Arxiu d'etiquetes: color

El cambio de color en los camaleones: un arcoiris de emociones

Muchos consideran a los camaleones como los maestros del camuflaje. Su habilidad para cambiar de color parece indicar que estos animales han evolucionado para confundirse con el entorno y engañar a sus depredadores. Pero, ¿Qué me diríais si os dijera que el camuflaje no es la función principal del cambio de color para los camaleones? En esta nueva entrada, aparte de explicar cómo cambian de color los camaleones, os mostraremos cómo estos crípticos animales utilizan el cambio de color para una gran variedad de funciones.

MITOS ACERCA DE LOS CAMALEONES

Los camaleones (familia Chamaeleonidae) son lagartos extremadamente crípticos, ya que su coloración suele ser muy parecida a la de su hábitat. Además de esto, muchas especies de camaleones presentan una increíble capacidad para cambiar de color activamente, haciendo que su camuflaje sea aún más complejo.

kinyongia_tenuis-rollschwanz-min
Hembra de camaleón de cuerno blando de Usambara (Kinyongia tenuis) con una llamativa coloración anaranjada. Foto de Keultjes.

Existe mucha confusión respecto a las habilidades de cambio de color de los camaleones. Aquí tenéis desmentidos algunos mitos sobre los camaleones:

  • Las diferentes especies de camaleones pueden cambiar a un rango de colores limitado.
  • Los camaleones no cambian de color drásticamente sino que, lo hacen sutilmente. Si lo hicieran, serían muy fáciles de detectar para sus depredadores.
  • Los camaleones no cambian de color según lo que tocan sino, que como veremos a continuación, sus motivos son mucho más complejos.

Video de Viralweek en que se da una idea equivocada de cómo cambia de color un camaleón de Yemen (Chamaeleo calyptratus).

Pero, ¿Cómo cambian de color los camaleones? Muchos otros animales, como los cefalópodos y algunos peces y lagartos, también presentan la capacidad de cambiar de color. En la mayoría de casos, esto lo consiguen mediante los cromatóforos, un tipo de células pigmentarias que se encuentran en animales ectotermos. En los animales que cambian de color, los cromatóforos se encuentran distribuidos en varias capas y tienen la capacidad de contraerse, extenderse, agregarse y dispersarse, provocando distintas variaciones de coloración.

chromatophores-min
Detalle de los cromatóforos de una sepia, por Minette Layne. Según estén contraídos o distendidos, se aprecia un color u otro.

Durante mucho tiempo se pensó que los camaleones cambiaban de color únicamente mediante los cromatóforos. Pero, recientemente, un estudio demostró que los camaleones llevan el cambio de color al extremo. Este estudio fue llevado a cabo por un equipo de biólogos y físicos, cuando éstos se dieron cuenta de una cosa: ¡los camaleones no presentan ningún pigmento verde en la piel!

PIGMENTOS Y CRISTALES

Para explicar cómo cambian de color los camaleones, primero debemos distinguir dos tipos diferentes de coloración en los animales: color pigmentario y color estructural. El color pigmentario es el más común, ya que es el que presenta un organismo debido a distintos pigmentos presentes en sus tejidos (como la melanina en los seres humanos). En cambio, como ya explicamos en un artículo anterior, el color estructural se genera por refracción de la luz con ciertas microestructuras de la piel.

dsc_0154-min
Imagen de un escarabajo boca arriba en el que se aprecian varios colores estructurales. Foto de David López.

¿Y qué ocurre en los camaleones? Pues una combinación de los dos mecanismos. Los camaleones presentan cromatóforos de color negro, rojo y amarillo que pueden contraer y extender voluntariamente. Además, en un estudio llevado a cabo con camaleones pantera (Furcifer pardalis), se ha visto que también presentan dos capas de células con nanocristales de guanina llamadas iridióforos que reflejan la luz. La coloración verde de un camaleón se genera entonces, por la luz azul reflejada por los iridióforos que atraviesa los cromatóforos amarillos más externos.

iridiof-min
Esquema de una sección de la piel de un camaleón donde se ven los iridióforos (azul) con las capas de nanocristales y los distintos tipos de cromatóforos; xantóforos (amarillo), eritróforos (rojo) y melanóforos (negro). Imagen de David López.

Los camaleones además, presentan una serie de circuitos neurológicos que les permiten controlar la composición y la distancia entre sí de los nanocristales de los iridióforos de diferentes partes de su cuerpo. Esto provoca que puedan controlar la longitud de onda de la luz reflejada por los iridióforos y por lo tanto el color. Combinado con los cromatóforos, las distintas especies de camaleones pueden abarcar gran parte de los colores del espectro visible.

ncomms7368-f1-min
Diferencias de coloración del camaleón pantera cuando está relajado y cuando está excitado y su relación con la composición y distribución de los nanocristales de los iridióforos. Imagen extraída de Teyssier & Saenko.

¿PARA QUÉ CAMBIAR DE COLOR?

Aunque existen otras especies de escamosos que pueden cambiar de color, esto suele deberse a una respuesta fisiológica a la termorregulación, a momentos de excitación o a cambios relacionados con la reproducción. Los camaleones además, tienen una parte importante de su sistema nervioso dedicada a cambiar de color rápida, consciente y reversiblemente. Pueden incluso cambiar a colores distintos distintas regiones de la piel y mientras una se vuelve más naranja o roja, otra se vuelve más blanca o azul, creando contrastes y efectos de color muy llamativos.

Pero entonces, ¿para qué cambian de color los camaleones? Pues la verdad es que las habilidades caleidoscópicas de estos lagartos tienen varias funciones diferentes, variando entre las distintas especies.

CAMUFLAJE

El motivo más obvio (aunque no el principal) es el camuflaje. Aunque la coloración estándar de la mayoría de especies de camaleones ya es suficientemente críptica, en caso necesario los camaleones son capaces de confundirse aún más con su entorno. Esto les ayuda a no ser detectados por sus presas, aunque el motivo principal es pasar desapercibidos a sus depredadores.

14533621750_5f718c7c9a_o-min
Camaleón común (Chamaeleo chamaeleon) perfectamente camuflado en su entorno. Foto de Javier Ábalos Álvarez.

Además, en un estudio llevado a cabo con camaleones enanos de Smith (Bradypodion taeniabronchum) se comprobó que éstos eran capaces de ajustar el grado de cambio de color a las capacidades visuales de sus depredadores. Aves y serpientes se alimentan de camaleones pero, mientras que las primeras tienen una buena percepción de las formas y los colores, las segundas no tienen una visión tan aguda. Se ha visto que los camaleones enanos de Smith muestran cambios de color mucho más convincentes ante la presencia de un ave depredadora, que ante una serpiente.

predaor-min
Fotos de un camaleón enano de Smith camuflándose ante dos depredadores falsos, un alcaudón y una mamba. Foto de Devi Stuart-Fox.

TERMORREGULACIÓN

Los camaleones son ectotermos y como la mayoría de reptiles, dependen de fuentes externas de calor. Además de los iridióforos más superficiales (llamados iridióforos-S), los camaleones tienen una segunda capa más profunda de iridióforos llamados iridióforos-D, que (aunque presentan una estructura de nanocristales más desordenada y que no puede ser modificada) reflejan altamente la luz infrarroja, y se cree que seguramente tengan alguna función relacionada con la termorregulación. Muchos otros lagartos también presentan una capa de iridióforos parecidos a los iridióforos-D.

Además de los iridióforos-D, los camaleones cambian a colores más oscuros o más claros para regular hasta cierto punto su temperatura corporal. Esto se hace especialmente patente en las especies que viven en los hábitats con climas más extremos. Como ya explicamos en una entrada anterior, el camaleón de Namaqua (Chamaeleo namaquensis), que habita en los desiertos del suroeste de África, presenta un color casi completamente negro a primeras horas de la mañana para absorber la máxima cantidad de calor, mientras que en las horas más calurosas muestra una coloración blanquecina, para reflejar al máximo la radiación solar.

laika_ac_namaqua_chameleon_8446604184-min
Dos patrones de coloración distintos en el camaleón de Namaqua, uno más claro (foto de Hans Stieglitz) y otro más oscuro (foto de Laika ac).

COMUNICACIÓN

La principal función del cambio de color en los camaleones es la comunicación intraespecífica. Los camaleones usan distintos patrones de color conocidos como libreas, que cambian para transmitir información a otros individuos de su misma especie como su grado de estrés, su estado reproductor o de salud… La coloración estándar de un camaleón suele ser parecida a la de su hábitat. Por lo tanto, esta coloración suele indicar un buen estado de salud, mientras que si se encuentran enfermos o tienen algún problema físico, suelen mostrar libreas más pálidas y apagadas.

chameleon_spectra-min
Libreas de dominancia y sumisión de tres especies de camaleón enano (Bradypodion sp.) Imagen de Adnan Moussalli & Devi Stuart-Fox.

En muchas especies, las hembras presentan libreas más llamativas y contrastadas cuando están en celo, mientras que se muestran de un color oscuro tras ser fecundadas. Al ver estas señales, los machos pueden saber qué hembras se encuentran disponibles y con qué hembras más vale ahorrarse el esfuerzo. Los machos también presentan libreas más llamativas durante la época de reproducción, para indicar sus intenciones a las hembras y para advertir a sus rivales.

7636716522_11821e6eca_o-min
Hembra de camaleón de línea blanca (Furcifer lateralis) con una librea que indica que ya está preñada y no le interesa aparearse. Foto de Bernard Dupont.

Finalmente, fuera de la época de reproducción, todos los camaleones utilizan sus libreas más coloridas en los encuentros con rivales de su misma especie. Es en estas situaciones cuando los camaleones muestran colores más contrastados, además  de hincharse y mostrarse más grandes y agresivos para ahuyentar a sus rivales.

Vídeo de un camaleón pantera (Furcifer pardalis) mostrándose agresivo con un supuesto “rival”. Vídeo de The White Mike Posner.

Como acabamos de ver, la variedad de coloraciones entre las distintas especies de camaleones es enorme. Aun así, estas increíbles habilidades no han salvado a los camaleones de la lista de especies amenazadas, ya que muchas de ellas se encuentran en peligro, principalmente por la destrucción de su hábitat para la industria maderera y por su captura para el tráfico ilegal de animales exóticos. Esperemos que con una mayor concienciación sobre estos espectaculares y coloridos lagartos, las generaciones futuras puedan deleitarse con los cambios de color de los camaleones durante mucho tiempo.

REFERENCIAS

Las siguientes fuentes se han utilizado durante la elaboración de esta entrada:

difusio-castella

El canvi de color en els camaleons: un arc de Sant Martí de colors

Molts consideren als camaleons els mestres del camuflatge. La seva habilitat per canviar de color sembla indicar que aquests animals han evolucionat per a confondre’s amb l’entorn i enganyar als seus depredadors. Però, què em diríeu si us digués que el camuflatge no és la funció principal del canvi de color per als camaleons? En aquesta nova entrada, apart d’explicar com canvien de color els camaleons, us mostrarem com aquests críptics animals utilitzen el canvi de color per a una gran varietat de funcions.

MITES SOBRE ELS CAMALEONS

Els camaleons (família Chamaeleonidae) són llangardaixos extremadament críptics, ja que la seva coloració sol ser molt semblant a la del seu hàbitat. A més d’això, moltes espècies de camaleons presenten una increïble capacitat per a canviar de color activament, fent que el seu camuflatge sigui encara més complex.

kinyongia_tenuis-rollschwanz-min
Femella de camaleón de banya tova d’Usambara (Kinyongia tenuis) amb una vistosa coloració taronjosa. Foto de Keultjes.

Existeix molta confusió respecte a les habilitats de canvi de color dels camaleons. Aquí teniu desmentits alguns dels mites sobre els camaleons:

  • Les diferents espècies de camaleons poden canviar a un rang de colors limitat.
  • Els camaleons no canvien de color dràsticament, sinó que ho fan subtilment. Si ho fessin, serien molt fàcils de detectar per als seus depredadors.
  • Els camaleons no canvien de color segons el que toquen sinó que, com veurem a continuació, els seus motius són molt més complexes.

Vídeo de Viralweek en el que es dóna una idea equivocada de com canvia de color un camaleó vetllat (Chamaeleo calyptratus).

Però, com canvien de color els camaleons? Molts altres animals, com el cefalòpodes i alguns peixos y llangardaixos, també presenten la capacitat de canviar de color. En la majoria de casos, això ho aconsegueixen mitjançant cromatòfors, un tipus de cèl·lules pigmentàries que es troben en animals ectoterms. En els animals que canvien de color, els cromatòfors es troben distribuïts en vàries capes i tenen la capacitat de contraure’s, extendre’s, agregar-se i dispersar-se, provocant diferents variacions de coloració.

chromatophores-min
Detall dels cromatòfors d’una sípia, per Minette Layne. Segons estiguin contrets o distesos, s’aprecia un color o un altre.

Durant molt de temps es va pensar que els camaleons canviaven de color mitjançant únicament els cromatòfors. Però recentment, un estudi va demostrar que els camaleons porten el canvi de color a l’estrem. Aquest estudi va ser dut a terme per un equip de biòlegs i físics, quan aquests es van adonar d’una cosa: els camaleons no presenten ningún pigment verd a la pell!

PIGMENTS I CRISTALLS

Per a explicar com canvien de color els camaleons, primer hem de distingir dos tipus de coloració en els animals: color pigmentari i color estructural. El color pigmentari és el més comú, ja que és el que presenta un organisme degut a diferents pigments presents en els seus teixits (com la melanina en els éssers humans). En canvi, com ja vam explicar en un article anterior, el color estructural es genera per la refracció de la llum amb certes microestructures de la pell.

dsc_0154-min
Imatge d’un escarabat cap per amunt en el que s’aprecien varis colors estructurals. Foto de David López.

I què passa amb els camaleons? Doncs una combinació dels dos mecanismes. Els camaleons presenten cromatòfors de color negre, vermell i groc que poden contraure i extendre voluntàriament. A més, en un estudi realitzat amb camaleons pantera (Furcifer pardalis), s’ha vist que també presenten dues capes de cèl·lules amb nanocristalls de guanina anomenades iridiòfors que reflecteixen la llum. La coloració verda d’un camaleó es genera llavors, per la llum blava reflectida pels iridiòfors que travessa els cromatòfors grocs més externs.

iridiof-min
Esquema d’una secció de la pell d’un camaleó on es veuen els iridiòfors (blau) amb les capes de nanocristalls i diferents tipus de cromatòfors; xantòfors (groc), eritròfors (vermell) i melanòfors (negre). Imatge de David López.

Els camaleons a més, presenten un seguit de circuïts neurològics que els permeten controlar la composició i la distància entre si dels nanocristalls dels iridiòfors de diferents parts del seu cos. Això provoca que puguin controlar la longitud d’ona de la llum reflexada pels iridiòfors i per tant el color. Combinat amb els cromatòfors, les diferents espècies de camaleons poden abarcar gran part dels colors de l’espectre visible.

ncomms7368-f1-min
Diferències de coloració del camaleó pantera quan està relaxat i quan està excitat i la seva relació amb la composició i distribució dels nanocristalls dels iridiòfors. Imatge extreta de Teyssier & Saenko.

PER A QUÈ CANVIAR DE COLOR?

Encara que existeixen altres espècies d’escamosos que poden canviar de color, això sol deure’s a una resposta fisiològica a la termorregulació, a moments d’excitació o a canvis relacionats amb la reproducció. Els camaleons a més, tenen una part important del seu sistema nerviós dedicada a canviar de color ràpida, conscient i reversiblement. Poden fins i tot canviar a colors diferents diferents regions de la pell i mentres una es torna més taronja o vermella, una altra es torna més blanca o blava, creant contrasts i efectes de color molt llampants.

Però llavors, per a què canvien de color els camaleons? Doncs la veritat és que les habilitats caleidoscòpiques d’aquests llangardaixos tenen vàries funcions diferents, variant entre les diferents espècies.

CAMUFLATGE

El motiu més obvi (tot i que no el principal) és el camuflatge. Tot i que la coloració estàndard de la majoria d’espècies de camaleons ja és suficientment críptica, en cas necessari els camaleons són capaços de confondre’s encara més amb el seu entorn. Això els ajuda a no ser detectats per les seves preses, tot i que el motiu principal és passar desapercebut pels seus depredadors.

14533621750_5f718c7c9a_o-min
Camaleó comú (Chamaeleo chamaeleon) perfectament camuflat en el seu entorn. Foto de Javier Ábalos Álvarez.

A més, en un estudi dut a terme amb camaleons nans de Smith (Bradypodion taeniabronchum) es va comprovar que  aquestss eren capaços d’adjustar el grau de canvi de color a les capacitats visuals dels seus depredadors. Aus i serps s’alimenten de camaleons però, mentre que les primeres tenen una bona percepció de les formes i els colors, les segones no tenen una visió tant aguda. S’ha vist que els camaleons nans de Smith mostren canvis de color molt més convincents davant la presència d’una au depredadors, que davant d’una serp.

predaor-min
Fotos d’un camaleó nan de Smith camuflant-se davant de dos depredadors falsos, un botxí i una mamba. Foto de Devi Stuart-Fox.

TERMOREGULACIÓ

Els camaleons són ectoterms i com la majoria de rèptils, depenen de fonts de calor externes. A més dels iridiòfors més superficials (anomenats iridiòfors-S), els camaleons tenen una segona capa més profunda d’iridiòfors anomenats iridòfors-D, que (tot i que presenten una estructura de nanocristalls més desordenada i que no pot ser modificada) reflexen altament la llum infrarroja, i es creu que segurament tinguin alguna funció relacionada amb la termorregulació. Molts altres llangardaixos també presenten una capa d’iridiòfors semblants als iridiòfors-D.

A més dels iridiòfors-D, els camaleons canvien a colors més foscos o més clars per a regular fins a cert punt la seva temperatura corporal. Això es fa especialment patent en les espècies que viuen en els hàbitats amb climes més extrems. Com ja vam explicar en una entrada anterior, el camaleó de Namaqua (Chamaeleo namaquensis), que habita en els deserts del sud-oest africà, presenta un color quasi completament negre a primeres hores del matí per absorbir la màxima quantitat de calor, mentre que a les hores més caloroses mostra una coloració blanquinosa, per a reflectir al màxim la radiació solar.

laika_ac_namaqua_chameleon_8446604184-min
Dos patrons de coloració diferents en el camaleó de Namaqua, un de més clar (foto de Hans Stieglitz) i un de més fosc (foto de Laika ac).

COMUNICACIÓ

La principal funció del canvi de color en els camaleons és la comunicació intraespecífica. Els camaleons fan servir diferents patrons de color coneguts com a librea a alguns llocs, que canvien per a transmetre informació a altres individus de la seva mateixa espècie com are el seu grau d’estrés, el seu estat reproducció o de salut, etc… La coloració estàndard d’un camaleó sol ser sembalnt a la del seu hàbitat. Per tnt, aquesta coloració sol indicar un bon estat de salut, mentre que si están malalts o tenen algún problema físic, solen mostrar patrons més pàlids i apagats.

chameleon_spectra-min
Patrons de dominancia i submissió de tres espècies de camaleó nan (Bradypodion sp.) Imatge de Adnan Moussalli & Devi Stuart-Fox.

En moltes espècies, les femelles presenten coloracions més cridaneres i contrastades quan estan en zel, mentre que es mostren d’un color més fosc després de ser fecundades. Al veure aquestes senyals, els mascles poden saber quines femelles es troben disponibles i amb quines femelles val més estalviar-se l’esforç. Els mascles també presenten patrons més cridaners durant la època de reproducció, per a indicar les seves intencions a les femelles i per advertir als seus rivals.

7636716522_11821e6eca_o-min
Femella de camaleó de línia blanca (Furcifer lateralis) amb un patró que indica que ja està prenyada i no li interessa aparellar-se. Foto de Bernard Dupont.

Finalment, fora de l’època de reproducció, tots els camaelons utilitzen els seus patrons més colorits en els encontres amb rivals de la seva mateixa espècie. És en aquestes situacions quan els camaleons mostren els colors més contrastats, a més d’inflar-se i mostrar-se més grans i agressius per a espantar als seus rivals.

Vídeo d’un camaleó pantera (Furcifer pardalis) mostrant-se agressiu amb un suposat “rival”. Vídeo de The White Mike Posner.

Com acabem de veure, la varietat de coloracions entre les diferents espècies de camaleons és enorme. Tot i així, aquestes increïbles habilitats no han salvat als camaleons de la llista d’espècies amenaçades, ja que moltes d’elles es troben en perill, principalment per la destrucció del seu hàbitat per la industria fustera i per la seva captura per al tràfic il·legal d’animals exòtics. Esperem que amb una major conscienciació sobre aquests espectaculars i colorits llangardaixos, les generacions futures puguin delectar-se amb els canvis de color dels camaleons durant molt de temps.

REFERÈNCIES

S’han utilitzat les següents fonts durant l’elaboració d’aquesta entrada:

difusio-catala

Com veuen el món els animals?

ATENCIÓ!

AQUEST ARTICLE HA QUEDAT OBSOLET.

LLEGEIX LA VERSIÓ MILLORADA I ACTUALITZADA AQUÍ.

—————

Has sentit alguna vegada que els gossos veuen en blanc i negre? O que els gats veuen en la foscor? Per què tenim els ulls davant de la cara? I per què les cabres tenen la pupil·la horitzontal? En aquest article donarem resposta a aquestes i altres qüestions sobre els ulls i la visió, centrant-nos en els mamífers.

COM ES FORMA UNA IMATGE?

Els ulls són els receptors encarregats de captar la llum i enviar el senyal a través del nervi òptic al cervell, que farà la interpretació. La llum no és més que una ona electromagnètica, igual que els infrarojos, ultraviolats, raigs X, microones, etc. En aquest article ens referirem a la llum visible, és a dir, la part de l’espectre que captem els humans i la majoria de mamífers.

Parts de l’ull humà. Imatge del Dr. Soler

Bàsicament, la llum passa a través de la pupil·la. Aquesta pot regular la quantitat de llum que passa canviant de mida gràcies a músculs associats a l’iris (que dóna el color a l’ull). El cristal·lí seria la lent que permet enfocar els objectes. La imatge es projecta invertida a la retina, per a ser enviada com a senyal elèctric al cervell.

PER QUÈ VEIEM EN COLOR?

A la retina es troben dos principals tipus de cèl·lules fotoreceptores: cons i bastons  La principals diferències són:

BASTONS
  • Més sensibles en poques condicions de llum
  • No permeten veure en color
  • Sensibles al moviment
  • Poc detall de la imatge
CONS
  • S’activen en condicions elevades de llum
  • Permeten veure en color
  • Sensibles al contrast
  • Alt detall de la imatge

És per això que quan hi ha poca llum, els vertebrats veiem en blanc i negre i la imatge no és clara, ja que els bastons estan activats al màxim però els cons romanen inactius. Alguns primats disposem de tres tipus diferents de cons (visió tricromàtica), que responen a la llum vermella, verda i blava (RGB, de les sigles d’aquests colors en anglès). Altres primats i animals tenen visió monocromàtica (només disposen d’un tipus de con) o dicromàtica (dos). Alguns animals tenen visió tetracromàtica, com les aus.

Els cons són sensibles a diferents longituds d’ona, és a dir, a diferents colors. Foto presa d’Associació Primatológica Colombiana

Generalitzant molt, els vertebrats diürns tenen més cons que bastons, en canvi els nocturns tenen més bastons que cons, el que els permet veure millor en la foscor. Però realment veuen en la foscor?

VEURE EN LA FOSCOR

En absència total de llum és impossible veure, encara que alguns animals puguin detectar altres radiacions com els infrarojos (serps) o els ultraviolats (abelles). A més de la relació entre cons i bastons, altres factors que milloren la vista en condicions de poca llum són:

LA CÒRNIA

Com més gran sigui l’ull i la còrnia, millor aprofitament de llum. El mamífer amb la còrnia més gran respecte a l’ull és el tarser de Filipines (Carlito syrichta), de vida nocturna.

Tarser de Filipines (Foto: Kok Leng Yeo)

LA PUPIL·LA

Una altra manera d’aprofitar al màxim les poques condicions de llum és augmentant la mida de la pupil·la. Segons la forma d’aquesta, el control de llum que entra és més precís: és el cas de molts felins. Comparada amb una pupil·la rodona, l’allargada s’obre i tanca més perquè ho fa cap als costats i segons la posició de la parpella, la superfície de pupil·la exposada a la llum es pot controlar millor.

Els fèlids amb pupil·la vertical poden obrir-la horitzontalment i controlar millor l’entrada de llum que una circular. Imatge d’autor desconegut, adaptada de Aquarium-Muséum de Liège

EL TAPETUM LUCIDUM

Felins, cànids, ratpenats, cavalls, cetacis, cocodrils, bòvids i alguns primats nocturns posseeixen a la retina o darrere d’ella una capa brillant anomenada tapetum lucidum, que augmenta fins a 6 vegades la capacitat de captar llum comparat amb els humans. Com si d’un mirall es tractés, el tapetum lucidum reflecteix la llum que arriba a l’ull per tornar de nou a la retina i aprofitar la llum al màxim.

Reflexió de la llum a causa del tapetum lucidum. Imatge presa de Exclusively cats

El tapetum lucidum és el responsable que sembli que els ulls dels gats brillin en la foscor o vegem la pupil·la dels gossos verdosa/blavosa segons incideixi la llum.

Tapetum lucidum brillant en un gos. Foto de Mireia Querol

PER QUÈ HI HA ANIMALS AMB ELS ULLS DAVANT DE LA CARA I ALTRES ELS TENEN ALS COSTATS?

La posició dels ulls en els mamífers pot ser frontal, com en un gat, o lateral, com en un conill. Això els suposa diferents avantatges:

  • Visió binocular (estereoscòpica): permet un bon càlcul de les distàncies, tot i que el camp de visió és menor. La imatge generada és tridimensional. És típic de carnívors que han de focalitzar l’atenció cap a les seves preses o primats que han de calcular la distància entre les branques.
  • Visió lateral (perifèrica): permet que cada ull envii un senyal diferent al cervell, de manera que els és més fàcil adonar-se del que els envolta en tenir un camp de visió de gairebé 360º. És típic de mamífers herbívors, que han d’estar atents a la presència de possibles depredadors.
    Camp visual d’un gat i un cavall. La visió binocular és més àmplia en el gat, però té més àrea cega. La visió monocular en el cavall redueix els seus punts cecs. Font: Sjaastad OV, Sand O. i Hove K. Foto presa d’Eye Opener

    PER QUÈ LES CABRES TENEN LA PUPIL·LA HORITZONTAL?

    A més de la posició dels ulls, la forma de la pupil·la també té relació segons si s’és depredador o presa. La cabra o el cavall tenen la pupil·la horitzontal, mentre que felins com el margay la tenen vertical.

    Pupil·la d’una cabra (horitzontal) i un gat (vertical). Foto: Wikimedia Commons

    Segons Banks, per calcular la distància els depredadors es basen en la visió estereoscòpica (funciona millor amb una pupil·la petita) i la nitidesa (funciona millor amb una gran). Les pupil·les verticals són petites horitzontalment i grans verticalment.

    En el cas de les preses atacades per depredadors terrestres, la tendència de la pupil·la és ser horitzontal perquè “permet recollir més llum als costats i menys amunt i avall i també redueix la llum del sol, que podria enlluernar”. Les excepcions, com conills o ratolins amb pupil·la circular, es deuen al fet que han de vigilar depredadors que els puguin venir des del cel, com rapinyaires

    QUÈ ÉS LA TERCERA PARPELLA?

    Alguns animals posseeixen la membrana nictitant (“tercera parpella”), una membrana transparent o translúcida que serveix per protegir l’ull i humitejar-lo sense perdre visibilitat. Camells, foques i óssos polars la tenen completa, mentre que en altres mamífers, com en el gos o l’humà només es conserva reduïda.

    Membrana nictitant en un felí. Foto de Editor B

    ÉS VERITAT QUE ELS GOSSOS I ELS TOROS VEUEN EN BLANC I NEGRE?

    En realitat els gossos i gats són capaços de detectar els colors, concretament grisos, grocs i blaus en tons més suaus. Els gats potser puguin percebre algun color més.

    Espectre visible per un gos i per un humà. Font

    En el cas dels toros, també està estès el mite que o bé reaccionen davant el color vermell o veuen en blanc i negre. En realitat els toros tenen visió dicromàtica, com la majoria de mamífers diürns, ja que només tenen cons sensibles al blau i al verd. Per tant, no veuen el vermell, però no vol dir que vegin en blanc i negre.

    I ALTRES MAMÍFERS?

    Els equins, veuen en tons blaus i vermells. La majoria de rosegadors veuen en blanc i negre. La majoria d’espècies de la família de les cabres, ovelles i bous veuen del verd al violeta. A més, estudis recents indiquen que molts mamífers (sobretot nocturns), contràriament al que es creia, també poden percebre radiació ultraviolada: rates i ratolins, rens, possiblement gats i gossos, vaques, porcs, fures, okapis…

    Acabem amb un vídeo de BuzzFeed amb la simulació de la vista d’alguns animals, i si esncara tens alguna pregunta sobre com hi veuen els mamífers, deixa-la als comentaris!

    REFERÈNCIES

¿Cómo ven el mundo los animales?

¡ATENCIÓN!

ESTE ARTÍCULO HA QUEDADO OBSOLETO.

LEE EL ARTÍCULO ACTUALIZADO Y MEJORADO AQUÍ

——

¿Has escuchado alguna vez que los perros ven en blanco y negro? ¿O que los gatos ven en la oscuridad? ¿Por qué tenemos los ojos delante de la cara? ¿Y por qué las cabras tienen la pupila horizontal? En este artículo daremos respuesta a estas y otras cuestiones sobre los ojos y la visión, centrándonos en los mamíferos.

¿CÓMO SE FORMA UNA IMAGEN?

Los ojos son los receptores encargados de captar la luz y enviar la señal a través del nervio óptico al cerebro, que hará la interpretación. La luz no es más que una onda electromagnética, igual que los infrarrojos, ultravioletas, rayos X, microondas, etc. En este artículo nos referiremos a la luz visible, es decir, la parte del espectro que captamos los humanos y la mayoría de mamíferos.

Partes del ojo humano. Imagen del Dr. Soler.
Partes del ojo humano. Imagen del Dr. Soler

Básicamente, la luz pasa a través de la pupila. Ésta puede regular la cantidad de luz que pasa cambiando de tamaño gracias a músculos asociados al iris (que da el color al ojo). El cristalino sería la lente que permite enfocar los objetos. La imagen se proyecta invertida en la retina, para ser enviada como señal eléctrica al cerebro.

¿POR QUÉ VEMOS EN COLOR?

En la retina se encuentran dos principales tipos de células fotorreceptoras: conos y bastones. La principales diferencias son:

BASTONES
  • Más sensibles en pocas condiciones de luz
  • No permiten ver en color
  • Sensibles al movimiento
  • Poco detalle de la imagen
CONOS
  • Se activan en condiciones elevadas de luz
  • Permiten ver en color
  • Sensibles al contraste
  • Alto detalle de la imagen

Es por eso que cuando hay poca luz, los vertebrados vemos en blanco y negro y la imagen no es clara, ya que los bastones están activados al máximo pero los conos permanecen inactivos. Algunos primates disponemos de tres tipos diferentes de conos (visión tricromática), que responden a la luz roja, verde y azul (RGB, de las siglas de estos colores en inglés).  Otros primates y animales tienen visión monocromática (sólo disponen de un tipo de cono) o dicromática (dos). Algunos animales tienen visión tetracromática, como las aves.

Los conos son sensibles a diferentes longitudes de onda, es decir, a diferentes colores. Foto tomada de Asociación Primatológica Colombiana.
Los conos son sensibles a diferentes longitudes de onda, es decir, a diferentes colores. Foto tomada de Asociación Primatológica Colombiana.

Generalizando mucho, vertebrados diurnos tienen más conos que bastones, en cambio los nocturnos tienen más bastones que conos, lo que les permite ver mejor en la oscuridad. ¿Pero realmente ven en la oscuridad?

VER EN LA OSCURIDAD

En ausencia total de luz es imposible ver, aunque algunos animales puedan detectar otras radiaciones como los infrarrojos (serpientes) o los ultravioletas (abejas). Además de la relación entre conos y bastones, otros factores que mejoran la vista en condiciones de poca luz son:

LA CÓRNEA

Cuanto más grande sea el ojo y la córnea, mejor aprovechamiento de luz. El mamífero con la córnea más grande respecto al ojo es el tarsero de Filipinas (Carlito syrichta), de vida nocturna.

Tarser de Filipines (Foto: Kok Leng Yeo)
Tarsero de Filipinas. (Foto: Kok Leng Yeo)

LA PUPILA

Otra manera de aprovechar al máximo las pocas condiciones de luz es aumentando el tamaño de la pupila. Según la forma de ésta, el control de luz que entra es más preciso: es el caso de muchos felinos. Comparada con una pupila redonda, la alargada se abre y cierra más porque lo hace hacia los lados y según la posición del párpado, la superficie de pupila expuesta a la luz puede controlarse mejor.

Los félidos con pupila vertical pueden abrirla horizontalmente y controlar mejor la entrada de luz que una circular. Imagen de autor desconocido, adaptada de
Pupila de un gato en diferentes condiciones de luz. Autor desconocido, adaptada de Aquarium- Muséum de Liège

EL TAPETUM LUCIDUM

Felinos, cánidos, murciélagos, caballos, cetáceos, cocodrilos, bóvidos y algunos primates nocturnos poseen en la retina o detrás de ella una capa brillante llamada tapetum lucidum, que aumenta hasta 6 veces la capacidad de captar luz comparado con los humanos. Como si de un espejo se tratara, el tapetum lucidum refleja la luz que llega al ojo para devolverla de nuevo a la retina y aprovechar la luz al máximo.

Reflexión de la luz debido al tapetum lucidum. Imagen tomada de Exclusively cats.
Reflexión de la luz debido al tapetum lucidum. Imagen tomada de Exclusively cats.

El tapetum lucidum es el responsable de que los ojos de los gatos parezca que brillen en la oscuridad o veamos la pupila de los perros verdosa/azulada según incida la luz.

Tapetum lucidum brillando en un perro en una foto tomada con flash. foto de Mireia Querol
Tapetum lucidum reflejando la luz en un perro. Foto de Mireia Querol

¿POR QUÉ HAY ANIMALES CON LOS OJOS DELANTE DE LA CARA Y OTROS EN LOS LADOS?

La posición de los ojos en los mamíferos puede ser frontal, como en un gato, o lateral, como en un conejo. Esto les supone distintas ventajas:

  • Visión binocular (estereoscópica): permite un buen cálculo de las distancias, aunque el campo de visión es menor. La imagen generada es tridimensional. Es típico de carnívoros que deben focalizar la atención hacia sus presas o primates que deben calcular la distancia entre las ramas.
  • Visión lateral (periférica): permite que cada ojo mande una señal distinta al cerebro, por lo que les es más fácil percatarse de lo que les rodea al tener un campo de visión de casi 360º. Es típico de mamíferos herbívoros, que deben estar atentos a la presencia de posibles depredadores.
Campo visual de un gato y un caballo. La visión binocular o tridimensional es más amplia en el gato, pero tiene más área ciega. La visión monocular en el caballo reduce sus puntos ciegos. Fuente: Sjaastad O.V., Sand O. and Hove K. (2010) Physiology of domestic animals, 2nd edn., Oslo: Scandinavian Veterinary Press. Foto tomada de Eye Opener
Campo visual de un gato y un caballo. El área ciega es menor en los herbívoros. Fuente: Sjaastad O.V., Sand O. and Hove K. Foto tomada de Eye Opener

¿POR QUÉ LAS CABRAS TIENEN LA PUPILA HORIZONTAL?

Además de la posición de los ojos, la forma de la pupila también tiene relación según si se es depredador o presa. La cabra o el caballo tienen la pupila horizontal, mientras que felinos como el margay la tienen vertical.

Pupila d euna cabra (horizontal) y un gato (vertical). Foto: Wikimedia commons
Pupila de una cabra (horizontal) y un gato (vertical). Foto: Wikimedia Commons

Según Banks, para calcular la distancia los depredadores se basan en la visión estereoscópica (funciona mejor con una pupila pequeña) y la nitidez (funciona mejor con una grande).  Las pupilas verticales son pequeñas horizontalmente y grandes verticalmente.

En el caso de las presas atacadas por depredadores terrestres, la tendencia de la pupila es ser horizontal porque “permite recoger más luz a los lados y menos arriba y abajo y también reduce la luz del sol, que podría deslumbrarlos”. Las excepciones, como conejos o ratones con pupila circular, se deben a que tienen que vigilar depredadores que les vengan des del cielo, como rapaces.

¿QUÉ ES EL TERCER PÁRPADO?

Algunos animales poseen la membrana nictitante (“tercer párpado”), una membrana transparente o translúcida que sirve para proteger el ojo y humedecerlo sin perder visibilidad. Camellos, focas y osos polares la tienen completa, mientras que en otros mamíferos, como en el perro o el humano sólo se conserva reducida.

Membrana nictitante en un felino. Foto de Editor B
Membrana nictitante en un felino. Foto de Editor B

¿ES VERDAD QUE LOS PERROS Y LOS TOROS VEN EN BLANCO Y NEGRO?

En realidad los perros y gatos son capaces de detectar los colores, concretamente grises, amarillos y azules en tonos más suaves. Los gatos quizá puedan percibir algún color más.

Espectro visible por un perro y por un humano. Fuente
Espectro visible por un perro y por un humano. Fuente

En el caso de los toros, también está extendido el mito de que o bien se enfurecen ante el color rojo o ven en blanco y negro. En realidad los toros tienen visión dicromática, como la mayoría de mamíferos diurnos, puesto que sólo tienen conos sensibles al azul y al verde. Por lo tanto, no ven el rojo, pero no significa que vean en blanco y negro.

¿Y OTROS MAMÍFEROS?

Los equinos, ven en tonos azules y rojos.  La mayoría de roedores ven en blanco y negro. La mayoría de especies de la familia de las cabras, ovejas y toros ven del verde al violeta. Además, estudios recientes indican que muchos mamíferos (sobretodo nocturnos), contrariamente a lo que se creía, también pueden percibir radiación ultravioleta: ratas y ratones, renos, posiblemente gatos y perros, vacas, cerdos, hurones, okapis…

Terminamos con un vídeo de BuzzFeed con la simulación de la vista de algunos animales y si crees que ha quedado alguna pregunta en el tintero ¡déjala en los comentarios!

REFERENCIAS

Mireia Querol Rovira

How animals see the world?

Have you ever heard that dogs see in black and white? Or that cats can see in the dark? Why we have our eyes in front of the face? And why goats have an horizontal pupil? This article will answer these and other questions about the eyes and vision, focusing on mammals.

HOW IMAGES ARE FORMED?

The eyes are the receptors responsible for capturing light and sending the signal through the optic nerve to the brain, which make the interpretation. Light is an electromagnetic wave as infrared, ultraviolet, X rays, microwaves, etc. In this post we will refer to visible light, that is, the part of the spectrum that can perceive humans and most mammals.

eye parts
Parts of the eye. Source

Basically, the light passes through the pupil. It can regulate the amount of light thanks to the muscles associated with iris (which gives color to the eye). The lens focuses the objects. The image is projected inverted in the retina, to be sent as an electrical signal to the brain.

WHY DO WE SEE IN COLOR ?

In the retina there are two main types of photoreceptor cells: cons and rods. The main differences are:

RODS
  • More sensitive in a few light conditions
  • No color vision
  • Motion-sensitive
  • Less image detail
CONES
  • Activated under conditions of high light
  • Color vision
  • Contrast-sensitive
  • High image detail

That’s why in low light, vertebrates see in black and white and the image is not clear, since the rods are activated at maximum but the cones are inactive. Some primates have three different kinds of cones (trichromatic vision), which correspond to the red, green and blue colour (RGB). Some primates and other animals have monochromatic vision (they only have one type of cone) or dichromatic (two). Some animals have tetrachromic vision, like birds.

The cones are sensitive to different wavelengths, different colors. Photo taken from Colombian Primatological Association

Generalizing a lot, diurnal vertebrates have more cones than rods and nocturnal ones have more rods than cones, allowing them to see better in the dark. But they can really see in the dark?

SEEING IN THE DARK

In total absence of light it is impossible to see, although some animals can detect other radiation such as infrared (snakes) or ultraviolet (bees). In addition to the relation between rods and cones, other factors that improve vision in low light conditions are:

THE CORNEA

The bigger the eye and the cornea, the better use of light. The mammal with the greatest cornea in relation to the eye is the Philippine tarsier (Carlito syrichta ) a nightlife primate.

Philippines’ tarsier (photo: Yeo Kok Leng)

THE PUPIL

Another way to take advantadge of few light conditions is increasing the size of the pupil. According to the shape of it, the control of incoming light is more precise: it is the case of many cats. Compared with a round pupil, the elongated one opens and closes sideways and according to the position of the eyelid, pupil surface exposed to light can be controlled better.

The felines with vertical pupil can open it horizontally and control better the entry light than with a circular pupil. Image of an unknown author, adapted from Aquàrium-Liège Museum

 

THE TAPETUM LUCIDUM

Cats, dogs, bats, horses, whales, crocodiles, cattle and some nocturnal primates have in the retina or behind it a bright layer called tapetum lucidum, which increases up to 6 times the light gathering ability compared to humans. As if it were a mirror, the tapetum lucidum reflects the light reaching the eye to return back to the retina and harness light to the maximum.

Reflection of light due to the tapetum lucidum. Image taken from Exclusively cats

The tapetum lucidum is responsible for cat’s eyes appearing to glow in the dark and cat and dog’s pupils shine in blue/green when light falls upon the eye.

Tapetum lucidum shining on a dog. Photo Mireia Querol

WHY SOME ANIMALS HAVE THE EYES IN FRONT OF THE FACE WHILE OTHERS HAVE THEM ON THE SIDES ?

The position of the eye in mammals can be frontal, like a cat, or in the side, like a rabbit. This means distinct advantages:

  • Binocular vision (stereoscopic): allows a good estimation of distance, but the field of view is smaller. A 3D image is generated. It is typical of carnivores that should focus attention to their prey or primates that should calculate the distance between the branches.
  • Side vision (peripheral): allows each eye to send a different signals to the brain, so it is easier to notice their surroundings having a field of view of about 360 degrees. It is typical of herbivores, which must pay attention to the presence of potential predators .

    Visual field of a cat and a horse. The blind area is smaller in hervibores. Source: Sjaastad, Sand and O. Hove K. Photo taken from Eye Opener

WHY GOATS HAVE AN HORIZONTAL PUPIL?

In addition to the position of the eyes, the shape of the pupil is also related if you are a predator or a prey. Goats or horses have horizontal pupils, while cats like the margay have it vertical.

Pupil of a goat (horizontal) and a cat (vertical) Photo: Wikimedia Commons

Banks  says that “to calculate distances predators basis on stereoscopic vision (works better with a small pupil) and sharpness (works best with a larger one). Vertical pupils are small horizontally and large vertically”.

In the case of terrestrial prey attacked by predators, the tendency of the pupil is being horizontally because “can gather more light and and also reduces the sunlight, which could dazzle “. Exceptions such as rabbits or mice with a circular pupil, are because they have to pay attention also to the sky, from where a bird of prey can attack.

WHAT IS THE THIRD EYELID?

Some animals have the nictitating membrane (“third eyelid”), a transparent or translucent membrane that is used to protect and moisten the eye without losing visibility. Camels, seals and polar bears have it complete, whereas in other mammals, such as dogs or humans remains only reduced.

Nictitating membrane in a feline. Photo by Editor B

IS IT TRUE THAT DOGS AND BULLS SEE IN BLACK AND WHITE ?

Actually dogs and cats are able to detect colors, particularly gray, yellow and blue in softer tones. Cats may be able to perceive more colours.

Visible spectrum by a dog and a human. Source

In the case of bulls, it is also spread the myth that rage against the red colour or see in black and white. Actually bulls have dichromatic vision, like most diurnal mammals, since they only have blue and green cones. Therefore, they can’t see red, but it does not mean they see in black and white.

AND OTHER MAMMALS?

Horses see in blue and red tones. Most rodents see in black and white. Most species of the family of goats, sheeps and bulls see from green to violet. In addition, recent studies indicate that many mammals (especially nocturnal ones), contrary to what was believed, also can perceive ultraviolet radiation: rats and mice, reindeer, possibly cats and dogs, cows, pigs, ferrets, okapi…

We finish with a BuzzFeed video with the simulation of vision of some animals. If you have more questions about animal’s vision leave it in the comments!

REFERENCES