Arxiu d'etiquetes: codón

Cracking the genetic code

In the same way that Alan Turing decoded Enigma, the encryption machine used by the German army in World War II, several scientists managed to decipher the genetic code. The solution to this framework has allowed us to understand how cells work and make genetic manipulation possible.

INTRODUCTION

A code is a system of replacing the words in a message with other words or symbols, so that nobody can understand it unless they know the system. For example the genetic code.

Although it seems to be a lie, all living beings (except for some bacteria) biologically work in the same way. And it is that Jacques Monod already said, everything that is verified as true for E. coli must also be true for elephants.

From the cells of the blue whale, the largest animal on the planet, to the cells of a hummingbird, passing through humans, are the same. This is thanks to the genetic code, which allows the information of each gene to be transmitted to the proteins, the executors of this information.

This flow of information was named by Francis Crick, in 1958, as the central dogma of molecular biology (Figure 1). In it he claimed that information flows from DNA to RNA, and then from RNA to proteins. This is how genetic information is transmitted and expressed unidirectionally. However, later modifications were added. Crick claimed that only DNA can be duplicated and transcribed to RNA. However, it has been seen that the replication of its RNA also occurs in viruses and that it can perform a reverse transcription to generate DNA again.

main-qimg-eee77f2b58be05c964ce0c04756f2cfb
Figure 1. Central dogma of molecular biology. Red arrows: Francis Crick’s way. Grey arrows: later modifications (Source: Quora)

THREE LANGUAGES OF CELLS

Inside the cells three different languages ​​are spoken, but they can be related through the genetic code.

The one we already know is the language of deoxyribonucleic acid (DNA), wound in a double chain and composed of 4 letters that correspond to the nitrogenous bases: adenine (A), thymine (T), cytosine (C) and guanine (G).

Another language very similar to the latter is that of RNA. It differs from DNA mainly in three aspects: (i) it is composed of a single chain instead of being double-stranded, (ii) its sugars are ribose instead of deoxyribose (hence the name of ribonucleic acid) and (iii) it contains the base uracil (U) instead of T. Neither the change of sugar nor the substitution of U by T alters the pairing with base A, so that RNA synthesis can be performed directly on a DNA template.

The last language that remains for us to know is that of proteins, formed by 20 amino acids. The amino acids constitute each and every one of the proteins of any living organism. The order of the amino acids that form the chain of the protein determines its function (Figure 2).

aminoacids
Figure 2. Table of 20 amino acids (Source: Compound Interest)

THE GENETIC CODE

As we have been saying, the genetic code is the rules that follow the nucleotide sequence of a gene, through the RNA intermediary, to be translated into an amino acid sequence of a protein. There are several types of RNA, but the one that interests us is the messenger RNA (mRNA), essential in the transcription process.
The cells decode the RNA by reading its nucleotides in groups of three (Figure 3). Since mRNA is a polymer of four different nucleotides, there are 64 possible combinations of three nucleotides (43). This brings us to one of its characteristics: it is degenerate. This means that there are several triplets for the same amino acid (synonymous codons). For example, proline is coded by the triplets CCU, CCC, CCA and CCG.

genetic_code_med
Figure 3. The genetic code with the table of 20 amino acids (Source: BioNinja)

The genetic code is not ambiguous since each triplet has its own meaning. All triplets make sense, either encode a particular amino acid or indicate read completion. Most amino acids are encoded by at least two codons. Methionine and tryptophan are the only amino acids that are codified only by a codon. But each codon codes only for an amino acid or stop sign. In addition, it is unidirectional, all triplets are read in the 5′-3′ direction.
The AUG codon serves as the start codon at which translation begins. There is only one start codon that codes for the amino acid methionine, while there are three stop codons (UAA, UAG and UGA). These codons cause the polypeptide to be released from the ribosome, where the translation occurs.
The position of the start codon determines the point where translation of the mRNA and its reading frame will begin. This last point is important because the same nucleotide sequence can encode completely different polypeptides depending on the frame in which it is read (Figure 4). However, only one of the three reading patterns of a mRNA encodes the correct protein. The displacement in the reading frame causes the message no longer to make sense.

Marco de Lectura
Figure 4. Possible frameshifts (Source: marcoregalia.com)

 

As we said at the beginning, one of the main characteristics of the genetic code is that it is universal, since almost all living beings use it (with the exception of some bacteria). This is important because a genetic code shared by such diverse organisms provides important evidence of a common origin of life on Earth. The species of the Earth of today probably evolved from an ancestral organism in which the genetic code was already present. Because it is essential for cellular function, it should tend to remain unchanged in the species through the generations. This type of evolutionary process can explain the remarkable similarity of the genetic code in present organisms.

Although the human being itself continues to be an enigma for science, the revolution of the deciphering of the genetic code has allowed us to delve into the functioning of our body, specifically that of our cells, and cross borders to genetic manipulation.

 

REFERENCES

  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Gotta Love Cells
  • BioNinja
  • Main picture: eldiario.es

MireiaRamos-angles

Descifrando el código genético

De la misma manera que Alan Turing descodificó Enigma, la máquina de cifrado que utilizaba el ejército alemán en la Segunda Guerra Mundial, varios científicos consiguieron descifrar el código genético. La solución a este entramado ha permitido entender cómo funcionan las células y hacer posible la manipulación genética.  

INTRODUCCIÓN

Un código es una serie de símbolos que por separado no representan nada, pero al combinarlos pueden generar un lenguaje comprensible solo para aquellos quienes lo entiendan. Esto es lo que pasa con el código genético.

Aunque nos parezca mentira, todos los seres vivos (a excepción de algunas bacterias) biológicamente funcionamos de la misma manera. Y es que ya lo decía Jacques Monod, que todo lo que se constata como veraz para E. coli también debe ser cierto para los elefantes.

Desde las células de la ballena azul, el animal más grande del planeta, hasta las células de un colibrí, pasando por los seres humanos, son iguales. Esto es gracias al código genético, que permite que la información de cada gen sea transmitida a las proteínas, las ejecutoras de esta información.

Este flujo de información fue nombrado por Francis Crick en 1958 como el dogma central de la biología (Figura 1). En él afirmaba que la información fluye del ADN al ARN, y después del ARN a las proteínas. Es así como se transmite y expresa la información genética unidireccionalmente. Sin embargo, posteriormente se añadieron modificaciones. Crick afirmaba que sólo el ADN puede duplicarse y transcribirse a ARN. No obstante, se ha visto que en virus también se produce la replicación de su ARN y que éste puede realizar una transcripción inversa para generar ADN de nuevo.

main-qimg-eee77f2b58be05c964ce0c04756f2cfb.png
Figura 1. Dogma central de la biología. En rojo se muestra el camino que señaló Francis Crick (replicación del ADN, transcripción a ARN y traducción a proteínas); y en gris las modificaciones posteriores (Fuente: Quora)

LOS 3 LENGUAJES DE LAS CÉLULAS

En el interior de las células se hablan tres idiomas diferentes, pero que se pueden llegar a relacionar mediante el código genético.

El que ya conocemos es el lenguaje del ácido desoxirribonucleico (ADN), enrollado en una doble cadena y compuesto por 4 letras que corresponden a las bases nitrogenadas: adenina (A), timina (T), citosina (C) y guanina (G).

Otro lenguaje muy parecido a este último es el del ARN. Difiere del ADN principalmente en tres aspectos: (i) se compone de una cadena única en vez de ser de doble cadena, (ii) sus azúcares son ribosas en vez de desoxirribosas (de ahí el nombre de ácido ribonucleico) y (iii) contiene la base uracilo (U) en vez de T. Ni el cambio de azúcar ni la sustitución de U por T altera el apareamiento con la base A, por lo que la síntesis de ARN puede ser realizada de manera directa sobre un molde de ADN.

El último lenguaje que nos resta por conocer es el de las proteínas, formado por 20 aminoácidos. Los aminoácidos constituyen todas y cada una de las proteínas de cualquier organismo vivo. El orden de los aminoácidos que forman la cadena de la proteína determina su función (Figura 2).

aminoacids.png
Figura 2. Tabla de los 20 aminoácidos (Fuente: Compound Interest)

EL CÓDIGO GENÉTICO

Como venimos diciendo, el código genético son las reglas que sigue la secuencia de nucleótidos de un gen, a través del intermediario ARN, para ser traducida a una secuencia de aminoácidos de una proteína. Existen varios tipos de ARN, pero el que nos interesa es el ARN mensajero (ARNm), imprescindible en el proceso de transcripción.

Las células decodifican el ARN leyendo sus nucleótidos en grupos de tres (Figura 3). Como que el ARNm es un polímero de cuatro nucleótidos diferentes hay 64 combinaciones posibles de tres nucleótidos (43). Esto nos lleva a una de las características del código genético: está degenerado. Esto significa que hay varios tripletes para un mismo aminoácido (codones sinónimos). Por ejemplo la prolina es codificada por los tripletes CCU, CCC, CCA y CCG.

genetic_code_med
Figura 3. El código genético, con la tabla de los 20 aminoácidos (Fuente: BioNinja)

El código genético no es ambiguo ya que cada triplete tiene su propio significado. Todos los tripletes tienen sentido, o bien codifican un aminoácido en particular o bien indican terminación de lectura. La mayoría de los aminoácidos se codifican por al menos dos codones. La metionina y el triptófano son los únicos aminoácidos que se codifican sólo por un codón. Pero cada codón codifica sólo para un aminoácido o señal de stop. Además, es unidireccional, todos los tripletes se leen en sentido 5’-3’.

El codón AUG sirve como codón de inicio en el que comienza la traducción. Sólo hay un codón de inicio que codifica para el aminoácido metionina, mientras que existen tres codones de stop (UAA, UAG y UGA). Estos codones hacen que el polipéptido (polímero formado por cadenas largas de aminoácidos) se libere del ribosoma, lugar donde ocurre la traducción.

La posición del codón de inicio determina el punto dónde comenzará la traducción del ARNm y su marco de lectura. Este último punto es importante porque la misma secuencia de nucleótidos puede codificar polipéptidos completamente diferentes dependiendo del marco en el que se lea (Figura 4). Sin embargo, sólo una de las tres pautas de lectura de un ARNm codifica la proteína correcta. El desplazamiento en el marco de lectura provoca que el mensaje ya no tenga sentido.

Marco de Lectura.png
Figura 4. Posibles marcos de lectura (Fuente: marcoregalia.com)

Como decíamos al principio, una de las principales características del código genético es que es universal, ya que casi todos los seres vivos lo utilizan (a excepción de algunas bacterias). Esto es importante porque un código genético compartido por tan diversos organismos proporciona una importante evidencia de un origen común de la vida en la Tierra. Las especies de la Tierra de hoy en día probablemente evolucionaron de un organismo ancestral en el cual ya se encontraba presente el código genético. Debido a que es esencial para la función celular, debería tender a permanecer sin cambios en las especies a través de las generaciones. Este tipo de proceso evolutivo puede explicar la notable similitud del código genético en los organismos presentes en la actualidad.

A pesar de que el ser humano en sí continua siendo un enigma para la ciencia, la revolución del desciframiento del código genético ha permitido adentrarnos en el funcionamiento de nuestro cuerpo, en concreto el de nuestras células, y traspasar las fronteras hacia la manipulación genética.

REFERENCIAS

  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Gotta Love Cells
  • BioNinja
  • Foto portada: eldiario.es

MireiaRamos-castella