Arxiu d'etiquetes: cardo

Evolutionary adaptations of feeding in insects

Over millions of years, insects have got adapted to countless ecological changes. On previous articles, we talked about flying adaptations in insects and how flying made them more diverse. In this new article, we explain you the origin and evolutionary changes of insects’ mouthparts and therefore of feeding diversification throughout their evolutionary history.

Introduction: Entognatha vs Ectognatha

Before talking about feeding evolution of insects, we must state the differences between the terms “insect” and “hexapod”. Insects constitute the major and most diverse class of the subphylum Hexapoda. This class includes the best known families of insects: lepidopteran, hymenopteran, coleopteran, dipteran, etc. However, this subphylum also includes three orders of wingless arthropods which together constitute the class Entognatha: Collembola (springtails), Protura and Diplura.

So, the subphylum Hexapoda includes two classes: Insecta and Entognatha. Which is the main difference between them? Essentially, the position of their mouthparts: on one hand, Entognatha (ento- ‎(“inside”) +‎ Ancient Greek gnáthos (“jaw”)) have their mouthparts protected inside the head and they only project them during feeding; on the other hand, Ectognatha or Insecta (ecto- ‎(“outside”)) always have external mouthparts.

ectognatha-vs-entognatha
Mouthparts of a beetle (Ectognatha, left) and anterior view of a springtail, with mouthparts retracted within the head (Entognatha, right). Source: beetle by Fyn Kynd Photography, CC; springtail by Gilles San Martin, CC.

Mouthparts of insects or Ectognatha

Both mouthparts diversification and feeding diversification are the result of a long evolutionary process. So, it’s expected that there exist ancestral and derived feeding structures.

The most ancestral mouthparts and those which has also suffered less adaptive modification are the mandibulate or chewing ones. These type of mouthparts are linked to solid food-based feeding and they can be currently observed in a lot of groups: crickets and grasshoppers; dragonflies and damselflies; beetles; cockroaches and mantis; mecopterans, neuropterans… and also in larval stages of some insects that develop a different type of mouthparts when reaching adulthood (e.g. butterfly larvae).

Mandibulate mouthparts are often used as a model to explain the evolution of mouthparts in insects due to their ancestral origin. The most used chewing model is the one observed on orthopterans (such as locusts or grasshoppers).

ortopthera-mouthparts-chewing
Mandibulate or chewing model of an orthopteran. Source: John R. Meyer, North Carolina State University. Link.

Based on this model, insect’s mouthparts are made of 5 main structures: labrum, mandibles, maxillae, hypopharynx and labium. Mandibles, maxillae and labium are considered true or appendicular appendages because they develop from metameres (also known as somites; segments in which their body is divided) during the embryonal development; thus, these three structures are considered equivalent to locomotor appendages from a morphological point of view. On the contrary, labrum and hypopharynx aren’t true appendages because of their non-metameric origin, although they are also considered buccal appendages due to their essential role in feeding.

What’s the function of each of these structures?

Knowing original functions of these structures on the mandibulate model lets us to understand the changes that have undergone the different adaptive forms emerged throughout the evolution of insects’ feeding:

chewing-mouthparts-beetle-grasshopper
Examples of mandibulate or chewing mouthparts: beetle (left) and locust (right). Source: John R. Meyer, North Carolina State University. Link.

  • Labrum. A plate-like sclerite located before de rest of feeding structures, protecting them. Its size varies among species and it helps to contain the food. The posterior surface is known as epipharynx.
  • Mandibles. A pair of jaws for crushing or grinding the food. They operate from side to side.
  • Maxillae. A pair of appendages which are divided in three parts: cardo, which articulates with the head; stipes, which supports a sensory palp; galea and lacinia, which act as fork and spoon to manipulate the food.
  • Hypopharynx. A little process located behind mandibles and between maxillae that helps mix food and saliva.
  • Labium. Unlike mandibles and maxillae, the two original appendages forming the labium have fused together along the middle. The labium is also subdivided in two parts: postmentum, pieces which articulate with the head; prementum, distal pieces which support a pair of sensory palps and divide apically forming four lobes: glossae and paraglossae.

mouthparts_mandibles_maxilla
Mandible, maxilla, labium and hypopharynx (Davies, 1991).

Evolutionary adaptations of mouthparts

How did they evolve?

It’s considered that all models of mouthparts originally evolved from an ancestral mandibulate form. However, it’s more than probably that this process took place in different groups simultaneously when insects started to expand in range, food became more accessible and new sources of food appeared. This is an excellent example of adaptive radiation (when two or more populations, exposed to different selective pressures, diverge from a common ancestor).

Thanks to fossil records (insects preserved in amber, coprolites and evidences of attacks on plants) we know that the appearance of all models of mouthparts took place in at least 5 periods 420-110 myr ago. Eventually, some groups changed from a solid-based diet to a liquid-based diet: exposed liquids (e.g. nectar), tissue liquids (e.g. sap or blood) or even suspended particles. For those which adopted a liquid-based diet, these changes involved a great adaptive advantage during the expansion of angiosperms (flowered plants) in the Cretaceous period.

img_1558-min-min
The adoption of a liquid-based diet by some insects, as the one seen in butterflies, involved a great adaptive advantage for these organisms during the expansion and diversification of flowering plants. Moreover, this gave room to the start of a coevolutive process between insects and plants. Author: Irene Lobato.

Types of mouthparts

On the basis of the mandibulate type, let’s see a summary of the main adaptive modifications observed in different types of mouthparts:

MANDIBULATE-LAPPING TYPE

Mandibulate-lapping mouthparts are linked to a liquid-based diet (e.g. nectar), even though in some cases they conserve the chewing function. They’re typical of hymenopterans. Sawflies or suborder Symphyta, considered the most ancient group of hymenopterans, conserve almost all original structures and functions of mandibulate mouthparts. Both wasps and bumblebees have undergone a reduction of both mandibles and maxillae and a massive development of labial glossae, forming a kind of tongue for drinking liquid food; however, they can still chew. Finally, bees have mandibles not for feeding, but for other purposes (such as fighting, grooming theirselves or working wax scales into honeycomb), and both maxillae and labial glossae lengthen giving room to a hairy tongue with an internal duct (the salivary duct), so their diet is exclusively liquid-based.

bee_mouthparts_eng
General scheme of lapping mouthparts of a bee (left; image by Xavier Vázquez, posteriorly modificated by Siga, CC) and mouthparts of a bee of the species Colletes willistoni (right; public domain image). Md: Mandibles; mx: Maxillae; lb: labium.

SUCKING-LAPPING TYPE

In this kind of mouthparts, mandibles undergo a massive reduction (and if present, they’re not for feeding purposes), even disappearing in some cases; so, insects with sucking-lapping mouthparts have a diet exclusively based on exposed liquids. There exist two main variations of this model: the ‘maxillar sucking’ or siphoning type typical of evolved lepidopterans and the ‘labial sucking’ or sponging type typical of flies and other dipterans.

In flies, mandibles are totally absent, maxillae are only represented by maxillary palps and posterior part of labium massively increase, forming two lobes which are sponge-like organs called the labella. The labella is a complex structure consisting of many grooves which sops up liquids much like a sponge does.

fly-mouthparts
Sponging mouthparts of flies (left; source: Educational Media Group (EMG), RMIT University, 2002-06-01, Fly mouthparts illustration [Online, Image Illustration], Educational Media Group (EMG), Melbourne, Vic) and mouthparts of a fly of the species Gonia capitata (right; by Richard Bartz, CC).

In evolved lepidopterans, mandibles and labium are almost absent (only labial palps are visible), while maxillary galeae develop forming a long proboscis also known as ‘haustellum’ with a central alimentary duct for sucking liquids.

proboscis-butterfly
Siphoning mouthparts of a butterfly (left; by tdlucas5000, CC) and electron microscopy image of the proboscis (right; public domain image).

PIERCING-SUCKING TYPE

This type of mouthparts appears in different groups of insects with independent evolutionary lineages, so there exist lots of variations. Let’s see some examples:

  • Heteroptera (bugs): they’re the only ones which possess this type of mouthparts since the very moment of birth. Both maxillary and labial palps are absent in these organisms, and labium forms a duct that encloses 4 stylets: two maxillary stylets and two mandibular stylets. This structures configure the beak or ‘rostrum’. Maxillary stylets delimit a salivary duct and a food duct, and together with mandibular ones allows the organism to pierce different tissues and then soak up their liquids: sap in phytophagous forms and blood in predatory ones.

heteroptera-min
Scheme of the piercing-sucking mouthparts of an heteropteran (left; image from Baker, 2011) and mouthparts of a predatory bug of the family Reduviidae (right; image property of John R. Meyer, North Carolina State University. Link).

  • Mosquitoes: their mouthparts are very similar to the ones of bugs; however, they possess one more stylet, corresponding to the hypopharynx, which contains the salivary duct (through which they inject different substances to their hosts, such as anticoagulants). Labrum and hypopharynx together form the food duct, and labium has only an assistant function of supporting the stylets.

mosquito
Scheme of mosquito’s mouthparts (left; by Xavier Vázquez, posteriorly modified by Siga, CC) and a mosquito female (right; by Grzegorz “Sculptoris” Krucke, CC). Lr: labrum; hp: hypopharynx; mx: maxillae; md: mandibles; lb: labium.

  • Phthiraptera and Siphonaptera (lice and fleas): their mouthparts are formed by the epipharynx, both labial palps and both laciniae of maxillae. Maxillary palps are well developed and are always situated before the rest of the structure. Lice and fleas use their mouthparts to parasite their hosts, piercing their tissues and then sucking their blood.

head_of_the_flea_lens_aldous_tagged-min
Mouthparts of Siphonaptera (fleas): 1: eye; 2: labial palps; 3: maxillar stylet (lacinia); 4: hypopharynx; 5: maxillary palps; 6: maxilla (galea). Source: public domain.

  • Thysanoptera (thrips): these tiny insects usually appear as pests in agricultural crops, sometimes even being vectors of different plant viruses. Their mouthparts present right-left asymmetry and the piercing structure is formed by the labium, the labrum and maxillae. Delimited by all these structures, there are also two maxillary stylets and only one mandibular stylet (the other one become atrophied). Thrips scratch the plant surface and then pierce it by their stylets, through which they suck plant fluids.

trips-min
Scheme of thrips’ mouthparts (lefts; image form personal notes from the course “Biology and Diversity of Arthropods”, Universitat Autònoma de Barcelona) and frontal view of a thrip (right; property of John W. Dooley, USDA APHIS PPQ, Bugwood.org, CC).

AN EXTREME CASE: THE ATROPHY

Adult forms of some insects, such as mayflies (Ephemeroptera) or some dipterans, suffer a total reduction of their mouthparts. In these cases, the only function of adults is down to reproduction, so they lose all feeding functions and structures when metamorphose.

.           .            .

There’s no doubt that insects form the most diverse group of organisms all over the world, showing not only a huge amount of species, but a big range of forms of mouthparts.

Do you know any other curious feeding structures in insects? Feel free to share your opinion or contributions in the comments. 

REFERENCES

There have also been consulted the personal notes taken from the subject “Biology and Diversity of Arthropods” given during the course 2013-2014 at the Universidad Autònoma de Barcelona.

Main photo, from left to right: 1) Lisa Brown, CC, 2) Public domain and 3) Richard Bartz, CC.

Difusió-anglès

Evolución y adaptaciones de la alimentación en los insectos

A lo largo de millones de años, los insectos han conseguido adaptarse a todo tipo de cambios ecológicos. En entradas anteriores, hablamos sobre cómo el hecho de volar hizo a estos organismos mucho más diversos y de las diferentes adaptaciones al vuelo. En este nuevo artículo, os explicamos el origen y los cambios del aparato bucal y, por lo tanto, de la diversificación de la alimentación de los insectos a lo largo de su historia evolutiva.

Introducción: entognados vs ectognados

Antes de hablar sobre la evolución de la alimentación en los insectos, debemos aclarar la diferencia entre los términos “insecto” y “hexápodo”. Los insectos constituyen la clase más importante y diversificada dentro del subfilo de los hexápodos y en la cual se encuentran los grupos más conocidos: lepidópteros, himenópteros, coleópteros, dípteros, etc. Sin embargo, dentro de los hexápodos también hay tres órdenes que constituyen la clase Entognatha: colémbolos, proturos y dipluros.

Así pues, dentro de los hexápodos existen dos clases bien diferenciadas: Insecta y Entognatha. ¿Qué las diferencia? Esencialmente, sus piezas orales o bucales: en los entognados (de ento- ‎(“dentro”) +‎ del griego antiguo gnáthos (“mandíbula”)), las piezas bucales se encuentran protegidas dentro de la cápsula cefálica y sólo las proyectan al exterior en el momento de comer, mientras que en los insectos o ectognados (con el prefijo ecto- ‎(“fuera”)) las piezas bucales siempre son externas.

ectognatha-vs-entognatha
Piezas bucales de un coleóptero (ectognado, izquierda) y parte anterior de la cabeza de un colémbolo, en la que no se observan exteriormente las piezas bucales (entognado, derecha). Fuente: Coleóptero de Fyn Kynd Photography, CC; colémbolo de Gilles San Martin, CC.

Las piezas bucales de los insectos o ectognados

La diversificación de los aparatos bucales y de las formas de alimentación de los insectos es el resultado de un largo proceso evolutivo. Por lo tanto, es de esperar que existan formas ancestrales y formas derivadas (o evolucionadas).

El aparato bucal más primitivo y que ha sufrido menos modificaciones adaptativas es el de tipo masticador, ligado a una alimentación basada en alimentos sólidos. Lo encontramos en muchos grupos actualmente: ortópteros (grillos, saltamontes), odonatos (libélulas), coleópteros (escarabajos), dictiópteros (cucarachas y mantis), mecópteros, neurópteros… además de en las larvas de algunos insectos que, en su fase adulta, presentan otro tipo de aparato bucal (p.ej. orugas de lepidóptero).

Debido a su condición primitiva, el aparato bucal de tipo masticador se usa como modelo para explicar la morfología y posteriores modificaciones del mismo. Uno de los modelos más recurrentes es el de los ortópteros.

ortopthera-mouthparts-chewing
Modelo masticador de un ortóptero. Fuente: imágenes originales propiedad de John R. Meyer, North Carolina State University. Link.

Siguiendo este modelo, el aparato bucal está constituido por 5 piezas: labro, mandíbulas, maxilas, hipofaringe y labio. Las mandíbulas, las maxilas y el labio son apéndices verdaderos o apendiculares, es decir, durante el desarrollo embrionario se forman a partir de un segmento o metámero del cuerpo del insecto, por lo que serían equivalentes desde un punto de vista morfológico a los apéndices locomotores. Por otro lado, el labro y la hipofaringe no se consideran apéndices verdaderos, aunque por su importancia en la alimentación también forman parte de las piezas bucales.

¿Para qué sirve cada pieza?

Conocer la función de cada pieza en el modelo masticador nos ayuda a entender los cambios que éstas han sufrido en las diferentes formas adaptativas surgidas a lo largo de la evolución:

chewing-mouthparts-beetle-grasshopper
Disección de las piezas bucales del aparato masticador de un escarabajo (izquierda) y de un saltamontes (derecha). Fuente: imágenes originales propiedad de John R. Meyer, North Carolina State University. Link.

  • Labro. Es la pieza que protege por delante al resto de piezas bucales. Su tamaño puede variar según el grupo y ayuda a retener el alimento. La cara posterior recibe el nombre de epifaringe.
  • Mandíbulas. Piezas encargadas de aplastar, moler o triturar el alimento. Se mueven de lado a lado.
  • Maxilas. Formadas por tres piezas: el cardo, que articula con la cabeza; el estipe, que presenta un palpo sensorial; la galea y la lacinia, que actúan como cuchara y tenedor manipulando el alimento.
  • Hipofaringe. Esta pequeña pieza, situada tras las mandíbulas y entre las maxilas, actúa como una lengua que ayuda a mezclar el alimento y la saliva.
  • Labio. A diferencia de las mandíbulas y las maxilas, los dos apéndices que constituyen el labio están fusionados por la parte medial. Formado por dos piezas: el postmentum, piezas que articulan con la cabeza, y el prementum, piezas distales con otro par de palpos sensoriales que, además, están divididas en 4 lóbulos distales: las glosas y las paraglosas.

mouthparts_mandibles_maxilla
Detalle de la mandíbula, la maxila, el labio y la hipofaringe (Davies, 1991).

Modificaciones de las piezas bucales

¿Cómo evolucionaron?

Se considera que, a partir del aparato bucal de tipo masticador, derivó el resto de modelos. Sin embargo, lo más probable es que este proceso tuviera lugar de forma más o menos simultánea en diferentes grupos como consecuencia de su expansión, un mayor acceso a los recursos y a la aparición de nuevas fuentes de alimento. Este es un claro ejemplo de radiación adaptativa (cuando dos o más poblaciones sometidas a presiones selectivas distintas divergen de un ancestro común).

Gracias a algunos registros fósiles (insectos en ámbar, coprolitos o evidencias del ataque sobre plantas fósiles), sabemos que la aparición de los diferentes tipos de piezas bucales tuvo lugar en al menos 5 fases en un periodo comprendido hace 420-110 MA. Poco a poco, algunos grupos pasaron de una alimentación basada en alimentos sólidos a una basada en la ingesta de líquidos expuestos (p.ej. néctar), de líquidos dentro de tejidos (p.ej. savia o sangre) o de partículas. Para los que pasaron a alimentarse de líquidos, esto supuso una enorme ventaja adaptativa y selectiva durante la expansión de las angiospermas (plantas con flor) durante el Cretácico.

img_1558-min-min
El paso a una alimentación basada en alimentos líquidos, como en los lepidópteros, supuso una gran ventaja adaptativa para muchos insectos durante la diversificación de las plantas con flor. Además, dio inicio a un proceso de coevolución insectos-plantas. Autora: Irene Lobato.

Tipos de aparatos bucales

Veamos ahora un pequeño resumen de las principales modificaciones del aparato bucal de los insectos a partir del modelo masticador:

MASTICADOR-LAMEDOR

Se asocia a una alimentación basada en líquidos naturales, como el néctar, pero que en algunos casos aún conserva la capacidad de masticar. Es propio de himenópteros: en los sínfitos (grupo más primitivo de himenópteros) apenas presenta modificaciones respecto del aparato masticador original; en avispas y abejorros, mandíbulas y maxilas se reducen y se desarrolla la lengua (glosas del labio alargadas) con la que ingieren líquidos, aunque aún pueden masticar; finalmente, en las abejas las mandíbulas han perdido su función masticadora típica (aunque las usan para defenderse, acicalarse o trabajar la cera) y las maxilas y las glosas del labio se alargan dando lugar a una lengua pilosa con un canal en su interior (canal salivar), por lo que su alimentación es totalmente líquida.

bee_mouthparts-min
Esquema del aparato masticador-lamedor de una abeja (izquierda; fragmento de una imagen original de Xavier Vázquez, modificada posteriormente por Siga, CC) y aparato bucal de una abeja de la especie Colletes willistoni (derecha; imagen original de dominio público). Md: Mandíbula; mx: Maxila; lb: labio.

CHUPADOR-LAMEDOR

Los insectos que presentan este modelo han sufrido una reducción importante, o incluso desaparición, de las mandíbulas y su alimentación se basa totalmente en la ingesta de líquidos expuestos. En caso de estar presentes, en ningún caso su función está relacionada con la alimentación.

Existen dos variaciones dentro de este modelo: el chupador maxilar típico de los lepidópteros adultos y el chupador labial típico de las moscas. En las moscas, las mandíbulas desaparecen, las maxilas se reducen hasta quedar representadas únicamente por sus palpos y se hipertrofia la parte posterior del labio, formando unos lóbulos cubiertos de pequeños canalículos que convergen formando un solo canal succionador.

fly-min
Esquema del aparato chupador-lamedor de una mosca (izquierda; Fuente: Educational Media Group (EMG), RMIT University, 2002-06-01, Fly mouthparts illustration [Online, Image Illustration], Educational Media Group (EMG), Melbourne, Vic) y detalle del aparato bucal de una mosca de la especie Gonia capitata (derecha; imagen de Richard Bartz, CC).

En los lepidópteros más evolucionados, las mandíbulas y el labio prácticamente desaparecen (sólo son visibles los palpos labiales), mientras que las gáleas de las maxilas se desarrollan formando la espiritrompa, la cual presenta un canal alimentario en su interior.

butterfly-min
Aparato chupador-lamedor de una mariposa (izquierda; imagen de tdlucas5000, CC) e imagen de microscopía electrónica de la espiritrompa (derecha; imagen de dominio público).

PICADOR-CHUPADOR

Este modelo se encuentra en distintos grupos de insectos que lo han adquirido por vías evolutivas independientes, por lo que existen muchas variaciones. Veamos algunos ejemplos:

  • Heterópteros (chinches): son el único grupo con un aparato bucal de este tipo desde la eclosión. Los palpos maxilares y labiales están ausentes, y el labio forma un canal que encierra 4 estiletes similares a agujas, dos correspondientes a las mandíbulas y dos a las maxilas. Esta estructura recibe el nombre de rostro. Los estiletes maxilares delimitan un canal aspirador y un canal salival, y junto con los mandibulares sirven para penetrar en diferentes tejidos y absorber sus fluidos: savia en las formas fitófagas y sangre u otros fluidos en las formas depredadoras, entre las cuales existen pequeñas variaciones morfológicas.

heteroptera-min
Esquema del aparato bucal de un heteróptero (izquierda; imagen extraída de Baker, 2011) y primer plano del aparato bucal de un ejemplar de la familia Reduviidae, depredadores (derecha; imagen propiedad de John R. Meyer, North Carolina State University. Link).

  • Mosquitos: muy similar al de los heterópteros, aunque además de los estiletes maxilares y mandibulares, también hay un estilete correspondiente a la hipofaringe en cuyo interior circula el canal salivar (que emite anticoagulantes y otras sustancias para facilitar la succión de sangre de sus huéspedes). El labro y la hipofaringe forman el canal aspirador, y el labio sólo acompaña a los estiletes.

mosquito
Esquema del aparato bucal de un mosquito (izquierda; fragmento de una imagen original de Xavier Vázquez, modificada posteriormente por Siga, CC) e imagen de una hembra de mosquito (derecha; imagen de Grzegorz “Sculptoris” Krucke, CC). Lr: labro; hp: hipofaringe; mx: maxilas; md: mandíbulas; lb: labio.

  • Ftirápteros y Sifonápteros (piojos y pulgas): el aparato picador, que usan para parasitar animales y succionar su sangre, está constituido en este caso por la epifaringe, los palpos labiales y las lacinias maxilares. Los palpos maxilares, muy desarrollados, quedan por delante.

head_of_the_flea_lens_aldous_tagged-min
Aparato bucal de un sifonáptero o pulga. 1: ojo; 2: palpos labiales; 3: estilete maxilar (lacinia); 4: epifaringe; 5: palpos maxilares; 6: maxilas (galea). Fuente: dominio público.

  • Tisanópteros (trips): estos diminutos insectos suelen aparecer como plagas de cultivos y, en ocasiones, como vectores de virus vegetales. Su aparato bucal es asimétrico: la estructura picadora está delimitada por el labio, las maxilas y el labro, y todas son claramente desiguales. En su interior, presentan dos estiletes maxilares y uno mandibular (el otro se atrofia). Para comer, rascan la superficie del vegetal y después clavan sus estiletes para succionar sus fluidos.

trips-min
Esquema del aparato bucal de un trips (izquierda; imagen extraída de apuntes personales de la asignatura de Biología y Diversidad de Artrópodos, UAB) e imagen de un ejemplar (derecha; imagen propiedad de John W. Dooley, USDA APHIS PPQ, Bugwood.org, CC).

UN CASO EXTREMO: LA ATROFIA

En algunos insectos, como en las formas adultas de las efímeras o de algunos dípteros, se produce una reducción total de las piezas bucales, pues su función queda reducida a la reproducción y dejan de comer.

.           .            .

No cabe duda de que los insectos son el grupo de organismos más diversificado de la Tierra, hecho que queda demostrado, una vez más, con tan sólo fijarse en la gran variedad de formas de alimentación que han desarrollado.

Y tú, ¿conoces alguna otra forma de alimentación curiosa? Puedes dejar tu contribución en los comentarios.

REFERENCIAS

También se han consultado los apuntes de la asignatura de Biología y Diversidad de Artrópodos impartida durante el curso 2013-2014 en la Universidad Autónoma de Barcelona.

Foto de portada, de izquierda a derecha: Lisa Brown, CC; Dominio Público y Richard Bartz, CC.

Difusió-castellà