Arxiu d'etiquetes: codi genètic

La farmacogenètica: un fàrmac per a cada persona

Qui no ha sentit a algú queixar-se de que els medicaments receptats pels metges no li fan res? Pot ser això cert? No tots els fàrmacs serveixen per a la mateixa població. Segueix llegint i descobreix els secrets de la farmacogenètica.

INTRODUCCIÓ

El mateix que passa amb els nutrients, passa amb els fàrmacs. Un altre dels objectius de la medicina personalitzada és fer-nos veure que no tots els medicaments serveix per a totes les persones. No obstant, això no és nou perquè cap allà al 1900, el metge canadenc William Osler va reconèixer que existia una variabilitat intrínseca i pròpia de cada individu, de manera que cada persona reacciona de forma diferent davant d’un fàrmac. És així com anys més tard definiríem la farmacogenètica.

És important assenyalar que no és el mateix que la farmacogenómica, la qual estudia les bases moleculars i genètiques de les malalties per desenvolupar noves vies de tractament.

Abans de tot necessitem començar pel principi: què és un fàrmac? Doncs bé, un fàrmac és tota substància fisicoquímica que interactua amb l’organisme i el modifica, per tractar de curar, prevenir o diagnosticar una malaltia. És important saber que els fàrmacs regulen funcions que fan les nostres cèl·lules, però no són capaces de crear noves funcions.

A part de conèixer si un fàrmac és bo o no per a una persona, també s’ha de tenir en compte la quantitat d’aquest que s’ha d’administrat. I és que encara no coneixem l’origen de totes les malalties, és a dir, desconeixem la majoria de les causes moleculars i genètiques reals de les malalties.

La classificació de les malalties es basa principalment en símptomes i signes i no en les causes moleculars. A vegades, un mateix grup de patologies és agrupat, però entre ells existeix una base molecular molt diferent. Això comporta que l’eficàcia terapèutica sigui limitada i baixa. Davant els fàrmacs, podem manifestar una resposta, una resposta parcial, que no ens produeixi cap efecte o que l’efecte sigui tòxic (Figura 1).

efectivitat i toxicitat
Figura 1. Efectivitat i toxicitat d’un fàrmac a la població. Els diferents colors mostren les diferents respostes (verd: efectiu i segur; blau: segur, però no efectiu; vermell: tòxic i no efectiu; groc: tòxic, però efectiu) (Font: Mireia Ramos, All You Need is Biology)

ELS FÀRMACS AL NOSTRE COS

Els fàrmacs acostumen a fer el mateix recorregut pel nostre cos. Quan ens prenem un fàrmac, normalment per via digestiva, aquest és absorbit pel nostre cos i va a parar al torrent sanguini. La sang el distribueix als teixits diana on ha de fer efecte. En aquest cas parlem de fàrmac actiu (Figura 2). Però no sempre és així, sinó que a vegades necessita activar-se. És llavors quan parlem de profàrmac, el qual necessita fer escala al fetge abans d’aterrar al torrent sanguini.

La majoria de les vegades, el fàrmac que ingerim és actiu i no necessita passa a visitar al fetge.

active and prodrug
Figura 2. Diferència entre un profármac i un fármac actiu (Font: Agent of Chemistry – Roger Tam)

Una vegada que el fàrmac ja ha anat al teixit diana i ha interactuat amb les cèl·lules en qüestió, es produeixen deixalles del fàrmac. Aquestes restes continuen circulant per la sang fins a arribar al fetge, que els metabolitza per a expulsar-los per una de les dues vies d’expulsió: (i) la bilis i excreció junt amb els excrements o (ii) la purificació de la sang pels ronyons i la orina.

LA IMPORTÀNCIA DE LA FARMACOGENÈTICA

Un clar exemple de com segons els polimorfismes de la població hi haurà diferent variabilitat de resposta el trobem en els gens transportadors. La glicoproteïna P és una proteïna situada a la membrana de les cèl·lules, que actua com a bomba d’expulsió de xenobiòtics cap a l’exterior de la cèl·lula, és a dir, tots els compostos químics que no formen part de la composició dels organismes vius.

Els humans presentem un polimorfisme que ha estat molt estudiat. Depenent del polimorfisme que posseeixi cada individu, la proteïna transportadora tindrà una activitat normal, intermèdia o baixa.

En una situació normal, la proteïna transportadora produeix una excreció bastant alta del fàrmac. En aquest cas, la persona és portadora de l’al·lel CC (dues citosines). Però si només té una citosina, combinada amb una timina (totes dues són bases pirimidíniques), l’expressió del gen no és tant bona i l’activitat d’expulsió és menor, donant una situació intermèdia. En canvi, si una persona presenta dues timines (TT), l’expressió de la glicoproteïna P a la membrana de la cèl·lula serà baixa. Això suposarà una menor activitat del gen responsable i, conseqüentment, major absorció en sang ja que el fàrmac no és excretat. Aquest polimorfisme, el polimorfisme TT, és perillós pel pacient, ja que passa molt fàrmac a la sang, resultant tòxic pel pacient. Per tant, si el pacient és TT la dosis haurà de ser menor.

Aquest exemple ens demostra que coneixent el genoma de cada individu i com actua segons el seu codi genètic en base a ell, podem saber si l’administració d’un fàrmac a un individu serà l’adequada o no. I en base a això, podem receptar un altre medicament que s’adapti millor a la genètica d’aquesta persona.

APLICACIONS DE LA FARMACOGENÈTICA

Les aplicacions d’aquestes disciplines de la medicina de precisió són moltes. Entre elles es troben optimitzar la dosi, escollir el fàrmac adequat, donar un pronòstic del pacient, diagnosticar-lo, aplicar la teràpia gènica, monitoritzar el progrés d’una persona, desenvolupar nous fàrmacs i predir possibles respostes adverses.

Els progressos que han tingut lloc en la genòmica, el disseny de fàrmacs, teràpies i diagnòstics per a les diferents patologies, han avançat notablement en els últims anys, i han donat pas al naixement d’una medicina més adaptada a les característiques de cada pacient. Ens trobem, per tant, al llindar d’una nova manera d’entendre les malalties i la medicina.

I això es produeix en una època en la que es vol deixar enrere el món de pacients que davant una malaltia o malestar són atesos i diagnosticats de la mateixa manera. Per rutina, se’ls prescriuen els mateixos medicaments i dosis. Per aquest motiu ha sorgit la necessitat d’una alternativa científica que, basada en el codi genètic, ofereix tractar al malalt de manera individualitzada.

REFERÈNCIES

  • Goldstein, DB et al. (2003) Pharmacogenetics goes genomic. Nature Review Genetics 4:937-947
  • Roden, DM et al. (2002) The genetic basis of variability in drug responses. Nature Reviews Drug Discovery 1:37-44
  • Wang, L (2010) Pharmacogenomics: a system approach. Syst Biol Med 2:3-22
  • Ramos, M. et al. (2017) El código genético, el secreto de la vida. RBA Libros
  • Foto portada: Duke Center for Applied Genomics & Precision Medicine

MireiaRamos-catala2

La realitat de les mutacions

Recordeu les tortugues ninja? En Leonardo, Raphael, Michelangelo i Donatello eren quatre tortugues que van patir una mutació al ser banyades amb un líquid radioactiu. Per sort o per desgràcia, una mutació no ens pot convertir en tortugues ninja, però sí que pot tenir altres efectes. A continuació us explico què són les mutacions.

QUÈ SÓN LES MUTACIONS?

El nostre cos és com una gran fàbrica en la que les nostres cèl·lules són els treballadors. Aquestes, gràcies a la seva maquinària interna, fan que la fàbrica segueixi endavant amb els menors problemes possibles. El funcionament constant de les nostres cèl·lules les 24 hores del dia durant els 365 dies de l’any, provoca que, a vegades, es produeixin errors en la seva maquinària. Això genera imperfeccions en el codi genètic, les quals generalment passen desapercebudes. Sí que és cert que les cèl·lules fan tot el possible per arreglar els errors produïts, però a vegades són inevitables i condueixen a la generació de malalties o, inclús, a la mort de la cèl·lula si aquesta es veu desbordada i no pot superar les adversitats.

Així doncs, les mutacions són aquests petits errors, és a dir, canvis estables i heretables que alteren la seqüència de l’ADN. Aquest fet fa que s’introdueixin noves variants gèniques a la població, generant diversitat genètica.

Generalment, les mutacions acostumen a ser eliminades, però ocasionalment algunes poden tenir èxit i escapar-se dels mecanismes de reparació de l’ADN de les nostres cèl·lules. No obstant, només es mantenen estables i heretables en l’ADN si afecten a un tipus de cèl·lules, les cèl·lules germinals.

Els organismes que ens reproduïm sexualment tenim dos tipus de cèl·lules: germinals i somàtiques. Mentre que les primeres transmeten la informació genètica de pares a fills, les cèl·lules somàtiques formen el cos de l’organisme. Degut a que la informació de les cèl·lules germinals, que són les que donen lloc a gàmetes (espermatozoides i oòcits) passa de generació en generació, aquestes han d’estar protegides contra els diferents canvis genètics per poder salvaguardar cada individu.

Degut a que la majoria de les mutacions són perjudicials, cap espècie pot permetre que s’acumulin mutacions en gran número en les seves cèl·lules germinals. És per això que no totes les mutacions queden fixades a la població, sinó que moltes d’aquestes variants solen ser eliminades. Ocasionalment algunes sí que es poden incorporar a tots els individus de l’espècie.

La taxa de mutació és la freqüència en la que es produeixen noves mutacions en un gen. Cada espècie té una taxa de mutació pròpia, modulada per la selecció natural. Això implica que cada espècie es pot enfrontar diferent als canvis produïts per l’ambient.

Les taxes de mutació espontànies són molt baixes, de l’ordre de 10-5-10-6 per gen i generació. D’aquesta manera, les mutacions no produeixen canvis ràpids en la població.

EL PAPER DE LA SELECCIÓ NATURAL

Canvis de nucleòtids en les cèl·lules somàtiques poden donar lloc a cèl·lules variants o mutants, algunes de les quals, a través a de la selecció natural, aconsegueixen ser més avantatjoses respecte a les seves companyes i proliferen molt ràpid. Com a resultat, en el cas extrem, es produeix el càncer, és a dir, una proliferació cel·lular descontrolada. Algunes de les cèl·lules del cos comencen a dividir-se sense aturar-se i es disseminen als teixits del voltant, procés conegut com a metàstasi.

Però la millor manera d’entendre el paper de la selecció natural de la qual en parlava el naturista Charles Darwin és amb l’exemple de les papallones del bedoll (Biston betularia). A Anglaterra habiten dos tipus de papallones, les de color gris clar i les de color gris fosc (Figura 1). Les primeres acostumaven a ser les més comuns, però entre els anys 1848 i 1898 es van invertir els papers i les papallones de color gris es van imposar.

biston
Figura 1. Papallones del bedoll (Biston betularia) de color gris clar i gris fosc (Font: TorruBlog)

Aquest canvi es va produir al mateix temps que les ciutats es van tornar més industrials, en les quals el carbó es va convertir en el combustible principal per a les plantes elèctriques. El sutge d’aquesta roca va tenyir de gris fosc el cel, el sòl i els edificis de les ciutats. També es van veure afectats els troncs dels arbres, on es camuflaven les papallones del bedoll.

La conseqüència d’aquest fet va ser que les papallones de color gris clar no podien amagar-se dels seus depredadors, en canvi, les que eren de color gris fosc van trobar una sortida amb èxit camuflant-se bé en els troncs pintats. Amb el canvi de color del seu amagatall tenien més oportunitats de sobreviure i reproduir-se (Vídeo 1).

Vídeo 1. Papallones del bedoll i la industrialització (en anglès) (Font: YouTube)

Aquest és un exemple clar de com els canvis en l’entorn influeixen en la variabilitat de les freqüències gèniques, que varien en resposta a nous factors en el medi ambient.

TIPUS DE MUTACIONS

No existeix un sol tipus de mutació, sinó que hi ha varis tipus de mutacions que poden afecta la seqüència d’ADN i conseqüentment el codi genètic. No obstant, no totes les mutacions tenen el mateix efecte.

Les mutacions acostumen a classificar-se per nivells mutacionals. Aquests nivells es basen en la quantitat de material hereditari afectat per la mutació i van pujant de rang segons el número de gens implicats. Si la mutació només afecta a un gen parlem de mutació gènica, mentre que si afecta a un segment cromosòmic que inclou varis gens ens referim a mutació cromosòmica. Quan la mutació afecta al genoma, afectant a cromosomes complets per excés o per defecte, ens referim a mutació genòmica.

Un exemple de mutació puntual el trobem en la fibrosi quística, una malaltia genètica hereditària que produeix una alteració en la secreció de mucositats, afectant al sistema respiratori i digestiu. Una mutació puntual afecta el gen que codifica per a la proteïna CFTR. Les persones afectades reben de tots dos progenitors el gen defectuós que, al no tenir cap còpia del gen bona, la proteïna no serà funcional. El resultat és que les secrecions produïdes per l’organisme humà són més espesses del que és habitual, produint una acumulació en les vies respiratòries.

REFERÈNCIES

  • Ramos, M. et al. El código genético, el secreto de la vida (2017) RBA Libros
  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Bioinformática UAB
  • Webs UCM
  • Foto portada: Cine Premiere

MireiaRamos-catala2

Desxifrant el codi genètic

De la mateixa manera que Alan Turing va descodificar Enigma, la màquina de xifrat que utilitzava l’exèrcit alemany en la Segona Guerra Mundial, varis científics van aconseguir desxifrar el codi genètic. La solució a aquest entramat ha permès entendre com funcionen les cèl·lules i fer possible la manipulació genètica.

INTRODUCCIÓ

Un codi és una sèrie de símbols que per separat no representen res, però al combinar-los poden generar un llenguatge comprensible només per aquells qui l’entenen. Això és el que passa amb el codi genètic.

Tot i que ens pugui semblar mentida, tots els éssers vius (a excepció d’alguns bacteris) biològicament funcionem de la mateixa manera. I és que ja ho deia Jacques Monod, tot el que es constata com a veraç per E. coli també ha de ser cert pels elefants.

Des de les cèl·lules de la balena blava, l’animal més gran del planeta, fins a les cèl·lules d’un colibrí, passant pels éssers humans, són iguals. Això és gràcies al codi genètic, que permet que la informació de cada gen sigui transmesa a les proteïnes, les executores d’aquesta informació.

Aquest flux d’informació va ser anomenat per Francis Crick, el 1958, com el dogma central de la biologia (Figura 1). En ell afirmava que la informació flueix de l’ADN al ARN, i després de l’ARN a les proteïnes. És així com es transmet i s’expressa la informació genètica unidireccionalment. No obstant, posteriorment es van afegir modificacions. Cric afirmava que només l’ADN pot duplicar-se i transcriure’s a ARN. Però s’ha vist que en virus també es produeix la replicació del seu ARN i que aquest pot realitzar una transcripció inversa per generar ADN de nou.

main-qimg-eee77f2b58be05c964ce0c04756f2cfb
Figura 1. Dogma central de la biologia. En vermell es mostra el cami que va senyalar Francis Crick (replicació de l’ADN, transcripció a ARN i traducció a proteïnes); i en gris les posteriors modificacions (Font: Quora)

ELS 3 LLENGUATGES DE LES CÈL·LULES

A l’interior de les cèl·lules es parlen tres idiomes diferents, però que es poden arribar a relacionar a través del codi genètic.

El que ja coneixem és el llenguatge de l’àcid desoxiribonucleic (ADN), enrotllat en una doble cadena i format per 4 lletres que corresponen a les bases nitrogenades: adenina (A), timina (T), citosina (C) i guanina (G).

Un altre llenguatge molt semblant a aquest últim és el de l’ARN. Difereix de l’ADN principalment en tres aspectes: (i) es compon d’una cadena única en comptes de ser de doble cadena, (ii) els seus sucres són riboses en comptes de desoxiriboses (d’aquí el nom d’àcid ribonucleic) i (iii) conté la base uracil (U) en comptes de T. Ni el canvi de sucre ni la substitució de U per T altera l’aparellament amb la base A, pel que la síntesi d’ARN pot ser realitzada de manera directa sobre un motlle d’ADN.

L’últim llenguatge que ens resta per conèixer és el de les proteïnes, format per 20 aminoàcids. Els aminoàcids constitueixen totes i cada una de les proteïnes de qualsevol organisme viu. L’ordre dels aminoàcids que formen la cadena de la proteïna determina la seva funció (Figura 2).

aminoacids
Figura 2. Taula dels 20 aminoàcids (Font: Compound Interest)

EL CODI GENÈTIC

Com venim dient, el codi genètic són les regles que segueix la seqüència de nucleòtids d’un gen, a través de l’intermediari ARN, per ser traduïda a una seqüència d’aminoàcids d’una proteïna. Existeixen varis tipus d’ARN, però el que ens interessa és el ARN missatger (ARNm), imprescindible en el procés de transcripció.

Les cèl·lules descodifiquen l’ARN llegint els seus nucleòtids en grups de tres (Figura 3). Com que l’ARNm és un polímer de quatre nucleòtids diferents hi ha 64 combinacions possibles de tres nucleòtids (43). Això ens porta a una de les característiques del codi genètic: està degenerat. Això significa que hi ha varis triplet per un mateix aminoàcid (codons sinònims). Per exemple, la prolina és codificada pels triplets CCU, CCC, CCA i CCG.

genetic_code_med
Figura 3. El codi genètic amb els 20 aminoàcids (Font: BioNinja)

El codi genètic no és ambigu ja que cada triplet té el seu propi significat. Tots els triplets tenen sentit, o bé codifiquen un aminoàcid en particular o bé indiquen final de lectura. La majoria dels aminoàcids es codifiquen almenys per dos codons. La metionina i el triptòfan són els únics aminoàcids que es codifiquen només per un codó. Però cada codó codifica només per un aminoàcid o senyal d’stop. A més, és unidireccional, tots els triplets es llegeixen en sentit 5’-3’.

El codó AUG serveix com a codó d’inici per començar la traducció. Només hi ha un codó d’inici que codifica per l’aminoàcid metionina, mentre que existeixen tres codons stop (UAA, UAG i UGA). Aquests codons fan que el polipèptid (polímer format per cadenes llargues d’aminoàcids) s’alliberi del ribosoma, lloc on ocorre la traducció.

La posició del codó d’inici determina el punt on comença la traducció de l’ARNm i el seu marc de lectura. Aquest últim punt és important perquè la mateixa seqüència de nucleòtids pot codificar polipèptids completament diferents depenent del marc en el que es llegeix (Figura 4). No obstant, només una de les tres pautes de lectures d’un ARNm codifica la proteïna correcta. El desplaçament en el marc de lectura provoca que el missatge ja no tingui sentit.

Marco de Lectura
Figura 4. Possibles marcs de lectura (Font: marcoregalia.com)

Com dèiem al principi, una de les principals característiques del codi genètic és que és universal, ja que gairebé tots els éssers vius l’utilitzen (a excepció d’alguns bacteris). Això és important perquè un codi genètic compartit per tan diversos organismes proporciona una important evidència d’un origen comú de la vida a la Terra. Les espècies de la Terra d’avui en dia probablement van evolucionar d’un organisme ancestral en el qual ja es trobava present el codi genètic. Degut a que és essencial per la funció cel·lular, hauria de tenir a romandre sense canvis en les espècies a través de les generacions. Aquest tipus de procés evolutiu pot explicar la notable similitud del codi genètic en els organismes presents en l’actualitat.

Tot i que l’ésser humà en sí continua sent un enigma per la ciència, la revolució del desxiframent del codi genètic ha permès endinsar-nos en el funcionament del nostre cos, en concret el de les nostres cèl·lules, i traspassar les fronteres cap a la manipulació genètica.

REFERÈNCIES

  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Gotta Love Cells
  • BioNinja
  • Foto portada: eldiario.es

MireiaRamos-catala

Per què m’assemblo als meus pares?

Que ens assemblem als nostres pares és gràcies a la genètica. Aquesta, és la ciència que estudia l’herència, és a dir, com els fills s’assemblen als pares, les malalties que passen d’una generació a una altra… És una disciplina de la biologia en creixement, que ha experimentat una expansió accelerada i està afectant de manera decisiva la biologia, la salut i la societat en general. En aquest article us parlaré sobre què és la genètica i el gran descobriment de l’ADN.

COM S’HERETA LA INFORMACIÓ GENÈTICA?

La informació genètica es transmet a la descendència gràcies als gens, que són la unitat d’emmagatzematge d’aquesta informació. Es localitzen dins els cromosomes i ocupen posicions concretes. El número de cromosomes és constant dins una espècie, però diferent entre altres.

En l’espècie humana el número de cromosomes és de 46. A cada cèl·lula tenim 46 cromosomes, dels quals 44 són autosòmics, és a dir, cromosomes no sexuals, i 2 que sí que ho són. El conjunt dels 46 cromosomes és el que s’anomena genoma humà.

El nostre genoma, en realitat està format per 2 jocs de 23 cromosomes homòlegs. Això significa que els dos jocs tenen les mateixes característiques i un prové de la nostra mare a través de l’òvul i l’altre prové del nostre pare a través de l’espermatozou (Figura 1). Heretar cada joc dels nostres progenitors és el que fa que ens assemblem a ells, però també és la via per la qual podem heretar algunes malalties.

Picture1
Figura 1. Cariotip humà femení, és a dir, la representació gràfica dels cromosomes. Es col·loquen ordenats per parells i mida, des del parell més gran fins el més petit, més els cromosomes sexuals (Font: Mireia Ramos, Cerba Internacional SAE)

LA QUÍMICA DELS GENS

Els gens corresponen a regions de l’ADN (àcid desoxiribonucleic), format per la unió de petites molècules que s’anomenen nucleòtids. Aquests nucleòtids estan formats per una pentosa (compost de 5 carbonis), un fosfat i una base nitrogenada (compost orgànic amb un àtom de nitrogen) (Figura 2). Hi ha 4 bases nitrogenades: dues purines (adenina i guanina) i dues pirimidines (timina i citosina). Aquestes bases nitrogenades són les que diferencien els nucleòtids i la seva ordenació constitueix el codi genètic.

Figura 2. Detall de la química de l'ADN
Figura 2: Detall de la química de l’ADN (Font: Eduredes: Los ácidos nucleicos)

Però tot el que es coneix sobre l’ADN i els gens és recent. L’estructura de l’ADN va ser descoberta per James Watson i Francis Crick el 1953 a Cambridge (Figura 3). Anteriorment, s’havien fet estudis per intentar esbrinar la semblança entre familiars, però no va ser fins aquest descobriment que es va entendre la química que hi havia darrere.

Figura 3. Francis Crick (dreta) i James Watson (esquerra) anb la construcció de l’estructura de l’ADN (Font: The DNA store)

EL PRINCIPI DE LA SEVA HISTÒRIA

Watson, un biòleg americà de 23 anys, i Crick, un físic anglès de 35 anys, treballaven plegats en el Laboratori Cavendish a Cambridge. Van passar molts mesos construint models de molècules i comparant-los amb la informació que tenien, però no trobaven l’estructura correcta de l’ADN.

Al King’s College de Londres treballaven el físic Maurice Wilkins i Rosalind Franklin, una fisicoquímica amb formació en cristal·lografia. Ella feia fotografies de l’ADN amb raigs X (Figura 4).

dnafour
Figura 4. Les 4 persones que van contribuir al descobriment de l’ADN (Font: Biology: The people responsible for the discovery of DNA)

Watson i Crick, després de presentar el model erroni de la triple hèlix, van parlar amb Maurice Wilkins demanant ajuda i ell els va mostrar una nova i millor fotografia de l’ADN feta amb raigs X, que li havia proporcionat Rosalind Franklin, però sense que ella ho sabés. Aquesta era la fotografia número 51 i Watson i Crick la van utilitzar per resoldre el misteri (Figura 5).

photo 51 explanation
Figura 5. Explicació de la fotografia 51 que van utilitzar Watson i Crick. Primerament una cadena d’ADN va ser estirada a través d’un clip, muntat en un tros de suro. Després, els raigs X van passar a través de la cadena d’ADN i la difracció va ser capturada en paper, creant la foto 51. Finalment, la “X” en el centre de la foto 51 és causada per la forma d’hèlic de les molècules d’ADN de la mostra (Font: Seguramente estaré equivocado: La “fotografía 51”

Quan el Laboratori Cavendish encara es trobava a prop del Free School Lane, el pub The Eagle era una destinació popular pel personal que hi treballava per anar a menjar. El 28 de febrer de 1953, Francis Crick va interrompre l’hora de dinar dels clients per anunciar que ell i James Watson havien “descobert el secret de la vida” després d’arribar amb la seva proposta definitiva de l’estructura de l’ADN. Aquest dia és anomenat per alguns com el 8è dia de la creació. James Watson va dir que una estructura tan maca per força havia d’existir, referint-se a l’estructura de la doble hèlix de l’ADN. També va dir que abans pensàvem que el nostre futur estava a les estrelles, però que ara sabem que està als nostres gens.

El 25 d’abril de 1953 es va publicar l’article, de 900 paraules, firmat per Watson i Crick sobre el seu descobriment a la revista Nature (Figura 6). Tres anys abans s’havia publicat la llei de Chargaff, que va ser una de les bases per a postular la teoria de la doble hèlix de l’ADN. Aquesta llei estableix la complementarietat de les bases nitrogenades en l’ADN, és a dir, la base adenina (A) s’aparella amb la base timina (T) i el mateix passa amb la guanina (G) i la citosina (C) (Figura 2). De manera que la suma de bases nitrogenades púriques (A i G) és igual a la suma de les pirimidíniques (T i C).

8
Figura 6. Article publicat a la revista Nature, on es mostra la fotografia 51 (Font: The DNA store)

IMPACTE DE LA GENÈTICA AVUI EN DIA

S’ha argumentat que el descobriment de l’ADN, així com la comprensió de la seva estructura i funció, pot ser el descobriment més important del segle passat. L’efecte del descobriment de l’ADN en el progrés científic i mèdic ha estat enorme, tant si es tracta de la identificació dels gens que desencadenen les principals malalties, com de la creació i fabricació de medicaments per tractar aquestes malalties devastadores. De fet, la identificació d’aquests gens i el seu posterior anàlisi, en termes de tractament terapèutic, han influït en última instància en la ciència i seguiran fent-ho en el futur.

Mentre el descobriment de l’ADN ha estat significant en el segle XX, continua revolucionant la medicina, l’agricultura, les ciències forenses, la paternitat i molts altres camps en la societat avui en dia. La investigació de l’ADN abasta una àrea d’evolució del progrés i la continuació del finançament i l’interès per la seva rellevància probablement impulsarà nous descobriments en el futur.

REFERÈNCIES

MireiaRamos-catala