Arxiu d'etiquetes: carbon

Biology and extraterrestrial life

Frequently we can read on the news newly discovered planets that could harbor extraterrestrial life. Often we have new information about Mars, other worlds with water and extremely resistant living beings, like tardigrades. But is life possible outside the Earth? What is life? What is needed to sustain life? Astrobiology tries to answer this questions. Do you want to find out more?


Astrobiology is a set of different scientific disciplines that studies the existence of life in the universe. To achieve this it combines knowledge of biology, physics, chemistry, astronomy, ecology, geography, geology, planetary science and molecular biology. Within astrobiology, exobiology studies the possibilities of life outside our planet. It should not be confused with ufology, a pseudoscience. Astrobiology tries to answer such exciting questions as:
– What is life?
– How did life appear on Earth?
– How does life evolve, and what is its adaptability?
– What is the future of life on Earth and other places?
– Is there life in other worlds?

No, neither is this a Martian nor is it astrobiology. Source: Quo


Although it seems like a banal question, life is not easy to define. Apparently, we can recognize if something is alive or not if it can perform certain functions and has certain features. Living beings have vital functions:

  • Nutrition: they can obtain energy from the environment to grow, survive and reproduce.
  • Reproduction: they can create copies similar to themselves.
  • Interaction: they can perceive what is going on the environment and inside themselves.
  • Organization: living beings are formed by one or more cells
  • Variation: variability between individuals allows species to evolve.

Problems begin when with beings that don’t have all the characteristics. The most classic example would be viruses: they are unable to reproduce on their own and lack cellular structure. Another example would be erythrocytes (red blood cells) of mammals, cells without genetic material or mitochondria.

Microphotography of the Ebola virus under electronic microscope (Public photo of the CDC)


We only know one type of life: the terrestrial one. This is why astrobiologists need to take it as a reference to know what to look for elsewhere. Could there be other forms of life different than terrestrial? Maybe, but it would be almost impossible to recognize them. If you do not know what you are looking for, you may find it but do not realize it.

It is considered that in order for life to appear and develop, it is necessary:

  • A liquid where chemical reactions take place: on Earth, it is water.
  • An element with ease to form stable compounds: on Earth, it is carbon.
  • A source of energy: on Earth, it is the Sun.

We are looking for planets or satellites with these characteristics, although other possibilities such as liquid methane (in the case of Titan, a satellite of Saturn), ethane, sulfuric acid, ammonia or acetic acid as solvent are being considered. Life-based on other elements such as silicon, it is a recurring topic in science fiction stories.

Artistic representation of Titan’s methane lakes. Credit: Steven Hobbs


The celestial body has to fulfill a series of characteristics so that life can be sustained:

  • An abundance of chemical elements such as carbon, hydrogen, oxygen, and nitrogen to form organic compounds.
  • The planet/satellite has to be within the habitability area of its star (orbiting at a distance that allows a temperature suitable for life).
planet, star, habitable zone
Habitability area (green) according to the temperature of the star. Red: too hot, blue: too cold. Source: NASA / Kepler / D Mission. Berry
  • A source of energy enough to maintain the temperature and allow the formation of complex molecules.
  • An appropriate gravity to keep an atmosphere and not crush the living beings of the planet.
  • A magnetic field to divert the radiation incompatible with life.
The Earth’s magnetic field protects life from the solar wind. Source: ESA

In our Solar System, the candidates that possibly fulfill these characteristics are Mars, Europe and Ganymede (satellites of Jupiter), Enceladus and Titan (satellites of Saturn) and Triton (satellite of Neptune).


Living beings are formed by cells, and if we reduce the scale, by molecules, and atoms (like all matter). Why is life-based on carbon?

In fact, in the constitution of organisms 26 elements are involved, but 95% of living matter consists of carbon (C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P) and sulfur (S). We can imagine them as the “bricks of life”: by combining these building blocks, we can obtain complex organisms. These bricks can be joined to others by covalent bonds. Metaphorically, atoms can be imagined as spheres with hands which can be grasped by other hands. For example, the main energy source molecule for all living things is ATP (Adenosine triphosphate, C10H16N5O13P3).

enlaces químcos, moléculas, sulphur, phosphorus, hidrogen, oxigen, carbon, nitrogen, chemical bond
Schematic representation of carbon, hydrogen, oxygen, nitrogen and phosphorus atoms and their valences (possible bonds). Own production based on figure 6.3 of “Life in space” (see references)

The candidate element to sustain life would have to be an abundant element able to form a great amount of bonds with itself and with other elements. The 5 most abundant elements in the universe:

  • Helium: does not form compounds
  • Hydrogen and oxygen: they have 1 and 2 hands: they can only form very simple compounds
  • Nitrogen: can bind to 3 atoms, but no chains of several nitrogen atoms are known.
  • Carbon: it has 4 hands so it can be strongly bonded to other carbons with single, double, or triple bonds. This allows it to form long chains and three-dimensional structures and can still join to other atoms. This versatility allows constructing molecules chemically active and complex, just the complexity that makes life possible.
DNA chemical structure, double helix
DNA chemical structure where we can see the importance of carbon bonding to form rings and chains. Source

Could there be life in another place based on a different atom?



Since establishing 4 links is so useful, silicon is the first candidate for biologists and science fiction writers, even if it is not as abundant as carbon. Silicon (Si) can also form 4 bonds and is abundant on rocky planets like Earth, but …

  • The Si-Si bond is quite weak. In an aqueous medium, life based on silicon would not be sustained for a long time as many compounds dissolve in it, although it could be possible in another medium, such as liquid nitrogen (Bains, W.).
  • It is very reactive. Silane, for example (one silicon atom bonded to 4 hydrogens) spontaneously ignites at room temperature.
  • It is solid at most temperatures. Although it can easily form structures with oxygen (silica or silicon dioxide), the result is almost always a mineral (quartz): too simple and only reacts molten at 1000ºC.
  • It does not form chains or networks with itself, due to its greater size compared to carbon. Sometimes it forms long chains with oxygen (silicones), that perhaps could be joined to other groups to form complex molecules. The alien of the movie Alien has silicone tissues. The beings formed by silicones would be more resistant, which leads to speculate what kind of extreme conditions they could withstand.
Horta, a silicon-based form of life featured in the science fiction series Star Trek. Source


Let’s look at some characteristics of nitrogen and phosphorus:

  • Nitrogen: can only form 3 bonds with other molecules and is poorly reactive.
  • Phosphorus: its bonds are weak and multiple bonds uncommon, although it can form long chains. But it is too reactive.

By combining the two, stable molecules could be obtained, but the beings based on nitrogen and phosphorus would have other problems: the nitrogen compounds, from which they would have to feed, are not abundant in planets and the biological cycle would not be energetically favorable.


The most unlikely biochemistries could be based on these elements:

  • Boron: can form long chains and bind to other elements such as nitrogen, hydrogen or carbon
  • Sulfur: can form long chains, but because of its size is highly reactive and unstable.
  • Arsenic: is too large to form stable compounds, although its chemical properties are similar to those of phosphorus.

In 2010, the journal Science published a scientific research in which researchers claimed to have discovered a bacterium (GFAJ-1) capable of living only in arsenic, lethal to any living being. It broke the paradigm of biology by not using phosphorus (remember ATP and DNA structure) and opened up new study lines for astrobiology. In 2012, two independent investigations refuted the theory of researcher Felisa Wolfe-Simon and his team. Phosphorus remains essential for organisms to live and develop on Earth.

GFAJ-1 bacterium. Source

At the moment, these hypothetical biochemistries are nothing more than speculations, so astrobiologists are still looking for carbon-based life, although we already know that science never ceases to amaze us. Although we could identify life based on other elements if we ever find extraterrestrial life (or vice versa) the revolution will be so great that it won’t matter if they are carbon-based beings.









Conociendo los fósiles y su edad

En All You Need Is Biology a menudo hacemos referencia a los fósiles para explicar el pasado de los seres vivos. ¿Pero qué es exactamente un fósil y cómo se forma? ¿Para qué sirven los fósiles? ¿Te has preguntado alguna vez cómo lo hace la ciencia para saber la edad de un fósil? Sigue leyendo para descubrirlo!


Si piensas en un fósil, seguramente lo primero que te viene a la cabeza es un hueso de dinosaurio o una concha petrificada que te encontraste en el bosque, pero un fósil es mucho más. Los fósiles son restos (completos o parciales) de seres vivos que han vivido en el pasado (miles, millones de años)  o rastros de su actividad que quedan conservados (generalmente en rocas sedimentarias). Así pues, existen diferentes tipos de fósiles:

  • Petrificados y permineralizados: son los que corresponden a la definición clásica de fósil en el que las partes orgánicas o huecos son sustituidas por minerales (ver apartado siguiente). Su formación puede dejar moldes internos o externos (por ejemplo, de conchas) en el que el material original puede desaparecer. La madera fosilizada de esta manera se conoce como xilópalo.

    cangrejo herradura, fósil, cosmocaixa, mireia querol rovira
    Fósil petrificado de cangrejo herradura y sus pisadas. CosmoCaixa. Foto: Mireia Querol Rovira
  • Icnofósiles: restos de la actividad de un ser vivo que quedan registradas en la roca y dan información sobre el comportamiento de las especies. Pueden ser modificaciones del entorno (nidos y otras construcciones), huellas (icnitas), deposiciones (coprolitos -excrementos-, huevos…) y otras marcas como arañazos, dentelladas…
    Cosmocaixa, huevos, dinosaurio, nido, mireia querol rovira
    Huevos de dinosaurio (nido). CosmoCaixa. Foto: Mireia Querol Rovira

    coprolitos, cosmocaixa, excrementos fósiles, mireia querol rovira
    Coprolitos, CosmoCaixa. Foto: Mireia Querol Rovira
  • Ámbar: se trata de resina fósil de más de 20 millones de antigüedad. Antes pasa por un estado intermedio que se llama copal (menos de 20 millones de años). La resina, antes de pasar a ámbar, puede atrapar insectos, arácnidos, polen… en este caso se consideraría un doble fósil.

    ámbra, ambre, cosmocaixa, mireia querol rovira
    Pieza de ámbar a la lupa con insectos en su interior, CosmoCaixa. Foto: Mireia Querol Rovira
  • Fósiles químicos: son los combustibles fósiles, como el petróleo y el carbón, que se formaron por la acumulación de materia orgánica a altas presiones y temperaturas junto con la acción de bacterias anaerobias (que no utilizan oxigeno para su metabolismo).
  • Subfósil: cuando el proceso de fosilización no se completa (por haber pasado poco tiempo, o las condiciones para que se diera la fosilización no fueron propicias) los restos se conocen como subfósiles. No tienen más de 11.000 años de antigüedad. Es el caso de nuestros antepasados más recientes (Edad de los Metales).
Ötzi, un subfósil. Es la momia natural más antigua de Europa. Vivió durante el Calcolítico (Edad de Cobre) y murió hace 5.300 años. Foto: Wikimedia Commons
Ötzi, un subfósil. Es la momia natural más antigua de Europa. Vivió durante el Calcolítico (Edad de Cobre) y murió hace 5.300 años. Foto: Wikimedia Commons
  • Fósil viviente: nombre que se da a seres vivos actuales muy parecidos a organismos ya extintos. El caso más famoso es el del celacanto, que se creía extinguido desde hacía 65 millones de años hasta que fue redescubierto en 1938, pero hay otros ejemplos como los nautilos.

    ammonites, nautilus, cosmocaixa, fósil, mireia querol rovira
    Comparación entre la concha de un nautilus actual (izquierda) y un ammonite de millones de años de antigüedad (derecha). CosmoCaixa. Foto :Mireia Querol Rovira
  • Pseudofósiles: son formaciones en las rocas que parecen restos de seres vivos, pero en realidad se han formado por procesos geológicos. El caso más conocido son las dendritas de pirolusita, que parecen vegetales.

    pritolusita, dendritas pirolusita, cosmocaixa, mireia querol rovira
    Infiltraciones de pirolusita en piedra calcárea. CosmoCaixa. Foto: Mireia Querol

Lógicamente los fósiles se hicieron más comunes a partir de la aparición de partes duras (conchas, dientes, huesos…), hace 543 millones de años (Explosión del Cámbrico). El registro fósil anterior a ese período es muy escaso. Los fósiles más antiguos que se conocen son los estromatolitos, rocas formadas por la precipitación de carbonato cálcico debido a la actividad de bacterias fotosintéticas que aún existen en la actualidad.

La ciencia que estudia los fósiles es la Paleontología.

stromatolite, estromatòli, estromatolito, mireia querol rovira, fossil, fósil
Estromatolito de 2.800 millones de años de antigüedad, Australian Museum. Foto: Mireia Querol Rovira


La fosilización se puede dar de cinco maneras distintas:

  • Petrificación: es la sustitución de la materia orgánica por sustancias minerales de los restos de un ser vivo enterrado. Se obtiene una copia exacta del organismo en piedra. El primer paso de la petrificación es la permineralización (los poros del organismo están rellenos de mineral pero el tejido orgánico está inalterado. Es la fosilización más común que sufren los huesos).
  • Gelificación: el organismo queda incrustado en el hielo y no sufre apenas transformaciones.
  • Compresión: el organismo muerto queda sobre una capa blanda del suelo, como el lodo, y queda cubierto por capas de sedimentos.
  • Inclusión: los organismos quedan atrapados en ámbar o petróleo.
  • Impresión: los organismos dejan impresiones en el barro y se conserva la marca hasta que el barro se endurece.

    Procesos de fosilización y fósiles resultantes. Autor desconocido
    Procesos de fosilización y fósiles resultantes. Autor desconocido


  • Los fósiles nos dan información de cómo eran los seres vivos en el pasado, resultando una evidencia de la evolución biológica y una ayuda para establecer los linajes de los seres vivos actuales.
  • Permiten analizar fenómenos cíclicos como cambios climáticos, dinámicas atmósfera-océano e incluso las perturbaciones orbitales de los planetas.
  • Los que son exclusivos de una determinada época permiten datar con bastante exactitud las rocas en las que se encuentran (fósiles guía).
  • Dan información de procesos geológicos como el movimiento de los continentes, presencia de antiguos océanos, cadenas montañosas…
  • Los fósiles químicos son nuestra principal fuente de energía actual.
  • Dan información sobre el clima del pasado, por ejemplo, estudiando los anillos de crecimiento de los troncos fósiles o las deposiciones de materia orgánica en las varvas glaciales.

    mireia querol rovira, tronco fósil, xilópalo, AMNH
    Troncos fósiles donde se observan anillos de crecimiento. American Museum of Natural History. Foto: Mireia Querol Rovira


Para conocer la edad de los fósiles existen métodos indirectos (datación relativa) y directos (datación absoluta). Como no hay ningún método perfecto y la precisión disminuye con la antigüedad, los yacimientos se suelen datar con más de una técnica.


Los fósiles se datan según el contexto en el que han sido encontrados, si están asociados a otros fósiles (fósiles guía) u objetos de los que se conoce la edad y según el estrato en el que se encuentran.

En geología, los estratos son los distintos niveles de rocas que se ordenan según su profundidad: según la estratigrafía, los más antiguos son los que se encuentran a mayor profundidad, mientras que los más modernos son los más superficiales, ya que los sedimentos no han tenido tanto tiempo para depositarse en el sustrato. Lógicamente si hay movimientos de tierras y alteraciones geológicas la datación sería incorrecta si sólo existiera este método.

Esquema de las eras geológicas y estratos con sus correspondientes fósiles. Fuente


Son más precisas y se basan en las características físicas de la materia.


Se basan en la velocidad de desintegración de isótopos radioactivos presentes en rocas y fósiles. Los isótopos son átomos del mismo elemento pero con distinta cantidad de neutrones en su  núcleo. Los isótopos radioactivos son inestables, por lo que se transforman en otros más estables a una velocidad conocida por los científicos emitiendo radiación. Comparando la cantidad de isótopos inestables con los estables en una muestra, la ciencia puede estimar el tiempo que ha transcurrido desde que se formó el fósil o roca.

carbono 14
Esquema del ciclo del Carbono 14. Fuente
  • Radiocarbono (Carbono-14): en organismos vivos, la relación entre el C12 y el C14 es constante, pero cuando mueren, esta relación cambia ya que el C14 deja de incorporarse en el cuerpo y el que queda se descompone radioactivamente en un periodo de semidesintegración de 5730 años. Conociendo la diferencia entre el C12 y C14 de la muestra, podremos datar cuando murió el organismo. El límite máximo de datación por este método son 60.000 años, por lo tanto sólo se aplica a fósiles recientes.
  • Berilio 10-Aluminio 26: tiene la misma aplicación que el C14, pero tiene un período de semidesintegración muchísimo mayor, por lo que permite dataciones de 10 millones de años, e incluso de hasta 15 millones de años.
  • Potasio-Argón (40K/40Ar):  se utiliza para datar rocas y cenizas de origen volcánico de más de 10.000 años . Es el método que se utilizó para datar las huellas de Laetoli, el primer rastro de bipedismo de nuestro linaje dejado por Australopitecus afarensis.
  • Series del Uranio (Uranio-Torio): se utilizan diversas técnicas mediante los isótopos del uranio. Se utilizan en materiales de carbonato de calcio, (como corales) y depósitos minerales en cuevas (espeleotemas).
  • Calcio 41: permite datar restos óseos en un intervalo de tiempo entre 50.000 y 1.000.000 de años.


El polo norte magnético ha ido cambiando a lo largo de la historia de la Tierra, y se conocen sus coordenadas geográficas en distintas épocas geológicas.

Algunos minerales tienen propiedades magnéticas y se dirigen hacia el polo norte magnético cuando están en suspensión acuosa, por ejemplo en las arcillas. Pero si se depositan en el suelo, quedan fijados hacia la posición que tenía el polo norte magnético en ese momento. Si observamos hacia qué coordenadas están orientados esos minerales en el yacimiento lo podemos asociar con una época determinada.

Deposición de partículas magnéticas orientadas hacia el polo norte magnético. Fuente: Understanding Earth, Press and Seiver, W.H. Freeman and Co.
Deposición de partículas magnéticas orientadas hacia el polo norte magnético. Fuente: Understanding Earth, Press and Seiver, W.H. Freeman and Co.

Esta datación se utiliza en restos dipositados sobre fondos arcillosos y como el polo norte magnético ha estado varias veces en las mismas coordenadas geográficas, se obtiene más de una fecha de datación. Según el contexto del yacimiento, se podrán descartar algunas de estas fechas hasta llegar a una definitiva.


Ciertos minerales (cuarzo, feldespato, calcita…) acumulan modificaciones en su estructura cristalina debidas a la desintegración radiactiva del entorno. Estas modificaciones son acumulativas, continuas y dependientes del tiempo de exposición a la radiación. Cuando se somete al mineral a estímulos externos, emite luz debido a estas modificaciones. Esta luminiscencia es muy débil y distinta según se le aplique calor (TL), luz visible (OSL) o infrarrojos (IRSL).

Termoluminiscencia de la fluorita. Foto: Mauswiesel
Termoluminiscencia de la fluorita. Foto: Mauswiesel

Sólo se pueden datar muestras que hayan estado protegidas de la luz solar o calor a más de 500ºC, ya que entonces se reinicia “el reloj” al liberarse la energía de manera natural.


La ESR (electro spin resonance) consiste en someter la muestra a radiación y medir la energía absorbida por la muestra en función de la cantidad de radiación a la que ha estado sometida durante su historia. Es un método complejo del que puedes obtener más información aquí.


Mireia Querol Rovira

The plants and the climate change

Since a few years ago, we have heard about the climate change. Nowadays, it is already evident and also a concern. This not only affects to us, the humans, but to all kind of life. It has been talked enough about the global warming, but perhaps, what happens to the vegetation has not been much diffused. There are many things affected by climate change and vegetation is also one of them. In addition, the changes in this also affect us. But, what are these changes? how can the vegetation regulate them? And how we can help to mitigate them through plants?


Biomes distribution

In general, due to climate change, an increase of precipitations in some parts of the world are expected, while in others a decrease is awaited. A global temperature increment is also denoted. This leads to an alteration in the location of the biomes, large units of vegetation (e.g.: savannas, tropical forests, tundras, etc.).

Biome triangle classified by latitude, altitude and humidity (Author: Peter Halasaz).

On the other hand, there is an upward trend in the distribution of species in the high latitudes and a detriment in the lower latitudes. This has serious associated problems; the change in the species distribution affects their conservation and genetic diversity. Consequently, the marginal populations in lower latitudes, which have been considered very important for the long-term conservation of genetic diversity and due their evolutionary potential, are threatened by this diversity loss. And conversely, the populations in high latitudes would be affected by the arrival of other competing species that could displace those already present, being as invasive.

Species distribution

Within the scenario of climate change, species have some ability to adjust their distribution and to adapt to this.

But, what type of species may be responding more quickly to this change? It appears that those with a faster life cycle and a higher dispersion capacity will be showing more adaptability and a better response. This could lead to a loss of some plants with slower rates.

Galactites tomentosa
The Purple milk Thistle (Galactites tomentosa) is a plant with a fast life cycle and high distribution capacity  (Author: Ghislain118).

One factor that facilitates adjustment in the distribution is the presence of wildlife corridors: these are parts of the geographical area that enable connectivity and movement of species from one population to another. They are important because they prevent that some species can remain isolated and because they can also allow the movement to new regions.

Another factor is the altitudinal gradient, which provides shelter for many species, facilitates the presence of wildlife corridors and permits redistribution of species along altitude. Therefore, in those territories where there is greater altitudinal range, the conservation is favored.

In short, the ability of species to cope with climate change depends on the plant characteristics and the territory attributes. And, conversely, the species vulnerability to climate change occurs when the speed to displace their distribution or adapt their lives is less than the climate change velocity.

At internal level

Climate change also affects the plant as an organism, as it causes changes in their metabolism and phenology (periodic or seasonal rhythms of the plant).

One of the effects that pushes the climate change is the carbon dioxide (CO2) concentration increase in the atmosphere. This could produce a fertilization phenomenon of vegetation. Due the COincrease in the atmosphere it also increases the uptake by plants, thus increasing the photosynthesis and allowing greater assimilation. But, this is not all advantages, because for this an important water loss occurs due that the stomata (structures that allow gas exchange and transpiration) remain open long time to incorporate CO2. So, there are opposing effects and fertilization will depend on the plant itself, but the local climate will also determine this process. Many studies have shown that various plants react differently to the COincrease, since the compound affects various physiological processes and therefore there are not unique responses. Then, we find a factor that alters the plant metabolism and we cannot predict what will be the effects. Furthermore, this fertilizer effect is limited by the nutrients amount and without them production slows.

Photosynthesis process (Author: At09kg).

On the other hand, we must not forget that climate change also alters the weather and that this affects the vegetation growth and its phenology. This can have even an impact on a global scale; for example, could produce an imbalance in the production of cultivated plants for food.


Although one cannot speak of plants as regulators of global climate, it is clear that there is a relationship between climate and vegetation. However, this relationship is somewhat complicated because the vegetation has both effects of cooling and heating the weather.

The vegetation decreases the albedo; dark colours absorb more solar radiation and, in consequence, less sunlight is reflected outward. And besides, as the plants surface is usually rough, the absorption is increased. Consequently, if there is more vegetation, local temperature (transmitted heat) intensifies.

But, on the other hand, by increasing vegetation there is more evapotranspiration (set of water evaporation from a surface and transpiration through the plant). So, the heat is spent on passing the liquid water to gas, leading to a cooling effect. In addition, evapotranspiration also helps increase local rainfall.

Biophysical effects of landcover
Biophysical effects of different land uses and its consequences on the local climate. (From Jackson et al. 2008. Environmental Research Letters.3: article 0440066).

Therefore, it is an ambiguous process and in certain environments the cooling effect outweighs, while in others the heating effect has more relevance.


Nowadays, there are several proposals to reduce climate change, but, in which way can the plants cooperate?

Plant communities can act as a sinks, carbon reservoirs, because through CO2 assimilation, they help to offset carbon emissions. Proper management of agricultural and forest ecosystems can stimulate capture and storage of carbon. On the other hand, if deforestation were reduced and protection of natural habitats and forests increased, emissions would be diminished and this would stimulate the sink effect. Still, there is a risk that these carbon sinks may become emission sources; for example, due to fire.

Finally, we must introduce biofuels: these, unlike fossil fuels (e.g. petroleum), are renewable resources, since they are cultivated plants for use as fuels. Although they fail to remove CO2 from the atmosphere or reduce carbon emissions, they get to avoid this increase in the atmosphere. For this reason, they may not become a strict mitigation measure, but they can keep neutral balance of uptake and release. The problem is that they can lead to side effects on social and environmental level, such as increased prices for other crops or stimulate deforestation to establish these biofuel crops, what should not happen.

Sugarcane crop (Saccharum officinarum) in Brazil to produce biofuel (Author: Mariordo).