Arxiu d'etiquetes: carboniferous

Synapsids: Before dinosaurs ruled the Earth

Before dinosaurs ruled the Earth, at the end of the Palaeozoic Era, the land was dominated by the synapsids. The synapsids (the amniote line that includes mammals) were a highly successful group which occupied most niches during the late Carboniferous and the Permian periods, but at the end of the Palaeozoic Era most families were extinguished by the Permian-Triassic mass extinction (around 252 million years ago) with only the mammalian line surviving to the present day. In this entry we’ll look at some of the more peculiar synapsid groups, which have led to the evolution of mammals like us.

CHARACTERISTICS AND EVOLUTIONARY TRENDS

The clade Synapsida includes mammals and all other amniotes more closely related to them than to reptiles. The synapsids were the first amniotes to diversify and appeared about 320 million years ago, at the middle of the Carboniferous period. These first synapsids were characterized by the presence of only one temporal fenestra behind each orbit through which the jaw muscles pass. Synapsida literally means “fused arches” referencing to the zygomatic arches (because in the past scientist believed that synapsids had evolved from diapsid reptiles and so their arches were thought to be “fused”).

Archaeothyris.svgDrawing of Archaeothyris’s skull, in which we can see some of the characteristics of the synapsids, like the temporal fenestrae and caniniform teeth. Drawing by Gretarsson.

Other characteristics that appeared through their evolution were:

  • Differentiation of differently-shaped (heterodont) teeth.
  • Lower jaw formed by fewer bones.
  • Acquisition of a more erect posture and an endothermic metabolism.

The first groups of more primitive or “reptile-like” synapsids are informally called pelycosaurs, while the latter more advanced forms are called therapsids (clade Therapsida, which in fact derived from pelycosaurs). As we will see, the evolution of synapsids is of the kind of “one group, which includes the next group, which includes the next group”.

Synapsid treeModified evolutionary tree of the amniotes by Kenneth D. Angielczyk (2009).

THE ORIGIN OF SYNAPSIDS, THE PELYCOSAURS

CotylorhynchusDB2Reconstruction of Cotylorhynchus, a caseasaurian that grew up to 3 metres long. Drawing by Dmitry Bogdanov.

The first synapsids had a sprawling limb posture, low slung bodies and were probably ectothermic. If we look at the skull morphology, the earliest groups of synapsids were the caseasaurians (clade Caseasauria) characterized by their small heads, an overdeveloped snout and their huge bodies (they were probably ectothermic and slow-moving creatures). Yet, if we look at the postcranial skeleton, the earliest synapsids were two groups called the varanopids and the ophiacodontids (Varanopidae and Ophiacodontidae families) which were similar to varanids (through convergent evolution), and while the former were quite small and agile creatures, the latter developed bigger forms with huge heads.

varanopid ophiacodontidDrawings of the varanopid Varanodon (top) and the ophiacodontid Ophiacodon (bottom). Both drawings by Dmitry Bogdanov.

Just before the appearance of the more advanced therapsids, the last two groups of “pelycosaurs” evolved and occupied most land ecosystems. Both groups shared a tall sail along their backs (similarly to Spinosaurus) formed by tall neural spines. In life, this sail probably was covered in skin and had plenty of blood vessels. Although it’s believed that these two groups were still ectothermic, this sail was probably used to gain or lose heat more easily.

Ianthasaurus_species_DB15_2Reconstruction of different species of edaphosaurids of the genus Ianthasaurus, showing their characteristic sail. Drawing by Dmitry Bogdanov.

The first of these groups is the Edaphosauridae family. Unlike most basal synapsids, the edaphosaurids were herbivorous and, along with the caseasaurians, they were among the first large amniotes to adopt a vegetarian lifestyle. The sails of edaphosaurids were covered with spiny tubercles, of which their function is still debated.

EdaphosaurusSkeleton of Edaphosaurus from the Field Museum of Chicago, where the tubercles on its spines are shown. Image by Andrew Y. Huang (2011).

The other group, the Sphenacodontidae family, were the sister group of the therapsids, inside the clade Sphenacodontia. While all other pelycosaur clades had their teeth loosely set in the jaw, the sphenacodontians had their teeth set in deep sockets. Most sphenacodontids were carnivorous, with strong jaws and well-developed caniniform teeth. Some species became the top predators on land before the apparition of the therapsids.

Dimetrodon_gigashomog_DBReconstruction of the sphenacodontid Dimetrodon, by Dmitry Bogdanov.

THE FIRST THERAPSIDS

Biarmosuchus_tener_skeleton_234Skeleton of Biarmosuchus, a basal therapsid in which we can see its more erect posture. Image by Ghedoghedo.

The therapsids (clade Therapsida, “beast arches”) appeared around 275 million years ago and replaced the pelycosaurs as the dominant land animals in the middle Permian. Early therapsids already had a more erect posture, unlike the sprawling limbs of the pelycosaurs. Also, their temporal fenestrae were larger, which made their jaws more powerful.

Estemmenosuchus_uralensisReconstruction of Estemmenosuchus, a dinocephalian from which fossil skin imprints have been found and so it’s known that it was covered in smooth, glandular skin without scales. Drawing by Mojcaj.

The therapsids diversified greatly and developed some extraordinary adaptations. The dinocephalians (clade Dinocephalia, “terrible head”) developed bony head knobs which are believed to be involved in some kind of head-butting behaviour. Another group, the anomodonts (clade Anomodontia, “abnormal teeth”) were characterized by having no teeth except for a pair of upper canines (which were probably covered by a beak). The anomodonts were the sister group of theriodontians.

Placerias1DBReconstruction of Placerias, an anomodont which could weigh up to one tonne. Drawing by Dmitry Bogdanov.

THERIODONTIA AND THE FIRST SABER-TEETH

Theriodontians (clade Theriodontia “beast teeth”) became the most successful group of synapsids. The three main groups probably looked pretty mammal-like, with fully-erect posture, a secondary bony palate which allowed them to breathe while swallowing or holding a prey and heterodont teeth (incisiviform, caniniform and molariform teeth). The most primitive theriodontian group were the gorgonopsians (clade Gorgonopsia, Gorgonopsidae family). All members of this group were carnivorous and active predators, as revealed by their sabre-toothed teeth. Although most of them were of a modest size, the larger ones reached up to 3 metres long and had canines of up to 15 cm long.

Inostrancevia_4DBReconstruction of Inostrancevia, the largest gorgonopsid genus, preying upon Scutosaurus, a parareptilian. Drawing by Dmitry Bogdanov.

A second group, the therocephalians (clade Therocephalia, “beast head”), were pretty more advanced than the gorgonopsians, although they didn’t reach their cousins’ size. Their feet resembled those of early mammals, they presented small pits on their bones which probably supported whiskers on fleshy lips, and most evidence suggests that they were already endotherms.

Pristeroognathus_DBReconstruction of a pair of Pristerognathus, a therocephalian genus in which we can see some more mammalian characteristics. Drawing by Dmitry Bogdanov.

Both gorgonopsians and therocephalians disappeared at the end of the Permian. The only therapsid group that survived through the Mesozoic period and that coexisted with the dinosaurs were the cynodonts

SMALL CYNODONTS

The cynodonts (clade Cynodontia “dog teeth”) appeared at the late Permian and diversified greatly along with the archosaurs. Although it is not really proven, most paleoartists represent cynodonts covered in fur, as evidence suggests an endothermic metabolism. Some characteristics of the cynodonts were:

  • Lower jaw formed only by the dentary bone, while the other jaw bones became the ossicles of the middle ear (the articular, the quadrate and the angular bones evolved into the malleus, the incus and the stapes).
  • Complex teeth: incisors to hold, canines to pierce, and premolars and molars to chew.
  • Only two sets of teeth (diphyodonts), instead of constantly-renewing teeth (polyphyodonts like most reptiles).
  • Large brain cavities. Some fossil burrows of different cynodonts have been found, revealing complex social behaviours.
thrinaxodon_by_ntamuraReconstruction of Thrinaxodon, a burrowing cynodont with whiskers and hair. Image by Nobu Tamura.

Even if they competed with archosaurs, some early forms became quite large. For example, some carnivores, like Cynognathus, had a large head and measured 1 metre long, while Trucidocynodon was about the size of a leopard. Yet, the evolutionary trend would make the cynodonts smaller, like the Brasiliodontidae family which, like most cynodonts, lived in the shadow of dinosaurs and other bigger reptiles. Brasiliodontids are thought to be the sister group of the Mammaliaformes (mammals and their most recent relatives).

Brasilitherium_riograndensisReconstruction of Brasilitherium, one of the most advanced non-mammalian cynodonts, which was only 12 cm in length. Drawing by Smokeybjb.

Finally, mammals appeared at the end of the Triassic period around 225 million years ago. The first mammaliaforms were probably, insectivorous, nocturnal shrew-like animals. It is thought that this nocturnal lifestyle is what actually propelled the development of fur coats, because in therapsids endothermy appeared before fur did. These mammaliaforms probably had mammary glands to feed their young when they had no teeth, but they probably had no nipples like current monotremes.

MegazostrodonLive reconstruction of Megazostrodon, a small mammaliaform which represents very well the transition from cynodonts to modern mammals. Image by Udo Schröter.

After the extinction of most archosaurs at the end of the Cretaceous period, the surviving synapsids took over the empty ecological niches. Mammals have ruled the world since then, conquering the land, the sea and even the air, but it wouldn’t have been possible without all the different adaptations acquired by early synapsids throughout their evolution. Thanks to them, humans and all other mammals are currently the dominant animals on the planet.

REFERENCES

The following sources have been used during the elaboration of this entry:

Difusió-anglès

Flying made insects more diverse

The appearance of insect wings represented an adaptive improvement in the evolutionary history of these organisms, since they allowed them to spread and diversify across all kind of habitats. It is precisely for these events that wings are very diverse organs which have undergone a lot of changes.

In the following article, I will talk about the appearance of wings as elements that have ensured the diversification of insects, and also about the evolution of these organs and about their subsequent changes.

Introduction

Insects form the most diverse and successful group among the current fauna, and they’re also the unique invertebrates capable to fly. Even though they almost haven’t change since their appearance during the Devonian era (395-345Ma), the appearance of wings and of the ability to fly (alongside with other events that took place at the same time) allowed them to diversify rapidly.

Línea-geológica
Timeline of geological eras. Hexapoda and also insects appeared during the Devonian era (Picture from buglady.org).

Nowadays, there are almost 1 million of species of insects identified, and it’s known that there are lots of them waiting to be identified.

When winged insects appeared?

As you probably know, not all insects worldwide have wings: there are apterous insects (that is, insects without wings), which form the Apterygota group, and winged insects or Pterygota (is interesting to say that some organisms of this group have lost their wings later).

The most ancient winged insect is probably Delitzchala bitterfeldensis, an organism from the Palaeodictyoptera group dated from early Carboniferous in Germany (50Ma after the appearance of insects during the Devonian era, more or less).

Approximated representation of a Palaeodictyoptera. In contrast with current insects, these ones had three pair of wings instead of only one or two (the first one was probably a couple of little lobes located near the head) (Picture from Zoological excursions on Lake Baikal).

However, the fossil remains of the most ancient insect known nowadays, Rhyniognatha hirsti (dated from the early Devonian in Scotland, which was found in the “Rhynie Chert” sedimentary deposit), which has no wings, reveal that this insect shares some traits with winged insects (Pterygota). According to this, the origin of insect wings could be more ancient (probably from the Devonian or even more ancient).

We are still far from knowing the exact moment when the appearance of winged insects took place. But, despite of this, we can affirm that the ability to fly allowed them to reach new habitats, looking for more and better food and also run away from predators more easily. These events have provided a huge evolutionary advantage to insects and allowed them to diversify.

How did wings appeared?

Discrepancies toward the origin and evolution of insect wings is not limited only to “when ” , but also “how”: How did they appeared? Which structures from ancient insects have been modified to become wings?

There exist 4 hypothesis that try to explain the way wings were formed from different ancient organs: branchial hypothesis, stigmatic hypothesis, parapodial hypothesis and paranotal hypothesis.

First of all, and in order to understand all these hypothesis way better, we need to know the basis of corporal structure of insects. Let’s see the body scheme of a cricket (Orhoptera order):

Body scheme of a generic insect. There are 3 principal segments: 1) Head, where central nervous system and feeding functions are located, 2) Thorax, which has a locomotor function (here we can find all the appendices, including wings in winged insects); it’s divided in three parts: prothorax, mesothorax and metathorax; 3) Abdomen, in this segment we can usually find all the visceral organs. Moreover, we can also find the spiraculi located at both soft sides of its body, that is, holes that connect with the tracheal system and through where the exchange of gases takes place (Picture from Asturnatura).

 

Representation of the tracheal or respiratory system of an insect. This system is branched into the organism (Picture by M. Readey, Creative Commons).

 

So now, which are these hypothesis?

1) Branchial hypothesis 

According to this hypothesis, ancient Pterygota insects were aquatic organisms that were derived from terrestrial insects that got adapted to live underwater. Those ancestors breathed, as current insects, through spiracles connected to a net of internal pipes or tracheas. During the adaptation process to aquatic environment, these insects developed branchial or gill sheets on those spiracles in order to breathe underwater. Then, when they migrated back from aquatic to terrestrial environment, these sheets lost their ancient function and became a kind of wings.

According to recent data, it’s considered one of the most plausible hypothesis.

2) Stigmatic hypothesis

In the thoracic region, that is, where legs and wings born, the respiratory spiracles tend to be closed. According to this hypothesis, wings could be tracheal pipes expeled to the outside of the body in the thoracic region.

3) Parapodial hypothesis

This is a very simple hypothesis: it tells us that wings were formed by modified legs.

4) Paranotal hypothesis

A few years ago it was considered the most  plausible hypothesis, but now it competes with the brancial hypothesis. This is the most accepted hypothesis about the origin of insect’s wings. According to this hypothesis, wings were formed by the expansions of the tegumentary membrane located at both sides of the body, that is, the space located between the dorsal and the ventral surface of the body.

The expansions are known as “paranotes” (these structures gave the name to the paranotal hypothesis).

Ancient vs modern: Paleoptera and Neoptera

Nowadays, mostly of insects presents only one or two pairs of wings located, respectively, in the mesothorax and in the metathorax (middle and posterior segments), and not three pairs, as ancient insects usually had.

The way the two pairs of wings are articulated with the thorax, together with their position, allow us to differentiate two main groups of winged insects or Pterygota: Paleoptera and Neoptera.

Paleoptera

Generally, the Paleoptera insects can’t fold up the wings over the abdomen (this is an ancient condition). Moreover, the two pairs of wings are similar both in size and function, and also in the disposition of the veins that travel under their surface. Inside this group we find organisms from the Ephemeroptera order (for more information, take a look to my article about bioindicators), from Odonata order and also from the Palaeodictyoptera group, now extinguished.

An specimen of Odonata with its four wings unfolded because it has no way to fold up them over the abdomen (Picture by Ana_Cotta on Flickr, Creative Commons).

Neoptera

This group contain the rest of winged insects. Contrary to the ones explained above, Neoptera insects possess articulations that allow them to fold up the wings over the abdomen. Moreover, their wings are not always equal , and they can develop another functions (and new ones as well).

The wings of many groups of Neoptera insects have undergone a lot of secondary modifications, which allowed flying insects to diversify even more. Next, I will talk you about these secondary modifications.

An specimen of Diptera with its wings folded over its abdomen thanks to their articulations (Picture by Sander van der Wel on Flickr, Creative Commons).

Secondary modification of Neoptera’s wings

Generally, one of the two pairs of wings assumes the flying function (the ‘main wings’) while the other pair subordinates to the main one. This subordination can be expressed in two ways: 1) without external modifications (the subordinated pair of wings is limited to assist the main pair during the flight), 2) with secondary modifications, so the modified wings assume a new function.

Some Neoptera insects have undergone drastic modifications in one of the two pairs of wings. Let’s see some examples:

COLEOPTERA (beetles): the forewings, known as elytra, are a very hard structures that protect the rest of the body when they’re folded up. In this case, the hind wings are the main ones, so they assume the function of flying.

An specimen of a longhorn coleopter taking off. In this picture we can appreciate the forewings transformed into elytrum and the hind ones assuming the flying function (Picture by Matthew Fang on Flickr, Creative Commons).

HETEROPTERA (greenflies, cicadas, bedbugs): the forewings, known as hemelytra, aren’t completely hardened as in the case of beetles: only de proximal part is hardened, while the distal part has a membrane texture.

2628904535_09cbc0efbb
An specimen of Kleidocerys reseda (Picture by Mick Talbot on Flickr, Creative Commons).

POLINEOPTERA: in both cases that I’ve explained above, the hardening process of the forewings entails the loss of their veins; in Polineoptera insects (for example, cockroaches), the forewings are harder than the hind ones, but they retain their veins.

American-cockroach_polineoptera
An specimen of Periplaneta americana (american cockroach). Its wings are plenty of veins (Picture by Gary Alpert, Creative Commons).

DIPTERA and HIMENOPTERA (flies and mosquitoes; wasps, bees and ants): in this case, the forewings assume the flying function; on the other hand, the hind wings get reduced or modified, and sometimes they don’t appear. The hind wings of flies became equilibrium organs, the halteres.

halterios_dípteros_moscas-y-mosquitos
An specimen of crane fly (Tipulidae). The halteres (red circle) are located behind the forewings (Public domain picture).

ALTRES MODIFICACIONS: we can also talk about the changes in the shape, color, presence of filaments or scales, or even about the variations according to sex, hierarchy or geography location (for example, thats the case of ants or termites).

.              .             .

The origin and evolution of insect wings is still a fact waiting to be solved. Even so, independently of the moment and the way this event took place, is undeniable that wings have become key organs for the evolution and diversification of insects.

REFERENCES

Top picture by USGS Bee Inventory and Monitoring Lab (Creative Commons).

Difusió-anglès

The evolution of amphibians: the conquest of the land

Amphibians were the first group of vertebrates to develop limbs and to be able to leave the water to conquer the land. Even if they are seen as simple and primitive animals by most people, amphibians show a wide diversity of survival strategies which have allowed them to occupy most terrestrial and fresh-water habitats. On this entry we’ll explain some of the aspects related to their evolution, explaining how our ancestors managed to get out of the water.

ORIGIN OF THE AMPHIBIANS

Current amphibians, together with reptiles, birds and mammals are found within the superclass Tetrapoda (“four limbs”), the vertebrate group that abandoned the sea to conquer the land. These first tetrapods were amphibians and they evolved around 395 million years ago during the Devonian period from lobe-finned fish named sarcopterygians (class Sarcopterygii, “flesh fins”) within which we find the coelacanth and the current lungfish.

6227540478_88c4b03cd2_o
Specimen of coelacanth (Latimeria chalumnae) a sarcopterygian fish, photo by smerikal.

This group of fish is characterized by its fins which, instead of being formed by rays like in most bony fish, they have a bony base that allowed the subsequent evolution of the limbs of the first amphibians. Within the sarcopterygians, the nearest relatives of the tetrapods are the osteolepiformes (order Osteolepiformes) a group of tetrapodomorph fish that got extinct about 299 million years ago.

Eusthenopteron_BWRestoration of Eusthenopteron, an extinct osteolepiform, by Nobu Tamura.

ADAPTATIONS TO LIVE ON LAND

The conquest of land was not done from one day to the other; it was possible with the combination of multiple adaptations. Some of the most important characteristics that allowed the first amphibians to leave the water were:

  • Evolution of lungs, which are homologous to the gas bladder that allows fish to control its buoyancy. Lungs appeared as an additional way to get oxygen from the air. In fact, there is actually a sarcopterygian family the members of which have lungs to get oxygen from the air, for they live in waters poor on oxygen.
  • Lungs_of_Protopterus_dolloiDissection of Protopterus dolloi a sarcopteryigian fish with lungs.
  • Development of the choanaes, or internal nostrils. While fish present a pair of external nostrils at each side of its snout through which water passes on while swimming, the ancestors of the tetrapods only had one external nostril at each side connected to the internal nostrils, the choanae, which communicated with the mouth. This allowed them to get air through their noses using lung ventilation and this way to smell outside of water.
  • Apparition of the quiridium-like limb. The quiridium is the tetrapod’s most basic characteristic. This limb is known for having the differentiated parts: the stylopodium (one bone, the humerus or the femur), the zeugopodium (two bones, the radius or tibia and ulna or fibula) and the autopodium (fingers, hands, toes and feet). While the stylopodium and zeugopodium derived from the sarcopterygian’s fins, the autopodium is a newly-evolved structure exclusive from tetrapods.
Quiridio
Simplified drawing of the structure of the quiridium, by Francisco Collantes.

In short, the relatives of the osteolepiformes developed the tetrapod’s typical characteristics before ever leaving water, because they probably lived in brackish, shallow waters, poor in oxygen and that dried out quickly and often.

THE FIRST AMPHIBIANS

Probably the creature known as Tiktaalik is the closest animal to the mid-point between the osteolepiformes and the amphibians. The first recorded amphibians were labyrinthodonts meaning that their teeth had layers of dentin and enamel forming a structure similar to a maze.

Labyrinthodon_MivartCross-section of a labyrinthodont tooth, form "On the Genesis of Species", by St. George Mivart.

There were four main groups of primitive amphibians, each characterized by: a group that includes the first animals that were able to get out of water, a second group which contains the ancestors of the amniotes (reptiles, birds and mammals) and two more groups, both candidates to be the ancestors of modern amphibians.

Order Ichthyostegalia

Ichthyostegalians were the first tetrapods to be able to leave the water. They appeared at the late Devonian period and they were big animals with large wide heads, short legs and an aquatic or semi aquatic lifestyle (they probably were pretty clumsy on land). They moved around using mainly their muscular tail with rays similar to that of fish.

5212816060_da1a11e94e_oFossil and restoration of Tiktaalik. Photo by Linden Tea.

Similarly to current amphibians, they presented a lateral line (sensory organ that allows fish to detect vibrations and movement underwater) and were able to breathe through their skin (they lost the cosmoid scales of their ancestors). Also, the eggs were laid in the water, from which the tadpoles emerged and later on, they suffered a metamorphosis process to become adults just like current amphibians. Subsequently ichthyostegalians gave rise to the rest of amphibian groups.

ichthyostega(1)Skeletons of Ichthyostega and Acanthostega, two typical ichthyostegalians.

Clade Reptiliomorpha

Reptiliomorphs were the ancestors of amniotes and appeared about 340 million years ago. Most of them were usually large and heavy animals, which presented more advanced adaptations to live on land (laterally-placed eyes instead of dorsally-placed ones and a knobby more impervious skin). Even though, reptiliomorphs still laid their eggs in the water and had larval-stages with gills. It wouldn’t be until the late Carboniferous period when the first amniotes (animals that could lay their eggs on dry land) would emancipate completely from water.

Diadectes_phaseolinusMounted skeleton of Diadectes a large herbivorous reptiliomorph from the American Museum of Natural History, photo by Ghedoghedo.

Order Temnospondyli

This group is one of the possible candidates to being the ancestors of modern amphibians. This is the most diverse group of primitive amphibians and it survived until the early Cretaceous period, about 120 million years ago. The temnospondyls varied greatly in shape, size and lifestyle.

Eryops1DBRestoration of Eryops megacephalus a large temnospondylian predator, by Dmitry Bogdanov.

Most of them were meat-eaters, but some were terrestrial predators, some were semi aquatic and some had returned completely to water. Even though, all species had to return to water to breed for the fertilization was external; while the female was laying clutches of eggs in the water, the male released the sperm over them.

Buettneria
Mounted skeleton of Koskinonodon a 3 metres long temnospondyl, from the American Museum of Natural History, photo by Lawrence.

Within the temnospondyls we can find some of the biggest amphibians that ever lived, such as Prionosuchus, with an estimated length of 4,5 meters and about 300 kilograms of weight. Also, even though their skin was not covered with scales, it wasn’t completely smooth like in modern amphibians.

Prionosuchus_DBRestoration of Prionosuchus by Dmitry Bogdanov.

It is believed that this group could be the sister-taxon of modern amphibians, even though there’s one last group which could be a candidate to that post.

Order Lepospondyli

Lepospondyls were a small group of primitive animals which appeared at the early Carboniferous and disappeared at the late Permian period. Even though lepospondyls were not as numerous and smaller than the temnospondyls, they presented a wide range of body shapes and adaptations.

Diplocaulus_BWRestoration of Diplocaulus magnicornis, of about 1 metre long was the biggest of all lepospondyls, by Nobu Tamura.

The first lepospondyls looked superficially like small lizards, but subsequently lots of groups suffered processes of limb reduction or loss.

Pelodosotis1DBRestoration of Pelodosotis, an advanced lepospondyl, by Dmitry Bogdanov.

The relationship of the lepospondyls with the rest of tetrapods isn’t very clear. Different hypothesis go from some authors arguing that they are a group separated from the labyrinthodonts, some thinking that they are the ancestor of current amphibians and reptiles, and some even saying that they are the ancestors of only a portion of modern amphibians.

LysorophusRestoration of Lysorophus, a Permian lepospondyl, by Smokeybjb.

As we can see, the classification of primitive amphibians can be an extremely complex thing. On this entry I tried to make a summary of the most important groups of ancient amphibians and, on the next one, we’ll center on the evolution of modern amphibians, the so-called “lissamphibians”, and we’ll look in more detail all the controversies surrounding these curious animals.

REFERENCES

The following sources have been consulted in the elaboration of this entry:

Difusió-anglès