Arxiu d'etiquetes: coccinella septempunctata

Some insects and other arthropods you should not confuse

Untrustworthy and sensational news about insects and arthropods are constantly shared through social networks, spreading tergiversated data and confusing amateur users. As a result, this usually leads to misidentifications and unnecessary alarmism toward harmless organisms.

Here we bring you a brief list of some insects and other arthropods that are usually confused and how to tell them apart. Don’t get tricked!

Spiders VS ‘Anything resembling them’

Spiders (Order Araneae) probably are some of the most feared arthropods among users for two main reasons: they are venomous and there are a lot of other arachnids that resemble them. So, it is quite understandable some people have serious doubts when finding an organism with eight long legs and a grim face.

However, most of these spider-like organisms are harmless and  unable to weave webs:

Harvestmen: unlike other arachnids, harvestmen or daddy longlegs (Order Opiliones) don’t have their body divided into two parts (prosoma and opisthosoma) by a thin waist, so they remind off a ‘ball with legs’. Also, they only have a pair of central eyes very close to each other. They neither have venom glands nor silk glands, so they can’t bite nor weave webs. They live in moist places, caves and near to streams and harvests. They are usually confused with spiders of the Pholcidae family because of their long legs.

Pholcus phalangioides (Pholcidae) (Picture by Olaf Leillinger, CC 2.5)
Harvestman (Picture by Dalavich, CC 3.0)

Solifugae: also known as camel spiders, Solifugae is an order of tropical arachnids characterized for having a segmented body and a pair of conspicuously large chelicerae forwardly projected. However, and despite their menacing appearance, they aren’t venomous (even though they bite can be very painful) nor weave webs. They inhabit desert and arid places, some of them are nocturnal and the diurnal ones move quickly looking for shadows to escape from sunlight.

Camel spider (Picture by Swen Langel, CC 2.0).

Amblypygi: also known as whip spiders or tailless whip scorpions, Amblypygi is an order of tropical arachnids that are neither spiders nor scorpions. Despite their menacing appearance, as it happens with camel spiders, whip scorpions don’t have venom glands. They have a pair of big thorny pedipalps ended in a pincer for grabbing preys, while the first pair of legs, which are filiform and segmented, act as sensory organs (not for walk). They don’t weave webs and have nocturnal habits.

Amblypygi (Picture by José Eugenio Gómez Rodríguez on Flickr, CC 2.0)

Pill bugs VS Pill millipedes

When playing in a park or in some natural place as a kid, you some time probably found a small animal, full of legs that rolled up when being touched.

These organisms are commonly known as woodlice. Woodlice belong to the suborder Oniscidea, a group of terrestrial crustaceans within the order Isopoda. They have a tough, calcarean and segmented exoskeleton, and inhabit moist places.

Armadillidium vulgare, Oniscidea (Picture by Franco Folini, CC 2.5)

Woodlice of the family Armadillidae, also known as pill bugs, are usually confused with pill millipedes (Subphylum Myriapoda, Class Diplopoda, Superorder Oniscomorpha), both groups with a similar external appearance and able to roll up into an almost perfect sphere as a defensive mechanism (convergent evolution).

Glomeris marginata, Oniscomorpha (Picture by Stemonitis, CC 2.5).

To tell them apart, you have to count the total number of legs per segment: if it has only a pair of legs per segment (one at each side of the segment), it is a pill bug; if it has two pairs, it is a pill millipede.

Bees and wasps VS Hoverflies

We talked widely about the main differences between bees and wasps (Order Hymenoptera) in this postThis time, we introduce you the hoverflies or syrphid flies (Order Diptera, Suborder Brachycera, Family Syrphidae), which resemble a lot to bees and wasps.

Resemblance of hoverflies to bees, wasps and bumblebees is a clear example of Batesian mimicry, which we explained widely in this post about animal mimicry. Moreover, hoverflies mimicry goes even further, since some of them also imitate the flight and the hum of these hymenopterans.

Hoverfly (Public domain picture, CC0).
Honey bee (Picture by Andy Murray on Flickr, CC 2.0)

To tell them apart, you have to pay attention to their eyes, antennae and wings: since they are flies, hoverflies have a pair of big compound eyes that occupy almost all their head, very short antennae with eight or less segments and a single pair of wings (the second pair has evolved into small equilibrium organs, the halteres), while wasps, bees and bumblebees have smaller compound eyes that occupy only the sides of the head, longer antennae with ten or more segments and two pairs of functional wings. Moreover, female hoverflies don’t have the abdomen ended in a stinger, so they are completely harmless.

Ladybugs VS Pyrrhocoris apterus

If you look for ladybugs pictures on Internet, you’d probably find a picture of this insect:

Public domain picture (CC0)

This is Pyrrhocoris apterus, a very common insect in the Palearctic area (from Europe to China) and recorded to the USA, Central America and India. You can find it on common mallows (Malva sylvestris), from which they eat seeds and sap, and they usually congregate in big groups because of their gregarious behavior.

Ladybugs are coleopterans (Order Coleoptera) with a more or less globular shape; they are carnivorous (with a diet based mainly on the intake of aphids) and can fly. Their first pair of wings are hard (elytra) and form a kind of shield that encloses the second pair of membranous wings.

Ladybug Coccinella septempunctata (Public domain picture, CC0)

On the other hand, Pyrrhocoris apterus is a bug (Order Heteroptera) with a depressed body, phytophagous habits and, unlike ladybugs and other bugs, it is unable to fly. Moreover, it doesn’t have a hardened shield.

Mantises VS Mantidflies

Mantises (Order Dyctioptera), which were widely addressed in this post, are very alike to this insect:

Mantispa styriaca (Picture by Gilles San Martin on Flickr, CC 2.0)

This insect belongs to the family Mantispidae (Order Neuroptera), also known as mantidflies or mantispids. This group is very well represented in tropical and subtropical countries, and just a few species are known from Europe. They have a pair of raptorial legs like those of Mantodea which they use for grabbing their preys.

Neuropterans, like mantidflies, green lacewings and antlions, have two pairs of similar sized wings with a very complex and branched venation. In Mantodea, the first pair of wings are smaller and harder than the second one, which are membranous and functional for flying; also, this second pair doesn’t have such a complex venation like that of neuropterans.

Mantodea (Picture by Shiva shankar, CC 2.0)

Mantidflies of the genera Climaciella and Entanoneura have a body coloration like that of some wasps, but they are totally harmless.

Climaciella brunnea (Picture by Judy Gallagher on Flickr, CC 2.0)

Mosquitoes VS Crane flies

Have you ever seen a giant mosquito and dreaded its bite? Well, you can stop being afraid of it.

These giant ‘mosquitoes’ (Order Diptera), which are commonly known as crane flies or daddy longlegs (Family Tipulidae), are totally inoffensive (and somewhat clumsy). They are distributed all over the world and inhabit moist places, like meadows and streams. Adults feed on nectar or don’t feed; in any case, they don’t suck blood!

Females have the abdomen ended in a kind of stinger; however, it is only their sharp ovipositor (not a stinger like those of bees or wasps).

Female crane fly (Picture by Irene Lobato Vila)

Dragonflies VS Damselflies

Both groups belong to the Order Odonata and have very similar appearance and behavior, being very common near sitting waters and lakes.

Two thirds of the Odonata are dragonflies (suborder Anisoptera), while the other third are damselflies (suborder Zygoptera). An easy way to tell them apart is by paying attention to their wings at rest: in dragonflies, wings are held flat and away from the body, while in damselflies they are held folded, along or above the abdomen.

On the other hand, eyes of dragonflies are large and touch in the vertex of the head, of which they occupy most of its surface, while those of dragonflies are smaller and are usually located on the sides of the head.

Dragonfly (Public domain image, CC0)
Damselfly (Picture by Xosema, CC 4.0)

.         .         .

If you know about any other insect or arthropod that can be confused, let us know it by leaving a comment!

References

Algunos insectos y otros artrópodos que no deberías confundir

A través de las redes sociales se comparten con demasiada frecuencia noticias y artículos poco contrastados o sensacionalistas sobre insectos y otros artrópodos. Muchos de estos enlaces dan información poco ajustada y generan confusión entre los usuarios aficionados, llevando a malas identificaciones, a confundir unos organismos con otros y a generar rechazo o alarmismos innecesarios.

En este artículo, te presentamos un pequeño listado de insectos y otros artrópodos que suelen confundirse y te explicamos cómo diferenciarlos. ¡Que no te den gato por liebre!

Arañas VS “Cualquier cosa que se les parezca”

Probablemente las arañas (Orden Araneae) sean de los artrópodos que más inquietudes despiertan por dos motivos: pueden picar y hay muchos organismos que se les parecen. Así pues, es bastante comprensible que la gente tenga dudas de cualquier organismo que presente ocho patas largas y cara de pocos amigos.

Sin embargo, la mayoría de organismos similares a las arañas no son venenosos ni construyen telarañas:

Opiliones: a diferencia de otros arácnidos, los opiliones (Orden Opiliones) carecen de un estrechamiento o cintura que divida su cuerpo en dos partes (prosoma y opistosoma), por lo que a simple vista parecen “una bola con patas”. Además, sólo presentan un par de ojos centrales muy cercanos entre sí. Tampoco presentan glándulas venenosas ni hileras para la síntesis de seda, por lo que no pueden picar ni construir telarañas. Son habituales en lugares húmedos, cuevas y zonas cercanas a riachuelos, así como en cultivos. Suelen confundirse con arañas de la familia Pholcidae por la longitud de sus patas.

Araña de la especie Pholcus phalangioides (Pholcidae) (Imagen de Olaf Leillinger, CC 2.5)
Opilión (Imagen de Dalavich, CC 3.0)

Solífugos: también conocidos como arañas camello, los solífugos (Orden Solifugae) son unos arácnidos tropicales algo particulares, ya que presentan el cuerpo claramente segmentado y unos grandes quelíceros proyectados hacia delante. Sin embargo, y a pesar de la amenazadora apariencia de sus quelíceros, no son venenosos (aunque su mordedura puede ser dolorosa). Tampoco construyen telarañas. Habitan lugares áridos o desérticos; muchos son nocturnos, y los diurnos se mueven activamente en busca de sombras para huir del sol (de ahí su nombre).

Araña camello o solífugo (Imagen de Swen Langel, CC 2.0).

Amblipigios: los amblipigios (Orden Amblypygy) son típicamente tropicales. A pesar de su aparente agresividad, son inofensivos dado que carecen de glándulas venenosas. Sus pedipalpos son grandes, llenos de espinas y acaban en pinza, mientras que el primer par de patas es extremadamente largo, muy fino y articulado. No construyen telarañas y son nocturnos.

Amblipigio (Imagen de José Eugenio Gómez Rodríguez en Flickr, CC 2.0)

Cochinillas de la humedad VS Milpiés

Eres un niño y estás jugando en el campo o un parque y, de repente, bajo una piedra o un tronco húmedo encuentras un pequeño animal con muchas patas y que se hace una bola al tocarlo. Seguro que a más de uno le resulta familiar esta escena.

Bicho bola o cochinilla de la humedad. Las cochinillas pertenecen al suborden Oniscidea, formado por crustáceos terrestres (Orden Isopoda). Su exoesqueleto es rígido, segmentado y calcáreo, y habitan lugares húmedos.

Armadillidium vulgare, Oniscidea (Imagen de Franco Folini, CC 2.5)

Los oniscídeos de la familia Armadillidae, como las cochinillas de la humedad, se confunden fácilmente con los Oniscomorpha, un superorden de milpiés (Subfilo Myriapoda, Clase Diplopoda) de cuerpo corto y de apariencia externa muy similar a los oniscídeos fruto de una evolución convergente. Igual que las cochinillas, también adoptan forma de bola para protegerse.

Glomeris marginata, Oniscomorpha (imagen de Stemonitis, CC 2.5).

Para diferenciarlos, basta con contar las patas que se observan por segmento: si sólo presenta un par (una a cada lado), es una cochinilla; si presenta dos pares (dos a cada lado), es un milpiés.

Abejas y avispas VS Sírfidos

En este artículo tratamos en detalle las diferencias más relevantes entre abejas y avispas (Orden Hymenoptera). En esta ocasión, os presentamos a los sírfidos (Orden Diptera, Suborden Brachycera, Familia Syrphidae), unas moscas que guardan un parecido razonable con estos himenópteros.

La similitud de los sírfidos con abejas, avispas y abejorros constituye un claro ejemplo de mimetismo batesiano, del cual hablamos ampliamente en esta entrada sobre el mimetismo animal.  En este caso, además, su mimetismo va más allá de la coloración, pues algunos imitan el vuelo y el zumbido de estos himenópteros.

Sírfido (Imagen de dominio público, CC0).
Abeja melífera (Imagen de Andy Murray en Flickr, CC 2.0)

Para diferenciarlos, basta con fijarse en los ojos, las antenas y las alas: los sírfidos, como moscas que son, presentan unos ojos muy grandes que ocupan gran parte de la cabeza, unas antenas muy cortas de ocho o menos segmentos (a veces casi inapreciables) y un solo par de alas para volar (el segundo par está reducido formando unos órganos de equilibro diminutos, los halterios), mientras que abejas y avispas presentan unos ojos más reducidos que ocupan sólo los laterales de la cabeza, unas antenas más largas, con diez o más segmentos y dos pares de alas funcionales. Además, las hembras de sírfido no presentan el abdomen terminado en aguijón, así que son inofensivas.

Mariquitas VS Pyrrhocoris apterus

Si buscáis en Internet imágenes de mariquitas, seguro que alguna vez os habéis encontrado con fotografías de este insecto:

Imagen de dominio público (CC0)

Este pequeño insecto es Pyrrhocoris apterus, muy frecuente en el Paleártico (desde Europa hasta China), y citado también en USA, América Central y en la India. Es fácil de observar sobre las malvas (Malva sylvestris), de las cuales ingiere la savia y las semillas, y normalmente aparece en grandes grupos dado su comportamiento gregario (especialmente sus formas inmaduras).

Las mariquitas son escarabajos (Orden Coleoptera) de cuerpo globoso, su alimentación es esencialmente carnívora (pulgones) y pueden volar. Su primer par de alas está endurecido (élitros) formando una especie de caparazón que esconde el segundo par de alas membranoso.

Mariquita de la especie Coccinella septempunctata (Imagen de dominio público, CC0)

En cambio, Pyrrhocoris apterus es una chinche (Orden Heteroptera) de cuerpo deprimido, fitófaga y, al contrario que las mariquitas y otras chinches, no puede volar. Además, no presentan un caparazón endurecido.

Mantis VS Mantíspidos

En esta entrada hablamos ampliamente sobre las mantis (Orden Dyctioptera), las cuales son a primera vista muy similares a este insecto:

Mantispa styriaca (Imagen de Gilles San Martin en Flickr, CC 2.0)

Este insecto pertenece a la familia de los mantíspidos (Orden Neuroptera, Familia Mantispidae), la cual está muy bien representada en países tropicales y subtropicales, y con tan sólo algunas especies conocidas de Europa. Presentan unas patas anteriores raptoras que recuerdan a las de las mantis y con las que sujetan a sus presas, las cuales suelen ser insectos de cuerpo blando.

Los neurópteros, como los mantíspidos, las crisopas o las hormigas león, presentan dos pares de alas de tamaño similar con una venación muy compleja y ramificada. En los mantodeos, en cambio, las primeras son más pequeñas y endurecidas que las segundas, las cuales son grandes y membranosas; además, no presentan una venación tan compleja.

Mantis (Imagen de Shiva shankar, CC 2.0)

Los mantíspidos de los géneros Climaciella y Entanoneura tienen una coloración y un aspecto similar a una avispa, pero son totalmente inofensivos.

Climaciella brunnea (Imagen de Judy Gallagher en Flickr, CC 2.0)

Mosquitos VS Típulas

Seguro que alguna vez has visto una especie de mosquito gigante, de varios centímetros de longitud, y te has asustado pensando en su picadura. Pues bien, no hace falta que te asustes más.

Estos grandes “mosquitos” (Orden Diptera) se conocen como típulas (Familia Tipulidae) y son totalmente inofensivas (y algo torpes). Se distribuyen por todo el mundo y suelen habitar lugares húmedos, como prados y riachuelos. En su forma adulta, se alimentan de néctar o no se alimentan (¡no succionan sangre!), y se dedican exclusivamente a la búsqueda de pareja. Las hembras presentan el abdomen con una terminación que recuerda a un aguijón, hecho que les da un aspecto amenazador; sin embargo, tan sólo se trata del ovopositor con el que realizan la puesta.

Típula (Imagen de Irene Lobato Vila)

Libélulas VS Caballitos del diablo

Ambos grupos pertenecen al Orden Odonata y tienen un aspecto y unos hábitos bastante similares, siendo frecuentes en zonas con aguas estancas o poco móviles.

Unas 2/3 partes de los Odonata son libélulas (suborden Anisoptera), mientras que casi todo el resto son caballitos del diablo (suborden Zygoptera). Una forma rápida y eficaz de diferenciarlos es mediante la observación de sus alas en reposo: en las libélulas, éstas quedan extendidas en posición horizontal con el suelo (no las pliegan), mientras que, en los caballitos del diablo, éstas quedan plegadas en posición vertical.

Por otro lado, los ojos de las libélulas son grandes y se tocan en el vértice de la cabeza, de la cual ocupan una gran superficie, mientras que los de los caballitos del diablo son más pequeños y laterales.

Libélula (Imagen de dominio público, CC0)
Caballito del diablo (Imagen de Xosema, CC 4.0)

.         .         .

Si conoces más insectos u otros artrópodos que generen confusión, ¡no dudes en comentárnoslo!

Referencias

Difusió-castellà

Alguns insectes i altres artròpodes que no hauries de confondre

A través de les xarxes socials es comparteixen amb massa freqüència notícies i articles poc contrastats o sensacionalistes sobre insectes i altres artròpodes. Molts d’aquests enllaços donen informació poc ajustada i generen confusió entre els usuaris aficionats, fet que condueix a males identificacions, a confondre uns organismes amb altres de semblants i a generar rebuig o alarmismes innecessaris.

A continuació, et presentem un petit llistat d’insectes i altres artròpodes fàcils de confondre i t’expliquem com diferenciar-los. Que no et donin gat per llebre!

Aranyes VS “quelcom que se’ls assembli”

Molt probablement, les aranyes (Ordre Araneae) siguin dels artròpodes que més inquietuds desperten per dos motius: piquen i hi ha molts organismes que se’ls semblen. Així doncs, és bastant comprensible que la gent tingui dubtes de qualsevol organisme que presenti vuit potes llargues i cara de pocs amics.

No obstant això, la majoria d’organismes similars a les aranyes no són verinosos ni construeixen teranyines:

Opilions: a diferència d’altres aràcnids, els opiliones (Ordre Opiliones) no presenten un estrenyiment o cintura que divideixi el seu cos en dues parts (prosoma i opistosoma), de manera que a simple vista semblen “una bola amb potes”. A més, només presenten un parell d’ulls centrals molt propers entre si. Tampoc presenten glàndules verinoses ni fileres per a la síntesi de seda, motiu pel qual no piquen ni construeixen teranyines. Són habituals en llocs humits, coves i zones pròximes a rierols, així com en cultius. Se’ls sol confondre amb aranyes de la família Pholcidae per la longitud de les seves potes.

Aranya de l’espècie Pholcus phalangioides (Pholcidae) (Imatge de Olaf Leillinger, CC 2.5)
Opilió (Imatge de Dalavich, CC 3.0)

Solífugs: també coneguts com aranyes camell, els solífugs (Ordre Solifugae) són uns aràcnids tropicals una mica particulars, ja que presenten el cos clarament segmentat i uns grans quelícers projectats cap endavant. Tanmateix, i malgrat l’amenaçadora aparença dels seus quelícers, no són verinosos (encara que la seva mossegada pot ser dolorosa). Tampoc construeixen teranyines. Habiten llocs àrids o desèrtics; molts són nocturns, i els diürns es mouen activament a la recerca d’ombres per fugir del sol (d’aquí el seu nom).

Aranya camell o solífug (Imatge de Swen Langel, CC 2.0).

Amblipigi: els amblipigis (Ordre Amblypygy) són típicament tropicals. Malgrat la seva aparent agressivitat, són inofensius atès que no tenen glàndules verinoses. Els seus pedipalps són grans, plens d’espines i acaben en pinça, mentre que el primer parell de potes és extremadament llarg, molt fi i articulat. No construeixen teranyines i són nocturns.

Amblipigi (Imatge de José Eugenio Gómez Rodríguez a Flickr, CC 2.0)

Porquets de Sant Antoni VS Milpeus

Ets un nen i estàs jugant al camp o un parc i, de sobte, sota una pedra o un tronc humit et pares a mirar un petit animal amb moltes potes i que es fa una bola quan el toques. Segur que a més d’un li resulta familiar aquesta escena.

Probablement es tractés d’un porquet de Sant Antoni. Els porquets de Sant Antoni pertanyen al subordre Oniscidea, format per crustacis terrestres (Ordre Isopoda). El seu exosquelet és rígid, segmentat i calcari, i habiten llocs humits.

Armadillidium vulgare, Oniscidea (Imatge de Franco Folini, CC 2.5)

Els oniscídis de la família Armadillidae, com els porquets, es confonen fàcilment amb els Oniscomorpha, un superordre de milpeus (Subfilo Myriapoda, Classe Diplopoda) de cos curt i d’aparença externa molt similar fruit d’una evolució convergent. De la mateixa manera que els Armadillidae, també es fan una bola per protegir-se.

Glomeris marginata, Oniscomorpha (Imatge de Stemonitis, CC 2.5).

Per diferenciar-los, només cal comptar les potes que tenen a cada segment: si en té un parell (una a cada costat), és un porquet de Sant Antoni; si en presenta dos parells (dos a cada costat), és un milpeus.

Abelles i vespes VS Sírfids

En aquest article vam parlar en detall sobre les diferències més rellevants entre abelles i vespes (Ordre Hymenoptera). En aquesta ocasió, us presentem als sírfids (Ordre Diptera, Subordre Brachycera, Família Syrphidae), unes mosques que guarden una semblança raonable amb aquests himenòpters.

La semblança dels sírfids amb abelles, vespes i borinots constitueix un exemple clar de mimetisme batesià, del qual parlàrem àmpliament en aquesta entrada sobre el mimetisme animal. En aquest cas, a més, el seu mimetisme vas més enllà de la coloració, ja que alguns imiten el vol i el brunzit d’aquests himenòpters.

Sírfid (Imagen de domini públic, CC0).
Abella de la mel (Imatge de Andy Murray a Flickr, CC 2.0)

Per diferenciar-los, només cal fixar-se en els ulls, les antenes i les ales: els sírfids, com mosques que són, presenten uns ulls molt grans que ocupen gran part del cap, unes antenes molt curtes de vuit o menys segments (de vegades gairebé inapreciables) i un sol parell d’ales per volar (el segon parell està reduït formant uns òrgans d’equilibri diminuts, els halteris), mentre que en abelles i vespes, els ulls són més petits i tan sols ocupen els laterals del cap, les antenes són més llargues, amb deu o més segments i presenten dos parells d’ales funcionals. A més a més, les femelles de sírfid no presenten l’abdomen acabat en agulló, així que són inofensives.

Marietes VS Pyrrhocoris apterus

Si busqueu a Internet imatges de marietes, segur que alguna vegada us heu trobat amb fotografies d’aquest insecte:

Imatge de domini públic (CC0)

Aquest petit insecte és Pyrrhocoris apterus, molt freqüent al Paleàrtic (des d’Europa fins a la Xina), i citat també als EUA, Amèrica Central i a l’Índia. És fàcil d’observar sobre les malves (Malva sylvestris), de les quals n’ingereix la saba i les llavors, i normalment apareix en grans grups degut al seu comportament gregari (especialment les seves formes immadures).

Les marietes són escarabats (Ordre Coleoptera) de cos globós, la seva alimentació és essencialment carnívora (pugons) i poden volar. El seu primer parell d’ales està endurit (èlitres) formant una espècie de closca que amaga el segon parell d’ales membranós.

Marieta de l’espècie Coccinella septempunctata (Imatge de domini públic, CC0)

En canvi, Pyrrhocoris apterus és una xinxa (Ordre Heteroptera) de cos deprimit, fitòfaga i, al contrari que les marietes i altres xinxes, no pot volar. D’altra banda, no presenta una closca endurida.

Mantis VS Mantíspids

En aquesta entrada vam parlar àmpliament sobre les mantis (Ordre Dyctioptera), les quals són a primera vista molt similars a aquest insecte:

Mantispa styriaca (Imatge de Gilles San Martin a Flickr, CC 2.0)

Aquest insecte pertany a la família dels mantíspids (Ordre Neuroptera, Família Mantispidae), la qual està molt ben representada en països tropicals i subtropicals, i amb tan sols algunes espècies conegudes d’Europa. Presenten unes potes anteriors raptores que recorden a les de les mantis i amb les que subjecten les preses, les quals solen ser insectes de cos tou.

Els neuròpters, com els mantíspids, les crisopes o les formigues lleó, presenten dos parells d’ales de mida similar amb una venació molt complexa i ramificada. En els mantodeus, en canvi, les primeres són més petites i endurides que les segones, les quals són grans i membranoses; a més, no presenten una venació tan complexa.

Mantis (Imatge de Shiva shankar, CC 2.0)

Els mantíspids dels gèneres Climaciella i Entanoneura tenen una coloració i un aspecte similar a una vespa, però són totalment inofensius.

Climaciella brunnea (Imatge de Judy Gallagher a Flickr, CC 2.0)

Mosquits VS Típules

De ben segur que alguna vegada has vist una mena de mosquit gegant, de diversos centímetres de longitud, i t’has espantat pensant en la seva picada. Doncs bé, no cal que t’espantis més.

Aquests grans “mosquits” (Ordre Diptera) reben el nom de típules (Família Tipulidae) i són totalment inofensives (i una mica maldestres). Es distribueixen per tot el món i solen habitar llocs humits, com prats i rierols. En la seva forma adulta, s’alimenten de nèctar o no s’alimenten (no succionen sang!) i es dediquen exclusivament a la recerca de parella. Les femelles presenten l’abdomen amb una terminació que recorda un fibló, fet que els dóna un aspecte amenaçador; tanmateix, tan sols es tracta de l’ovopositor amb el que realitzen la posta.

Típula (Imatge de Irene Lobato Vila)

Libèl·lules VS Cavallets del diable

Ambdós dos grups pertanyen a l’Ordre Odonata i tenen un aspecte i uns hàbits força similars, sent freqüents en zones amb aigües estancades o poc mòbils.

Unes 2/3 parts dels Odonata són libèl·lules, també conegudes com espiadimonis (subordre Anisoptera), mentre que quasi tota la resta són cavallets del diable (subordre Zygoptera). Una manera ràpida i eficaç de diferenciar-los és mitjançant l’observació de les seves ales en repòs: a les libèl·lules, aquestes queden esteses en posició horitzontal (no les pleguen), mentre que en els cavallets del diable aquestes queden plegades en posició vertical.

D’altra banda, els ulls de les libèl·lules són grans i es toquen en el vèrtex del cap, del que n’ocupen una gran superfície, mentre que els dels cavallets del diable són més petits i laterals.

Libèl·lula o espiadimonis (Imatge de domini públic, CC0)
Cavallet del diable (Imatge de Xosema, CC 4.0)

.         .         .

Si coneixes més insectes o altres artròpodes que generin confusió, no dubtis en comentar-nos-ho!

Referències

 

Parásitos zombis: una realidad de ciencia ficción

Estamos acostumbrados a ver en películas de terror, seres extraños que tienen la capacidad de controlar la mente y la voluntad de sus víctimas. Pero, ¿que tienen de reales esos seres? Existen un tipo de parásitos y parasitoides con esa capacidad. En esta entrada hablaremos sobre algunos ejemplos de estos parásitos zombis. 

INTRODUCCIÓN

El parasitismo es considerado una forma de depredación donde una de las especies implicadas (el parásito) extrae un beneficio a expensas de la otra (el hospedador). Esta relación es obligatoria, ya que los parásitos han perdido la capacidad de producir ciertas moléculas que deben obtener a costa del hospedador. Un ejemplo muy interesante es el de los parásitos zombis, que no solo acaban con la vida de su hospedador, sino que son capaces de modificar su conducta para llegar a dicho fin.

Este tipo de parásitos se pueden encontrar clasificados en diferentes grupos (protozoos, hongos, nematodos, artrópodos…). Todos tienen en común la capacidad de modificar los comportamientos y fisiología de los hospedadores para asegurar su propia reproducción. Hay diferentes mecanismos para realizar ese objetivo: inducir el suicidio del hospedador o modificar su conducta en contra de su voluntad.

ALTERACIÓN DE LA CONDUCTA

 Un ejemplo muy interesante de parásito que utiliza este mecanismo son las avispas del género Glyptapanteles sp.  Las hembras infectan a lepidópteros de la especie Thyrinteina leucocerae en su fase larval. Las larvas se transforman en orugas que crecen y se alimentan de forma normal. En las últimas etapas de desarrollo de la oruga, se liberan de su interior las pupas de la avispa (estadio de la metamorfosis entre las larvas y el adulto) que se posan justo al lado de la oruga. En ese momento, se libera una substancia endocrina que induce al hospedador a quedarse junto a las pupas para protegerlas, impidiendo cualquier movimiento voluntario por parte del lepidóptero. Este último deja de alimentarse y muere de hambre justo después de la metamorfosis de la pupa a avispa adulta.

jose_lino_neto
Oruga de Thyrinteina leucocerae protegiendo un grupo de pupas de Glyptapanteles sp. (Foto: José Lino-Neto)

Otro ejemplo de avispa parasitoide muy interesante, es el caso de la especie Hymenoepimecis argyraphaga que infecta a Plesiometa argyra (una especie de araña costarriqueña). En este caso, la hembra pega al abdomen de la araña su huevo. Cuando este eclosiona, las larvas hematófagas (que se alimentan de sangre) inyectan una substancia química que induce al hospedador a crear una telaraña capaz de soportar el peso del capullo, en lugar de una telaraña destinada a atrapar insectos. A continuación, la larva se alimenta del hospedador hasta que este muere.

william_eberhard
Diferencias entre una telaraña normal de Plesiometa argyra y una telaraña modificada. Imagen modificada de William G. Eberhard (Nature, 2000).

Los casos anteriores muestran parasitoides que acaban finalmente con la vida de su hospedador, pero existen casos donde una vez el parasitoide se libera del hospedador este puede continuar con su vida. Este es el caso de la infección de la mariquita Coccinella septempunctata por parte de una avispa de la especie Dinocampus coccinellae. La hembra de la avispa inyecta los huevos en el abdomen de la mariquita que las incuba en su interior. Cuando las larvas se han desarrollado (sin tocar ningún órgano vital de la mariquita), se liberan y forman un capullo que la mariquita protegerá. Si el hospedador consigue sobrevivir durante siete días, cuando las larvas se conviertan en adultos la mariquita se recuperará y podrá continuar con su ciclo vital.

Guilles_san_martin
Coccinella septempunctata protegiendo el capullo de la avispa Dinocampus coccinellae. (Foto:Gilles San Martín)

INDUCCIÓN AL SUICIDIO

Myrmeconema neotropicum es un nematodo que infecta hormigas tropicales de la especie Cephalotes atratus. Estas hormigas son completamente negras, pero al estar infectadas con el parásito, su abdomen se vuelve de color rojizo. Este cambio cromático permite a la hormiga mimetizarse con los frutos de ciertos árboles. Así pues, el objetivo del parásito es que el hospedador sea reconocido por pájaros frugívoros y se lo coman. Los pájaros son los hospedadores intermediarios, ya que gracias a sus excrementos consiguen una mayor dispersión de sus huevos. Lo interesante de este parásito es que es capaz de modificar la conducta de la hormiga y obligarla a subir a lugares más despejados y desprotegidos para ser localizada por los depredadores.

steven_yanoviak
Diferencias entre el abdomen de una hormiga Cephalotes atratus normal y una infectada. (Foto: Steven Yanoviak)

Otra especie de nematodo, concretamente Spinochordodes tellinii, infecta a grillos de la especie Meconema Thalassinum (Orthoptera). Las larvas del parásito se encuentran en el agua y  son ingeridas por mosquitos (hospedador intermedio). Los mosquitos son ingeridos por los grillos y una vez en el intestino, el nematodo crece hasta triplicar el tamaño del insecto. Cuando el parasito es adulto, modifica el comportamiento del hospedador provocando que este se suicide en el agua. Así pues, el parásito queda libre en su medio para poder reproducirse.

alastair_rae
Grillo (Meconema thalassinum) infectado por el nematodo Spinochordodes tellinii. (Foto: Alastair Rae)

El gusano plano o platelminto Leucochloridium paradoxum infecta caracoles de la especie Succinea putris. Este último ingiere las larvas del parásito que se desarrolla dentro del sistema digestivo del hospedador para dar lugar a los esporocistos (una especie de sacos que contienen en su interior miles de larvas, conocidas como redias). Los esporocistos se dirigen hacia los tentáculos de los ojos del caracol donde provocan una inflamación muy exagerada que se parece a una oruga. También inducen un cambio en el comportamiento del caracol, alejándolo de zonas resguardadas y obligándoles a exponerse en lugares donde pueden ser vistos por los pájaros. El movimiento de los tentáculos llama la atención de las aves que se comen al caracol y esparcen mediante sus excrementos las cercarias (estadio siguiente a las redias) del parásito.

dick_belgers
Ciclo vital de Leucochloridium paradoxum de Ophiguris (2009). La segunda imagen muestra un parásito en el tentáculo del caracol (Succinea putris) imitando una oruga. (Foto de Dick Belgers)

En último lugar, pero no menos importante, destaca el hongo parásito Ophiocordyceps unilateralis que infecta hormigas tropicales de la especie (Camponotus leonardi). Las esporas del hongo llegan al interior del hospedador mediante la alimentación. Una vez en el sistema digestivo, se induce un cambio en el comportamiento de la hormiga, obligándola a subir a lugares altos donde se clava con las mandíbulas. Una vez allí, las esporas germinan atravesando el exoesqueleto de las hormigas para liberar sus estructuras reproductivas.

alex_wild
Hormiga infectada por Ophiocordyceps sp. Véase las estructuras reproductivas del hongo saliendo del exosqueleto del hospedador. (Foto: Alex Wild)

Hoy en día, sin embargo, la información de los mecanismos utilizados por estos parásitos zombis sigue siendo objeto de muchas investigaciones. ¿Creéis que parecen seres sacados de una película? Pues no, no se trata de ciencia ficción sino de realidad.

REFERENCIAS

Maribel-castellà

Zombie parasites: a reality of science fiction

Many horror films are based on organisms that have the ability to control the victim’s mind. In fact, there is some kind of real parasites and parasitoids which can control its host’s behaviour to guarantee its breeding. In this post, we will discuss some examples of those interesting parasites.

INTRODUCTION

Parasitism is a type of predation where an organism (parasite) extracts a benefit at the expenses of another one (host). The parasites have lost the ability to synthesize some essential molecules that get through hosts, as well as parasitism is a mandatory relationship. There are many types of parasites, but the most interesting examples are zombies parasites.

The parasitic zombies have in common the ability to control and modify the behavior and physiology of the host to guarantee its breeding. Can you find them in different taxonomic groups (fungi, protozoa, nematodes, arthropods…). There are differents mechanisms to fulfill its objective, but the most important are: control the behavior of the host or induce him to suicide.

BEHAVIOUR MODIFICATION

Glyptapanteles is a genus of parasitoid wasp that infects species of Lepidoptera Thyrinteina leucocerae in its larval phase. The larvae become caterpillars which grow and feed normally. In the final stages of development of the caterpillar,  the pupae of parasitoid wasp (the metamorphosis between larvae and the adult stage) are released and settled next to the caterpillar. Before his release, the pupae excrete an endocrine substance that modifies the behavior of the caterpillar forcing him to protect the small pupae. caterpillar stops feeding and move until the adult wasp emerges. At that time, the Caterpillar dies from starvation and exhaustion.

jose_lino_neto
Thyrinteina leucocerae caterpillar protecting a group of pupae of Glyptapanteles sp. (Photo: José Lino-Neto)

Another example of  interesting parasitoid wasp, is the species Hymenoepimecis argyraphaga infecting Plesiometa argyra (a species of tropical spider). In this case, the female sticks to the abdomen of the spider its egg. When the hematophagous (which feed on blood) larvae hatches, injected a chemical substance that causes the host to create a cobweb that is capable of supporting the weight of the cocoon, rather than a cobweb to catch insects. The larvae then feeds the host until it dies and then create its cocoon in the cobweb. Then, it will transform into pupae and eventually will emerge as an adult.

william_eberhard
Differences between a normal cobweb of Plesiometa argyra and a modified cobweb. Modified image of William G. Eberhard (Nature, 2000).

The above examples are parasitoids that they finally finished with the life of its host, but there are cases where once the parasitoid releases from the victim’s body, the host can continue to live. This is the case of the infection of the Ladybird Coccinella septempunctata by wasp species Dinocampus coccinellae. The  female wasp injects the eggs in the abdomen of the Ladybird that incubates them inside. When the larvae have been developed (without touching any host’s vital organ), are released and form a cocoon that will protect the Ladybird.  If the host gets to survive for seven days, when the larvae become adult Ladybug will recover and can continue with normal life cycle.

Guilles_san_martin
Coccinella septempunctata protecting a cocoon of wasp Dinocampus coccinellae. (Photo:Gilles San Martin)

INDUCTION TO SUICIDE

Myrmeconema neotropicum is a nematode that infects tropical ants of the species Cephalotes atratus. These ants are completely black, but when they are infected with the parasite, their abdomen becomes reddish. This change allows the host camouflaged with certain berries and confuse frugivorous birds. In addition, this parasite is being able to change the behavior of ant and force her to rise to clear and unprotected areas to be located by the predators. The birds are hosts intermediaries, since thanks to their excrement, they get a greater dispersion of the eggs of parasites.

steven_yanoviak
Differences between the abdomen of a Cephalotes atratus normal and an infected. (Photo: Steven Yanoviak)

Another species of nematode, namely Spinochordodes tellinii, infects to crickets Meconema Thalassinum (Orthoptera) species. The larvae of the parasite are in the water and are ingested by mosquitoes (intermediate host). Mosquitoes are swallowed up by Crickets and once in the intestine, the nematode grows up to triple the size of the insect. When the parasite is adult, modifies the behavior of the host causing and induces him to commit suicide in the water. Thus, the parasite is free in its middle order to breed.

alastair_rae
Cricket (Meconema thalassinum) infected with the nematode Spinochordodes tellinii. (Photo: Alastair Rae)

The flatworm or platyhelminth Leucochloridium paradoxum infects snails of the species Succinea putris. The host eats the larvae of the parasite that develops into the digestive tract of the host to give rise to the sporocysts (a kind of sacks that contain thousands of larvae, known as cercarias). The sporocysts are directed towards the tentacles of the snail’s eyes and causes a very exaggerated inflammation that resembles a caterpillar. They also induce a change in the behavior of the snail, leading him away from protected areas and forcing them to expose in places where it can be seen by the birds. The movement of the tentacles draws the attention of the birds that eat the snail and spread through their feces the cercaria (next state of maturation of the parasite).

dick_belgers
Life cycle of Leucochloridium paradoxum from Ophiguris (2009). The second image shows a parasite in the tentacle of the snail (Succinea putris) imitating a caterpillar. (Photo by Dick Belgers)

Finally, but no less important, highlights the parasitic fungus Ophiocordyceps unilateralis infecting species tropical ants (Camponotus leonardi). The host ingests the spores of the fungus. Once in the digestive system, it induces a change in the behaviour of the Ant, forcing her to climb to high places where anchor with jaws. Once there, the spores germinate through the host’s exoskeleton to release their reproductive structures.

alex_wild
Ant infected by Ophiocordyceps sp. See the reproductive structures of the fungus out of the exoskeleton of the host. (Photo: Alex Wild)

Today, however, the mechanisms used by these parasites zombies information continue to be investigated. Do you think that they seem to beings from a horror film? No,  it is not science fiction. It’s our surprising nature.

REFERENCES

Maribel-anglès