficción

Sinopsis: Ambientada en una sociedad futura, en la que la mayor parte de los niños son concebidos in vitro y con técnicas de selección genética. Vincent, uno de los últimos niños concebidos de modo natural, nace con una deficiencia cardíaca y no le auguran más de treinta años de vida. Se le considera un inválido y, como tal, está condenado a realizar los trabajos más desagradables. Su hermano Anton, en cambio, ha recibido una espléndida herencia genética que le garantiza múltiples oportunidades. Desde niño, Vincent sueña con viajar al espacio, pero sabe muy bien que nunca será seleccionado. Durante años ejerce toda clase de trabajos hasta que un día conoce a un hombre que le proporciona la clave para formar parte de la élite: suplantar a Jerome, un deportista que se quedó paralítico por culpa de un accidente. De este modo, Vincent ingresa en la Corporación Gattaca, una industria aeroespacial, que lo selecciona para realizar una misión en Titán. Todo irá bien, gracias a la ayuda de Jerome, hasta que el director del proyecto es asesinado y la consiguiente investigación pone en peligro los planes de Vincent.

Relación con la genética: GATTACA es la película “genética” por excelencia. Empezando por el título, éste está formado por las iniciales de las cuatro bases nitrogenadas que conforman el ADN (guanina, adenina, timina y citosina). Además, la forma helicoidal del ADN se repite en varios momentos del largometraje, como en las escaleras de casa de Vincent.

El principal tema que trata es el de la selección genética, todos los niños que nacen han sido seleccionados genéticamente, muy ligado a la bioética. La idea de esta selección es llegar a la eugenesia, es decir, mejorar la población mediante la selección de los “mejores” humanos. Este concepto lo podemos relacionar con la Alemania de Hitler, quién creía que los alemanes pertenecían a un grupo superior de razas llamado “ario”. Hitler decía que la raza aria alemana había sido mejor dotada que las demás y que esa superioridad biológica destinaba a los alemanes a estar al mando de un imperio en Europa Oriental.

Aunque hoy en día la selección genética es vigente y es utilizada para evitar enfermedades, no se aplica con los mismos fines que los de la película. En la actualidad, se decide realizar selección genética después de haber estudiado la familia y realizado el adecuado consejo genético. Éste tiene como objetivo ayudar a los pacientes y a sus familias a evitar el dolor y el sufrimiento causado por una enfermedad genética, y no se tiene que confundir con el objetivo eugénico de reducir la incidencia de enfermedades genéticas o la frecuencia de alelos considerados deleterios en la población.

Esto está muy relacionado con la discriminación genética, caso también expuesto en el filme. Gattaca se sitúa en un posible futuro en el cual la genética, intentando mejorar la calidad de vida de la sociedad, provoca un movimiento de discriminación.

Cuando hablamos de discriminación acostumbramos a pensar en la discriminación racial. Ésta se define como el trato distinto o excluyente a una persona por motivos de origen racial o étnico, lo que constituye una vulneración de los derechos fundamentales de las personas, así como un ataque a su dignidad. El racismo ha estado presente en toda la historia de la humanidad, especialmente en el siglo XX con la discriminación racial en Estados Unidos y con el Apartheid en Sudáfrica.

De un tiempo a esta parte la discriminación genética ha ido cogiendo peso. Ocurre cuando las personas son tratadas de manera diferente por su empresa o compañía de seguros porque tienen una mutación genética que causa o aumenta el riesgo de un trastorno hereditario. El miedo a la discriminación es una preocupación común entre las personas que se hacen pruebas genéticas y es un problema actual que concierne a la población, porque tu propio genoma no tiene que ser un currículum vitae que te abra o cierre puertas como pasa en la película. Vincent entra a trabajar en Gattaca después de realizar una prueba de orina y un análisis de sangre, ya que en Gattaca no eligen a los trabajadores por su capacidad ni habilidad sino por su ADN.

No obstante, la película termina con la frase “No hay gen para el espíritu humano”. Esto significa que, aunque la sociedad en la que se sitúa Gattaca se basa en la modificación genética, ésta no afecta en la moralidad y carácter final de las personas porque no existe forma de relacionar genéticamente al espíritu, sólo el cuerpo tiene la información genética.

Vídeo 1. Tráiler Gattaca (Fuente: YouTube)

PARQUE JURÁSICO (1993)

Dirección: Steven Spielberg

Reparto: Sam Neill, Laura Dern, Jeff Goldblum

Género: Ciencia ficción

Sinopsis: El multimillonario John Hammond consigue hacer realidad su sueño de clonar dinosaurios del Jurásico y crear con ellos un parque temático en una isla remota. Antes de abrirlo al público, invita a una pareja de eminentes científicos y a un matemático para que comprueben la viabilidad del proyecto. Pero las medidas de seguridad del parque no prevén el instinto de supervivencia de la madre naturaleza ni la codicia humana.

Relación con la genética: En la primera película de esta saga, a partir de fósiles de dinosaurios extraen el ADN para poder clonarlos. Los dinosaurios clonados formarán parte del parque jurásico en el que se basa la película.

Es cierto que se puede extraer ADN a partir de huesos, muy utilizado en la genética forense. Igual que el tema de la clonación, el cual fue conocido por la oveja Dolly, el primer gran animal clonado a partir de una célula adulta en julio de 1996. Pero la película va más allá y plantea la posibilidad de reimplantar, en el mundo actual, especies ya extinguidas y desafiar la selección natural.

Vídeo 2. Tráiler Parque Jurásico (Fuente: YouTube)

REFERENCIAS

MireiaRamos-castella2

Descifrando el código genético

De la misma manera que Alan Turing descodificó Enigma, la máquina de cifrado que utilizaba el ejército alemán en la Segunda Guerra Mundial, varios científicos consiguieron descifrar el código genético. La solución a este entramado ha permitido entender cómo funcionan las células y hacer posible la manipulación genética.  

INTRODUCCIÓN

Un código es una serie de símbolos que por separado no representan nada, pero al combinarlos pueden generar un lenguaje comprensible solo para aquellos quienes lo entiendan. Esto es lo que pasa con el código genético.

Aunque nos parezca mentira, todos los seres vivos (a excepción de algunas bacterias) biológicamente funcionamos de la misma manera. Y es que ya lo decía Jacques Monod, que todo lo que se constata como veraz para E. coli también debe ser cierto para los elefantes.

Desde las células de la ballena azul, el animal más grande del planeta, hasta las células de un colibrí, pasando por los seres humanos, son iguales. Esto es gracias al código genético, que permite que la información de cada gen sea transmitida a las proteínas, las ejecutoras de esta información.

Este flujo de información fue nombrado por Francis Crick en 1958 como el dogma central de la biología (Figura 1). En él afirmaba que la información fluye del ADN al ARN, y después del ARN a las proteínas. Es así como se transmite y expresa la información genética unidireccionalmente. Sin embargo, posteriormente se añadieron modificaciones. Crick afirmaba que sólo el ADN puede duplicarse y transcribirse a ARN. No obstante, se ha visto que en virus también se produce la replicación de su ARN y que éste puede realizar una transcripción inversa para generar ADN de nuevo.

main-qimg-eee77f2b58be05c964ce0c04756f2cfb.png
Figura 1. Dogma central de la biología. En rojo se muestra el camino que señaló Francis Crick (replicación del ADN, transcripción a ARN y traducción a proteínas); y en gris las modificaciones posteriores (Fuente: Quora)

LOS 3 LENGUAJES DE LAS CÉLULAS

En el interior de las células se hablan tres idiomas diferentes, pero que se pueden llegar a relacionar mediante el código genético.

El que ya conocemos es el lenguaje del ácido desoxirribonucleico (ADN), enrollado en una doble cadena y compuesto por 4 letras que corresponden a las bases nitrogenadas: adenina (A), timina (T), citosina (C) y guanina (G).

Otro lenguaje muy parecido a este último es el del ARN. Difiere del ADN principalmente en tres aspectos: (i) se compone de una cadena única en vez de ser de doble cadena, (ii) sus azúcares son ribosas en vez de desoxirribosas (de ahí el nombre de ácido ribonucleico) y (iii) contiene la base uracilo (U) en vez de T. Ni el cambio de azúcar ni la sustitución de U por T altera el apareamiento con la base A, por lo que la síntesis de ARN puede ser realizada de manera directa sobre un molde de ADN.

El último lenguaje que nos resta por conocer es el de las proteínas, formado por 20 aminoácidos. Los aminoácidos constituyen todas y cada una de las proteínas de cualquier organismo vivo. El orden de los aminoácidos que forman la cadena de la proteína determina su función (Figura 2).

aminoacids.png
Figura 2. Tabla de los 20 aminoácidos (Fuente: Compound Interest)

EL CÓDIGO GENÉTICO

Como venimos diciendo, el código genético son las reglas que sigue la secuencia de nucleótidos de un gen, a través del intermediario ARN, para ser traducida a una secuencia de aminoácidos de una proteína. Existen varios tipos de ARN, pero el que nos interesa es el ARN mensajero (ARNm), imprescindible en el proceso de transcripción.

Las células decodifican el ARN leyendo sus nucleótidos en grupos de tres (Figura 3). Como que el ARNm es un polímero de cuatro nucleótidos diferentes hay 64 combinaciones posibles de tres nucleótidos (43). Esto nos lleva a una de las características del código genético: está degenerado. Esto significa que hay varios tripletes para un mismo aminoácido (codones sinónimos). Por ejemplo la prolina es codificada por los tripletes CCU, CCC, CCA y CCG.

genetic_code_med
Figura 3. El código genético, con la tabla de los 20 aminoácidos (Fuente: BioNinja)

El código genético no es ambiguo ya que cada triplete tiene su propio significado. Todos los tripletes tienen sentido, o bien codifican un aminoácido en particular o bien indican terminación de lectura. La mayoría de los aminoácidos se codifican por al menos dos codones. La metionina y el triptófano son los únicos aminoácidos que se codifican sólo por un codón. Pero cada codón codifica sólo para un aminoácido o señal de stop. Además, es unidireccional, todos los tripletes se leen en sentido 5’-3’.

El codón AUG sirve como codón de inicio en el que comienza la traducción. Sólo hay un codón de inicio que codifica para el aminoácido metionina, mientras que existen tres codones de stop (UAA, UAG y UGA). Estos codones hacen que el polipéptido (polímero formado por cadenas largas de aminoácidos) se libere del ribosoma, lugar donde ocurre la traducción.

La posición del codón de inicio determina el punto dónde comenzará la traducción del ARNm y su marco de lectura. Este último punto es importante porque la misma secuencia de nucleótidos puede codificar polipéptidos completamente diferentes dependiendo del marco en el que se lea (Figura 4). Sin embargo, sólo una de las tres pautas de lectura de un ARNm codifica la proteína correcta. El desplazamiento en el marco de lectura provoca que el mensaje ya no tenga sentido.

Marco de Lectura.png
Figura 4. Posibles marcos de lectura (Fuente: marcoregalia.com)

Como decíamos al principio, una de las principales características del código genético es que es universal, ya que casi todos los seres vivos lo utilizan (a excepción de algunas bacterias). Esto es importante porque un código genético compartido por tan diversos organismos proporciona una importante evidencia de un origen común de la vida en la Tierra. Las especies de la Tierra de hoy en día probablemente evolucionaron de un organismo ancestral en el cual ya se encontraba presente el código genético. Debido a que es esencial para la función celular, debería tender a permanecer sin cambios en las especies a través de las generaciones. Este tipo de proceso evolutivo puede explicar la notable similitud del código genético en los organismos presentes en la actualidad.

A pesar de que el ser humano en sí continua siendo un enigma para la ciencia, la revolución del desciframiento del código genético ha permitido adentrarnos en el funcionamiento de nuestro cuerpo, en concreto el de nuestras células, y traspasar las fronteras hacia la manipulación genética.

REFERENCIAS

  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Gotta Love Cells
  • BioNinja
  • Foto portada: eldiario.es

MireiaRamos-castella