Arxiu d'etiquetes: cola

Comprueba la evolución en tu propio cuerpo

El 42% de la población estadounidense y el 11,5 de la española no cree que la evolución sea cierta. A pesar de ello, existen diferentes pruebas de que el genial Darwin estaba en lo cierto, algunas de ellas en tu propio cuerpo. ¿Te han operado del apéndice o quitado las muelas del juicio? Descubre en este artículo qué órganos vestigiales heredaste de tus antepasados.

¿QUÉ SON LAS ESTRUCTURAS VESTIGIALES?

Las estructuras vestigiales (a menudo llamadas órganos, aunque no lo sean propiamente dicho) son partes del cuerpo que han visto reducida o perdida su función original durante la evolución de una especie. Se encuentran en muchos animales, incluidos por supuesto los humanos.

Esqueleto de orca en el que se observan vestigios de las extremidades traseras. Foto: Patrick Gries
Esqueleto de orca en el que se observan vestigios de las extremidades traseras, prueba de su origen terrestre. Foto: Patrick Gries

Las estructuras vestigiales eran plenamente funcionales en los antepasados de esas especies (y lo son en las estructuras homólogas de otras especies actuales), pero actualmente su función es prácticamente nula o ha cambiado. Por ejemplo, en algunos insectos como las moscas el segundo par de alas ha perdido su función voladora y ha quedado reducido a órganos del equilibrio (halterios). Si quieres saber más sobre la evolución del vuelo en los insectos entra aquí.

Además de estructuras físicas, las características vestigiales también pueden manifestarse en comportamientos o procesos bioquímicos.

¿POR QUÉ SON PRUEBAS DE LA EVOLUCIÓN?

La selección natural actúa sobre las especies favoreciendo características que aumenten su supervivencia y eliminando las que no, por ejemplo cuando aparecen cambios en el hábitat. Los individuos con características poco favorables morirán o se reproducirán menos y esa característica se verá eliminada a la larga, mientras que las favorables se mantendrán ya que sus portadores la podrán pasar a la siguiente generación.

A veces hay características que no son ni favorables ni desfavorables, por lo que seguirán pasando a las siguientes generaciones. Pero toda estructura tiene un coste (energético, peligro a que se infecte, desarrolle tumores…), por lo que la presión selectiva sigue actuando para eliminar algo que no favorece al éxito de la especie. Es el caso de las estructuras vestigiales, que “tardarían más” en desaparecer a lo largo de la evolución. El hecho que existan revelan que en el pasado esas estructuras sí tenían una función importante en nuestros antepasados.

ENCUENTRA TUS ÓRGANOS VESTIGIALES

LA MEMBRANA NICTITANTE

Ya hablamos de ella en Cómo ven el mundo los animales. Se trata de una membrana transparente o translúcida que sirve para proteger el ojo y humedecerlo sin perder visibilidad. Es común en anfibios, reptiles y aves. Entre los primates, sólo la poseen completa lémures y loris.

membrana nictitante, nictitating membrane
Membrana nictitante o tercer párpado de un avefría militar (Vanellus miles). Foto: Toby Hudson

En humanos la plica semilunaris es un vestigio de la membrana nictitante. Obviamente no la podemos mover pero aún tiene cierta función de drenaje del lagrimal y ayuda al movimiento del ojo (Dartt, 2006).

Plica semilunaris (pliegue semilunar). Foto: desconocido
Plica semilunaris (pliegue semilunar). Foto: desconocido

EL TUBÉRCULO DE DARWIN Y LOS MÚSCULOS DE LA OREJA

El 10% de la población tiene un engrosamiento en la oreja, vestigio de la oreja puntiaguda común en los primates. Esta estructura se llama tubérculo de Darwin y no tiene ninguna función.

Variabilidad del Tubérculo de Darwin en la punta de la oreja (0= ausente). Puede presentarse en otras zonas del pabellón auditivo: ver publicación.
Variabilidad del Tubérculo de Darwin en la punta de la oreja (0= ausente).  Fuente.
Comparación entre la oreja de un macaco y la nuestra. Fuente
Comparación entre la oreja de un babuino amarillo (Papio cynocephalus) y la nuestra. Fuente

Asimismo, los primates (y otros mamíferos) tienen orejas móviles para dirigir los pabellones auditivos hacia la fuente de sonido: seguramente lo habrás observado en tu perro o gato. Los humanos (y chimpancés) ya no tenemos esa gran movilidad, aunque algunas personas pueden mover ligeramente los pabellones auditivos a voluntad. Se ha comprobado mediante electrodos que estos músculos se excitan cuando percibimos un sonido que viene de una dirección concreta (2002).

Músculos auriculares responsables del movimiento del pabellón auditivo. Fuente

El músculo occipitofrontal también ha perdido su función de evitar que se caiga la cabeza, aunque participa en la expresión facial.

MÚSCULO PALMAR LARGO

El 16% de las personas caucásicas no posee este músculo en la muñeca, tampoco un 31% de las nigerianas ni un 4,6% de las chinas. Incluso puede aparecer en un brazo y no en el otro o ser doble según las personas.

Se cree que este músculo participaría activamente en la locomoción arborícola de nuestros antepasados, pero actualmente no tiene ninguna función necesaria, ya que no proporciona más fuerza de agarre. Este músculo es más largo en primates completamente arborícolas (lemures) y más corto en los más terrestres, como los gorilas (referencia).

Y tú, ¿lo tienes o no? Haz la prueba: junta los dedos pulgar y meñique y levanta ligeramente la mano.

mireia querol, mireia querol rovira, palmaris longus, musculo palmar largo, tendon
Yo tengo dos en el brazo izquierdo y uno en el derecho. Foto: Mireia Querol

MUELAS DEL JUICIO

El 35% de las personas no poseen muelas del juicio o tercer molar. En el resto, su aparición suele ser dolorosa y es necesaria la extirpación.

Yo no tengo el tercer molar. Foto: Mireia Querol Rovira
Yo no tengo el tercer molar. Foto: Mireia Querol Rovira

Nuestros ancestros homininos sí las tenían, bastante mayor que el nuestro. Un reciente estudio explica que cuando un diente se desarrolla, emite señales que determinan el tamaño de los dientes vecinos. La reducción de la mandíbula y el resto de dentadura a lo largo de la evolución ha provocado la reducción de los molares (e incluso la desaparición del tercero).

Comparativa entre la dentición de un chimpancé, Australopithecus afarensis y Homo sapiens. Fuente
Comparativa entre la dentición de un chimpancé, Australopithecus afarensis y Homo sapiens. Observa la reducción de los tres últimos molares entre afarensis y sapiens, Fuente

EL COXIS

Si te tocas la columna vertebral hasta el final, llegarás al coxis o cóccix. Se trata de 3 a 5 vértebras fusionadas vestigio de la cola de nuestros ancestros primates. De hecho, cuando estábamos en el útero materno, en los primeros estadíos de desarrollo del embrión se observa una cola con 10-12 vértebras en formación.

Distintos estados en el desarrollo embrionmario humano y comparación con otras especies. Créditos en la imagen
Distintos estadíos en el desarrollo embrionario humano (1 a 8) y comparación con otras especies. Créditos en la imagen

Posteriormente se reabsorbe, pero no en todos los casos: hay reportados 40 nacimientos de bebés con cola.

Neonato nacido con cola. Una mutación ha evitado la inhibición del crecimiento de la cola durante la gestación. Fuente
Neonato nacido con cola. Una mutación ha evitado la inhibición del crecimiento de la cola durante la gestación. Fuente

Aunque no tengamos cola, actualmente estos huesos sirven de anclaje de algunos músculos pélvicos.

mireia querol, mireia querol rovira, coxis, sacro, sacrum, tailbone, rabadilla
Situación del coxis. Foto: Mireia Querol Rovira

PEZONES SUPERNUMERARIOS (POLITELIA)

Se estima que hasta un 5% de la población mundial presenta más de dos pezones. Estos pezones “extra”, pueden presentarse en diferentes formas (completos o no) por lo que a veces se confunden con pecas o lunares.  Se situan en la línea mamilar (de la ingle a la axila), exactamente en la misma posición que el resto de mamíferos con más de dos mamas (observa a tu perro, por ejemplo). Habitualmente el número de mamas corresponde con la media de crías que puede tener un mamífero, por lo que los pezones extra serían un vestigio de cuando nuestros antepasados tenían más crias por parto. Lo habitual son 3 pezones, pero se ha documentado un caso de hasta 8 pezones en una persona.

Pezón suplementario debajo del principal. Fuente
Pezón suplementario debajo del principal. Fuente

ENCUENTRA TUS REFLEJOS Y COMPORTAMIENTOS VESTIGIALES

EL REFLEJO DE PRENSIÓN PALMAR Y PLANTAR

Alguna vez habrás experimentado que al acercar cualquier cosa a las manos de un bebé, automáticamente lo agarra con una fuerza tal que sería capaz de aguantar su propio peso. Desaparece hacia los 3-4 meses y es un remanente de nuestro pasado arborícola y a la forma de agarrarse al pelo de la madre, igual que sucede con los otros primates actuales. Observa el siguiente vídeo de 1934 sobre un estudio de dos gemelos (minuto 0:34):

En los pies también existe el reflejo de intentar agarrar algo cuando se toca la planta del pie de un bebé. Desaparece hacia los 9 meses de edad.

Por cierto, ¿te has fijado en la afición y facilidad que tienen los niños y niñas para subirse a cualquier barandilla o parte elevada en un parque infantil?

LA PIEL DE GALLINA

El frío, el estrés o una emoción intensa (por ejemplo, el escuchar cierta música) provoca que el músculo piloerector nos erice el vello dándole a la piel el aspecto de una gallina desplumada. Es un reflejo involuntario en el que algunas hormonas, com la adrenalina (que se libera en las situaciones mencionadas), están implicadas.  ¿Qué utilidad tenía esto para nuestros ancestros y tiene en los mamíferos actuales?

  • Aumentar el espacio entre la piel y el exterior, por lo que el aire caliente atrapado entre el pelo ayuda a mantener la temperatura.
  • Parecer más grandes para ahuyentar posibles depredadores o competidores.

    Chimpancé con el pelo erizado durante un display antes de un conflicto. Foto: Chimpanzee Sanctuary Northwest
    Chimpancé con el pelo erizado durante un display antes de un conflicto. Foto: Chimpanzee Sanctuary Northwest

Obviamente nosotros hemos perdido el pelo en la mayor parte del cuerpo, por lo que aunque conservamos el reflejo, no nos sirve ni para calentarnos ni para ahuyentar depredadores. El pelo se ha conservado más abundantemente en zonas donde es necesaria protección o  debido a la selección sexual (cabeza, cejas, pestañas, barba, pubis…), pero en general, también puede ser considerado una estructura vestigial.

Existen más estructuras vestigiales aunque en este artículo nos hemos centrado en las más observables. En futuros artículos hablaremos de otras internas, como el famoso apéndice o el órgano vomeronasal.

REFERENCIAS

Regeneración de extremidades, del ajolote al ser humano

La regeneración de partes del cuerpo perdidas o dañadas en los animales es conocida desde hace varios siglos. En 1740 el naturalista Abraham Trembley observó a un pequeño cnidario que podía regenerar su cabeza si se la cortaban, por lo que lo llamó Hydra, en referencia al monstruo de la mitología griega que podía regenerar sus múltiples cabezas si se las cortaban. Posteriormente, se descubrió que había muchas otras especies animales con capacidades regenerativas. En esta entrada hablaremos sobre estos animales.

Regeneración en el reino animal

La regeneración de partes del cuerpo está mucho más extendida entre los diferentes grupos de invertebrados que de vertebrados. Este proceso puede ser bidireccional, en el que ambos trozos del animal regeneran las partes que les faltan para generar dos animales (cómo en la hidra, las planarias, los gusanos y las estrellas de mar), o unidireccional, en el que el animal pierde una extremidad pero solo la regenera sin que se formen dos animales (artrópodos, moluscos y vertebrados). Entre los vertebrados, peces y anfibios son los que presentan mayores capacidades regenerativas, aunque muchos lagartos y algunos mamíferos pueden regenerar sus colas.

ch14f01Imagen de Matthew McClements sobre la regeneración bidireccional en planàrias, hidras y estrellas de mar. Extraído de Wolbert's Principles of Development.

La regeneración se puede dar de dos maneras distintas:

  • Regeneración sin proliferación celular activa o “morphalaxis”. En este modo, la parte del cuerpo ausente es recreada principalmente mediante la remodelación de células preexistentes. Esto es lo que ocurre en la Hydra, en la que las partes perdidas se regeneran sin la creación de material nuevo. Por lo tanto, si se secciona una hidra por la mitad, obtendremos dos versiones más pequeñas de la hidra original.
Vídeo de un experimento en el que se ha seccionado una Hydra en diferentes trozos. Vídeo de Apnea.
  • Regeneración con proliferación celular o “epimorfosis”. En éste, la parte perdida se regenera mediante proliferación celular o sea, que se crea “de nuevo”. Ésta en la mayoría de casos se produce mediante la formación de una estructura especializada llamada blastema, masa de células madre sin diferenciar que aparece en fenómenos de regeneración celular.

Casi todos los grupos de animales con capacidades regenerativas presentan regeneración con formación de blastema. Aun así, el origen de las células madre del blastema varía según el grupo. Mientras que las planarias presentan células madre pluripotentes (que pueden diferenciarse a cualquier tipo celular) repartidas por todo el cuerpo, los vertebrados presentan células específicas en cada tipo de tejido (cartílago, músculo, piel…) que sólo generaran células de los tejidos donde se encuentre el blastema.

Entre los vertebrados terrestres, las lagartijas y los urodelos son los que muestran mayores habilidades regenerativas. A continuación veremos cómo lo consiguen y las aplicaciones que esto tiene en la medicina actual.

Colas prescindibles

Cuando eres un pequeño animal que está siendo perseguido por un gato u otro depredador, probablemente te salga más rentable perder tu preciada cola a perder tu vida. Algunos vertebrados terrestres han evolucionado siguiendo esta filosofía, y ellos mismos pueden desprenderse de su cola voluntariamente mediante un proceso llamado autotomía caudal. Esto les permite huir de sus depredadores, los cuáles se entretienen con la cola perdida que sigue moviéndose.

 Vídeo en el que se vé cómo algunas lagartijas como este vanzosaurio de cola roja (Vanzosaura rubricauda) tienen colas de colores brillantes para atraer la antención de los depredadores. Vídeo de Jonnytropics.

La autotomía o autoamputación, se define como un comportamiento en el que el animal se desprende de una o varias partes del cuerpo. La autotomía caudal la encontramos en muchas especies de reptiles y en dos especies de ratones espinosos del género Acomys. Entre los reptiles, encontramos autotomía caudal en los lacértidos, los geckos, los escincos o eslizones y en los tuataras.

Acomys.cahirinus.cahirinus.6872Foto de un ratón espinoso del Cairo (Acomys cahirinus), un mamífero que es capaz de desprenderse de su cola y regenerarla. Foto de Olaf Leillinger.

En los reptiles, la fractura de la cola se da en zonas concretas de las vértebras caudales que de por sí están debilitadas. La autotomía se puede dar de dos formas distintas: la autotomía intravertebral, en la que las vértebras del centro de la cola tienen planos de fractura transversales preparados para romperse si se les aplica suficiente presión, y la autotomía intervertebral, en la cual la cola se rompe entre las vértebras por constricción muscular.

0001-3765-aabc-201520130298-gf03Modelo tridimensional de los planos de fractura de la cola de un lagarto y la regeneración post-autotomía de un tubo cartilaginoso. Imagen extraída de Joana D. C. G. de Amorim et al.

La autotomía caudal permite huir al animal, pero le saldrá caro. Muchos reptiles utilizan la cola como reservorio de grasas y perder este almacén de energía suele ser perjudicial para el animal. Por eso se sabe que muchos lagartos, una vez ha desaparecido la amenaza, buscan su cola perdida y se la comen, para al menos recuperar la energía que tenían acumulada en forma de grasa. Además, regenerar una nueva cola es un proceso costoso energéticamente.

DSCN9467Foto de una lagartija parda (Podarcis liolepis) que ha perdido la cola. Foto de David López Bosch.

La regeneración de la cola en los reptiles difiere de la de anfibios y peces en que no se forma el blastema, y en que en vez de regenerarse realmente las vértebras caudales, se forma un tubo de cartílago. La nueva cola no es tan móvil y suele ser más corta que la original, y suele regenerarse completamente al cabo de unas semanas. La mayoría de lagartos pueden regenerar la cola varias veces, pero algunos cómo el lución (Anguis fragilis) sólo pueden hacerlo una vez. En ocasiones, la cola original no se rompe del todo pero se activan los mecanismos de regeneración, cosa que puede dar a que nos podamos encontrar a lagartijas y salamanquesas con más de una cola.

056 (2)Detalle de la cola de una salamanquesa común (Tarentola mauritanica) que ha regenerado la cola sin acabar de perder la cola original. Foto de Rafael Rodríguez.

Urodelos, los reyes de la regeneración

De todos los tetrápodos, los anfibios son los que presentan las mayores capacidades regenerativas. Durante la fase larvaria de la mayoría de especies, tanto la cola como las extremidades (si las presentan) pueden ser regeneradas tras su pérdida. La comunidad científica cree que esto se debe a que en los anfibios el desarrollo de las extremidades y otros órganos se retrasan hasta el momento de la metamorfosis. Aun así, ranas y sapos (anuros) sólo conservan sus poderes regenerativos durante su fase de renacuajo, perdiéndolos al llegar a la edad adulta.

Wood_frog_tadpoleRenacuajo de rana de bosque (Rana sylvatica) que, cómo en todos los anfibios, pospone el desarrollo de las extremidades hasta el momento de la metamorfosis. Foto de Brian Gratwicke.

En cambio, muchas salamandras y tritones (urodelos) conservan sus poderes regenerativos durante toda su vida. Aunque muchas especies presentan autotomía caudal, a diferencia de las lagartijas, los urodelos regeneran completamente, no sólo la cola, sino prácticamente cualquier tejido corporal perdido. De todas las especies conocidas, el ajolote (Ambystoma mexicanum), un anfibio neoténico que llega a la edad adulta sin sufrir metamorfosis, ha servido como organismo modelo para el estudio de la formación del blastema que precede a la regeneración.

 Vídeo en el que se habla del ajolote, este curiosos anfibio que se encuentra en grave peligro de extinción. Vídeo de Zoomin.TV Animals.

La regeneración que se da en las salamandras tiene fases genéticamente similares a las que sufren el resto de vertebrados al desarrollar los distintos tejidos y órganos durante el desarrollo embrionario. En el ajolote (y en el resto de urodelos) la regeneración después de la amputación de una extremidad pasa por tres fases distintas:

  • Curación de la herida: Durante la primera hora tras la amputación, células epidérmicas migran a la zona de la herida. El cierre de la herida se produce más o menos a las dos horas e intervienen los mismos mecanismos que en el resto de vertebrados. Aun así, la regeneración completa de la piel se retrasa hasta el final de la regeneración.
  • Desdiferenciación: Esta segunda fase comienza a las 24 horas de la amputación y es cuando se forma el blastema. Éste está compuesto por células de los tejidos especializados de la zona de amputación que pierden sus características (obtienen la capacidad de proliferar y diferenciarse de nuevo), y de células derivadas del tejido conectivo que migran a la zona de amputación. Cuando estas células de diferente origen se acumulan y forman el blastema, se inicia la proliferación celular.
  • Remodelación: Para el inicio de la tercera fase, es imprescindible la formación de un blastema con células de diversos orígenes. Una vez formado el blastema de células desdiferenciadas, la formación de la nueva extremidad sigue el mismo patrón que el de las extremidades de cualquier vertebrado durante el desarrollo embrionario (incluso intervienen los mismos genes).
A_Stages_of_zebrafish_caudal_fin_regeneration_as_longitudinal_sections.Esquema de la formación del blastema en el pez zebra (Danio rerio) otro organismo modelo. Imagen de Kyle A. Gurley i Alejandro Sánchez Alvarado.

Recientemente se han encontrado fósiles de diversos grupos de tetrápodos primitivos que presentan rastros de regeneración. Se han encontrado pruebas de regeneración de extremidades en fósiles de temnospóndilos (Apateon, Micromelerpeton y Sclerocephalus) y de lepospóndilos (Microbrachis y Hyloplesion). Esta amplia gama de géneros de tetrápodos basales que presentan regeneración y el hecho de que muchos peces también la presenten, ha llevado a muchos científicos a plantearse si los diferentes grupos de tetrápodos primitivos presentaban capacidad de regeneración y ésta se perdió en los antepasados de los amniotas (reptiles, aves y mamíferos).

Axolotl_ganz
Foto de un ajolote, por LoKiLeCh.

Aun así, se cree que la información genética de formación del blastema podría encontrarse en el ADN de los amniotas aunque estaría en estado latente. De las tres fases del proceso de regeneración, la única que es exclusiva de los urodelos es la fase de desdiferenciación, ya que la fase de curación es igual a la cicatrización en el resto de vertebrados y la de remodelación es igual a la formación de extremidades durante la embriogénesis. Actualmente se están llevando a cabo multitud de estudios sobre cómo reactivar los genes latentes que promueven la formación del blastema en otros vertebrados, como por ejemplo los seres humanos.

Algunos órganos humanos como el riñón y el hígado ya tienen cierta capacidad de regeneración, pero gracias a la investigación con células madre en animales como las salamandras y las lagartijas, actualmente es posible regenerar dedos, genitales y partes de la vejiga, el corazón y los pulmones. Como hemos visto, los diferentes animales capaces de regenerar miembros seccionados encierran el secreto que podría salvar a miles de personas. Recordemos esto la próxima vez que oigamos que cientos de especies de anfibios y reptiles se encuentran en peligro por culpa de la mano del hombre.

Difusió-castellà

Referencias

Para la elaboración de esta entrada se han utilizado las siguientes fuentes: