Arxiu d'etiquetes: Chloroflexus

Basic microbiology (II):thousands of bacterial forms

Imagine a bacterium. What image has come to your mind? You have possibly thought of elongated like a Bacillus, type E. coli bacteria or into a small ball. For years, we have associated the bacterial morphology to a few basic shapes, but there are a multitude of forms in the environment. Discover them in the second chapter of Basic Microbiology!

BACTERIAL SHAPES

Microorganisms represent a very varied group of organisms invisible to the naked eye. In the previous chapter previous chapter of this article collection we talk about the microbe’s size and in this second chapter of basic microbiology we are going to talk about the different morphologies or forms that exist of the group bacteria and the archaea group (extremophile bacteria).

Usually, when we started the trip in the bacterial world, found that bacteria have a series of basic shapes: coccus (spherical or berry), bacillus (shaped) and spirillum (coiled), as well as its aggregations. These are formed by the union of the cells after division. For example, there are species that are pairs of cocci (known as diplococci), others form long chains of cocci (such as Streptococcus sp.), others are arranged in three-dimensional cubic groupings (like Sarcina sp.) and others formed structures like clusters of grapes (Staphylococcus sp.).

04-01_cocciarrange_1
Cocci and its aggregations (Image: Aula virtual).

In the case of rod-shaped bacteria, we can find also different groups such as the diplobacillus or the streptobacillus (such as for example Bacillus cereus). Apart we can find many variations of bacillus: there are shorter and more rounded (numerous coccobacillus, as it would be the case of Yersinia pestis), there are Pleomorphic (who have one or more forms depending on the phase of the cell cycle), finished in tip (as for example Epulopiscium fishelsoni), curved or crooked.

04-02_bacilli_1
Rod shaped bacteria and its aggregation (image: Aula Virtual)

 

Finally, the spiral shapes appear as it would be the case of the vibrios (in the form of comma, as Vibrio cholerae), the spirils (as Rhodospirillium rubrum) or spirochaetes (Spirochaeta stenostrepta).

04-04_spiralbacteria_1
Spiral bacteria (Image: Aula Virtual).

 

But why morphology is generalized to these forms?

Should be remember that it microbiology always had been a medical discipline and these forms are the more recurrent in the pathogenic bacteria. Now, with the rise of Microbiology, it has been observed that in the environment there is a huge variety of different morphologies, some much more complex that is known so far. The following graphic is result of an elaborate study of David T. Kysela and shows the true morphological variety that exists in the bacterial world.

imagen1
Differents bacterial morphologies around the Philogenetic tree (Image: David T. Kysela)

FEW EXAMPLES

Some individual bacteria present peculiar structures, as for example stretching narrow known as prostheca. This would be the case of Caulobacter sp. and Hyphomicrobium sp. These stretching allow to anchor the bacterium to a solid surface. There are bacteria that can also present stems, spines, or tips.

holm_niels
Hyphomicrobium sp. with their prostheca (Image: Holm Niels)

Other bacteria have unusual shapes. For example, Halophyte bacteria (that support high levels of salt concentration) like Stella sp. and Haloquadratum sp. Form a very odd aggregation. The first has a star shape and second rectangular shape.

04-05_starshaped_1
Diagram of the characteristic shape of Stella vacuolata (a) and Haloquadratum walsbyi (b). (Image: Aula virtual).

Haloarcula japonica is an individual halophyte bacteria as the previous ones, presenting a very striking morphology. As we can see in the first section of the image, in certain stages of the cell cycle has triangular shape. On the other hand, Pyrodictium abyssi (b) presents one of the most striking morphologies, since it has the form of a  “y”letter.

img_dos
a) Haloarcula japonica (Image: Nite) b) Pyrodictium abyssi (Image: Benjamin Cummings)

Also, there are very characteristics bacterial associations, as for example long chains of organisms that give an aspect of filamentous bacteria. This is the case of the bacterial phylum known as Chloroflexi, where green sulfur bacteria like Chloroflexus sp. are classified (b). Another very striking grouping are the palisades. These are characterized by bacterial rods with vertical connections. A well-known example is the case of Simonsiella muelleri (b).

chloroflexus_-simonsiella
a) Microphotography of Chloroflexus sp. (Image: JGI Genome Portal). b) Scanner microphotography of Simonsiella sp. (Image: J. Pangborn)

In some cases, there are bacteria that do not have a definite shape or this may vary throughout the cell cycle. In this case, we speak of technically known as Pleomorphic bacteria. Corynebacterium sp. and Rhizobium sp. are good examples of this type of morphology.

DETERMINED BY THE GENOME

The form or morphology that presents the different bacteria is determined by its genome. This fact, and the great diversity of morphologies in different environments, suggest that this feature has an adaptive value and that have been produced by selective forces.

In general, the morphological features are attributed to environmental events as for example the limitation of nutrients, reproduction, dispersion, evasion of a predator or detection of the guest. In the case of filamentous bacteria, they presented a better buoyancy in liquid media and are more difficult to digest by protists. Helical bacteria move easiest in viscous media, while a spherical bacterium or cocci is ideal for the diffusion of nutrients (because it increases the surface/volume ratio).

So, expect that same morphology may appear by convergence in different lineages (that do not have a common ancestor), i.e. that shape is an adaptation to a given environment. For example, before, bacteria that have prostheca were grouped into a single genre known as Prosthecomicrobium, but thanks to genetic studies, this genus has been divided in three different genres. The surprise came when noted that each one of these genera was more similar to a gender without prostheca that between them, i.e., not were related phylogenetically. Simply these species have developed the same system of adaptation to the environment.

However, there are also remember that there are morphological characteristics that are inherited from a common ancestor and are preserved because it is useful for the life of the microbe.

·

As well as increase the knowledge in the microbial world and genetic techniques, we will discover more facts about these tiny organisms.

REFERENCES

  • Brock, microbe Biology. Madigan. Ed. Pearson.
  • Microbiology Introduction. Tortora. Ed. Panamericana. (Free access in spanish here)
  • David, T. Kysela. Diversity takes shape: understanding the mechanistic and adaptative basis of bacterial morphology. PLOS Biology. (Free access)
  • Kevin D. Young. The Selective Value of Bacterial Shape. Microbiology and Molecular Biology Reviews. (Free access)
  • Kevin D. Young. Bacterial morphology: why have different shapes? Current Opinion in Microbiology. (Free access)
  • Cover Photo: Escuela y Ciencia.

    Maribel-anglès

Microbiología básica (II): mil y una formas bacterianas

Imagina una bacteria. ¿Que imagen ha venido a tu mente? Posiblemente hayas pensado en una bacteria alargada en forma de bacilo, tipo E.coli o en una pequeña esfera. Durante años, hemos asociado la forma de las bacterias a varias morfologías generales, pero en el ambiente existen una gran multitud de formas. ¡Descúbrelas en el segundo capítulo de Microbiología básica! 

MIL Y UNA FORMAS BACTERIANAS

Los microorganismos representan un grupo de organismos invisibles a simple vista muy variados. En el anterior capitulo de esta colección de artículos hablamos sobre el tamaño de los diferentes microorganismos y en este segundo capítulo de microbiología básica hablaremos sobre las diferentes morfologías o formas que existen del grupo Bacteria y el grupo Arquea (Bacterias extremófilas).

Generalmente, cuando empezamos el viaje en el mundo bacteriano nos presentan una serie de morfologías básicas: el coco (de forma esférica o de baya), el bacilo (en forma de bastón) y el espirilo (en espiral), así como sus agregaciones. Estas últimas, se forman mediante la unión de las células tras la división. Por ejemplo, hay especies que forman parejas de cocos (conocidos como diplococos), otros forman largas cadenas de cocos (como Streptococcus sp.), otros se disponen en agrupaciones cúbicas tridimensionales (como Sarcina sp) y otros forman estructuras como racimos de uvas (Staphylococcus sp).

04-01_cocciarrange_1
Diferentes agrupaciones de cocos. (Imagen: Aula virtual).

En el caso de los bacilos, podemos encontrar también diferentes agrupaciones como los diplobacilos o los estreptobacilos (como por ejemplo Bacillus cereus). Aparte podemos encontrar muchas variaciones de los bacilos: los hay cortos y más redondeados (los cocobacilos, como seria el caso de Yersinia pestis), los hay pleomórficos (que tienen una o más formas dependiendo de la fase del ciclo celular), acabados en punta (como por ejemplo Epulopiscium fishelsoni), curvados o torcidos.

04-02_bacilli_1
Diferentes agrupaciones y variaciones de los bacilos (Imagen: Aula Virtual)

Finalmente, aparecen las formas torcidas o espiraladas como seria el caso de los vibrios (en forma de coma, como Vibrio cholerae), los espirilos (como Rhodospirillium rubrum) o las espiroquetas (en forma de sacacorcho, como Spirochaeta stenostrepta).

04-04_spiralbacteria_1
Formas torcidas y espiraladas bacterianas (Imagen: Aula Virtual).

¿Pero, por qué se generaliza la morfología a estas formas?

Esto se debe a que la microbiología siempre había sido una disciplina médica y estas formas son las más recurrentes en las bacterias patógenas. Actualmente, con el auge de la microbiología se ha observado que en el ambiente existe una inmensa diversidad de morfologías diferentes, algunas mucho más complejas de las que se conocían hasta el momento. El siguiente gráfico es resultado de un elaborado estudio de David T. Kysela y muestra la verdadera variedad morfológica que existe en el mundo bacteriano.

imagen1
Diferentes morfologías del grupo Bacteria (Imagen: David T. Kysela)

EJEMPLOS CURIOSOS

Algunas bacterias individuales presentan estructuras peculiares, como por ejemplo elongaciones estrechas conocidas como prosteca. Este seria el caso de Caulobacter sp. y Hyphomicrobium sp. Estas elongaciones permiten a la bacteria anclarse a un medio sólido. Hay bacterias que también pueden presentar tallos, espinas o puntas.

holm_niels
Bacteria de la especie Hyphomicrobium sp. con su característica prosteca. (Imagen: Holm Niels)

Otras bacterias presentan formas poco usuales y muy variadas. Por ejemplo, las bacterias halófitas (que soportan elevados niveles de concentración salina) de las especies Stella sp. y Haloquadratum sp. forman agregaciones muy características. La primera tiene forma de estrella y la segunda forma rectangular.

 

04-05_starshaped_1
Formas características de Stella vacuolata (a) y Haloquadratum walsbyi (b). (Imagen: Aula virtual).

Haloarcula japonica es una bacteria individual halófita como las anteriores que presenta una morfología muy llamativa. Como podemos ver en la primera sección de la imagen (a), en ciertos estadios de su ciclo celular presenta una forma triangular. Por otro lado, Pyrodictium abyssi (b) presenta una de las morfologías más llamativas, ya que tiene la forma de una i griega.

img_dos
a) Haloarcula japonica (Imagen: Nite) b) Pyrodictium abyssi (Imagen: Benjamin Cummings)

También existen agrupaciones bacterianas muy características, como por ejemplo largas cadenas de organismos que dan un aspecto de bacteria filamentosa. Este es el caso del filo bacteriano conocido como Chloroflexi, donde se clasifican bacterias verdes del azufre como Chloroflexus sp. (b). Otra agrupación muy llamativa son las empalizadas. Estas se caracterizan por ser uniones entre bacterias, por ejemplo bacilos, de forma vertical. Un ejemplo muy conocido es el caso de Simonsiella muelleri (b).

chloroflexus_-simonsiella
a) Microfotografía de una colonia de Chloroflexus sp. (Imagen: JGI Genome Portal). b) Microfotografía de escáner de Simonsiella sp. (Imagen: J. Pangborn)

En ciertos casos, hay bacterias que no presentan una forma definida o esta puede variar a lo largo de su ciclo celular. En este caso hablamos de bacterias técnicamente conocidas como pleomórficas. Corynebacterium sp. y Rhizobium sp. son genéticamente pleomórficas y buenos ejemplos de este tipo de morfología.

DETERMINADO  POR EL GENOMA

La forma o morfología que presentan las diferentes bacterias viene determinada por su genoma. Este hecho, y la gran diversidad de morfologías en diferentes ambientes, sugieren que esta característica tiene un valor adaptativo y que han sido producidas por fuerzas selectivas.

En general, las características morfológicas se atribuyen a eventos ambientales como por ejemplo la limitación de nutrientes, reproducción, dispersión, evasión de un depredador o detección del huésped. En el caso de las bacterias filamentosas, estas presentan una mejor flotabilidad en medios líquidos y son más difíciles de digerir por protistas. Las bacterias helicoidales se mueven de forma más fácil en medios viscosos, mientras que una bacteria esférica o coco es ideal para la difusión de nutrientes (ya que aumenta la relación superficie/volumen).

Así pues, cabe esperar que una misma morfología pueda aparecer por convergencia en linajes diferentes (que no tienen un antepasado común), es decir, esa forma es una adaptación a un determinado medio. Por ejemplo, las bacterias que presentan prosteca antes se agrupaban en un solo género conocido como Prosthecomicrobium, pero gracias a los estudios genéticos, este género se ha dividido en tres géneros diferentes. La sorpresa llegó cuando observaron que cada uno de estos géneros era más parecido a un género sin prosteca que entre ellos, es decir, no estaban relacionados filogenéticamente. Simplemente estas especies han desarrollado el mismo sistema para anclarse fácilmente.

Sin embargo, también hay que recordar que existen características morfológicas que se heredan de un ancestro común y al ser útiles para la vida del microorganismo se conservan.

·

¡No nos engañemos! A medida que aumente el conocimiento en el mundo microbiano y las técnicas genéticas, iremos descubriendo mil y una curiosidades más sobre estos pequeños organismos. 

REFERENCIAS

  • Brock, Biología de los Microorganismos. Madigan. Ed. Pearson.
  • Introducción a la Microbiología. Tortora. Ed. Panamericana. (Disponible en español aquí)
  • David, T. Kysela. Diversity takes shape: understanding the mechanistic and adaptative basis of bacterial morphology. PLOS Biology. (Artículo en inglés).
  • Kevin D. Young. The Selective Value of Bacterial Shape. Microbiology and Molecular Biology Reviews. (Artículo en inglés).
  • Kevin D. Young. Bacterial morphology: why have different shapes? Current Opinion in Microbiology. (Artículo en Inglés).
  • Foto de portada: Escuela y Ciencia.

Maribel-castellà