Arxiu d'etiquetes: contaminación

La naturaleza en tiempos de guerra

El mundo actual vive tiempos convulsos. Noticias relacionadas con el terrorismo, el narcotráfico, los golpes de estado, la crisis de los refugiados o las numerosas guerras aún presentes inundan nuestras pantallas día tras día. Y, en un sesgo totalmente comprensible, la atención se centra, casi exclusivamente, en las personas y los países involucrados. Pero (y es algo que me pregunto cada vez que miro el telediario) ¿qué sucede con la naturaleza en estas regiones castigadas por la violencia? En esta entrada repasamos los conflictos armados más importantes en la actualidad y sus consecuencias sobre la naturaleza de su entorno.

INTRODUCCIÓN

Cualquier acción humana tiene repercursiones sobre la vida natural, y aún más las guerras, destructoras intrínsecas. Con ellas vienen asociados una serie de perjuicios sobre la vida silvestre como son la deforestación, la degradación del suelo, la contaminación o la caza, entre muchos otros. La primera vez que se tomó realmente conciencia del gran impacto de las guerras sobre la naturaleza fue con la Guerra del Vietnam. El ejército estadounidense, en su lucha contra un enemigo invisible, lanzó más de 75 millones de litros de herbicidas sobre las selvas, con el objetivo de defoliar los árboles y poder encontrar, de esta forma, a sus enemigos. No obstante, y a pesar de lograr parcialmente su objetivo (todos sabemos como terminó aquella guerra) la naturaleza fue gravemente dañada. En un estudio llevado a cabo en Vietnam a mediados de los 80 se encontró que, en un área donde antes habitaban entre 145 y 170 especies de pájaros y entre 30 y 55 especies de mamíferos tan sólo quedaban 24 y 5 especies, respectivamente.

800px-us-huey-helicopter-spraying-agent-orange-in-vietnam
Un helicóptero Huey de las fuerzas armadas estadounidenses sobrevuela las selvas de Vietnam mientras las ‘baña’ con Agente Naranja. El Agente Naranja fue un potente herbicida y defoliador usado por Estados Unidos durante la guerra con el objetivo de hacer más visibles a los enemigos ocultos en la selva. Un sólo avión podía defoliar decenas de hectáreas en un sólo vuelo. El gobierno de Estados Unidos llegó a gastarse 60 millones de dólares anuales en el Agente Naranja. Fuente: Zmescience.

Otras guerras, como la Guerra Civil de Ruanda, a parte de dejar más de 500.000 muertos y 2 millones de desplazados, dejó la naturaleza del país en un estado de crisis absoluta. En el Parque Nacional de Akagera, uno de los entornos más emblemáticos del país, la deforestación hizo estragos:  se perdieron 200.000 de las 300.000 hectáreas de bosque en tan sólo 3 años, y el 90% de los grandes mamíferos.

Pero, ¿qué está ocurriendo en la actualidad? ¿Cómo están afectando las guerras de hoy en día a la supervivencia de la naturaleza? Aquí repasamos los conflictos actuales más importantes y su difícil coexistencia con la vida salvaje de la región.

Conflicto israelí-palestino (1948-actualidad)

Aunque la última guerra entre Israel y Palestina empezó en 2005, la violencia entre ambos países ha estado presente desde la creación del estado de Israel. Miles de personas han muerto durante décadas, y millones han sido desplazadas en contra de su voluntad. Y, claro está, la naturaleza no ha salido indemne.

Uno de los casos más sonados ocurrió en 2006. El ejército israelí bombardeó dos tanques de petróleo cercanos a una central eléctrica de Jieh, en el Líbano (país donde se encontraba Hezbolá, un grupo terrorista rival de Israel) provocando el vertido de entre 10.0000 y 15.000 metros cúbicos de petróleo en el Mediterráneo. Esta marea negra se extendió a lo largo de 90 km de la costa del Líbano, llevando la muerte consigo. Además, afectó gravemente al hábitat de la tortuga verde (Chelonia mydas) en uno de los pocos espacios bien preservados que aún tenía esta especie en el Mediterráneo.

2316325_xl
El bombardeo de dos tanques de petróleo por parte del ejército israelí dejó 80 km de costa del Líbano en una situación parecida a la de la imagen. En 2014, la Asamblea de las Naciones Unidas instó a Israel a compensar con 856,4 millones de dólares al Libano por esta catástrofe medioambiental. Fuente: hispantv.

Sin embargo, a principios de 2016 salieron a la luz unas imágenes que llamarían aún más la atención internacional: decenas de animales del zoo de Gaza aparecieron completamente momificados, después de sufrir una terrible agonía y morir de hambre. Ocurrió en dos ocasiones desde que se abrió el zoo en 2007, pero la hambruna más fuerte tuvo lugar en 2014, a raíz de un conflicto entre Israel y las fuerzas palestinas de Hamas. Se calcula que unos 80 animales murieron de hambre, entre ellos cocodrilos, tigres, babuinos o puercoespines. Cuando los servicios de rescate pudieron llegar al zoo, tan sólo quedaban 15 animales con vida, muchos de ellos con graves síntomas de desnutrición.

gaza-zoo-2
El zoo de Gaza se hizo mundialmente conocido debido a las impactantes imagenes de cuerpos momificados a raíz de la fuerte hambruna que causó la guerra. Según Abu Diab Oweida, el propietario del zoo, los cuerpos fueron momificados para que todo el mundo viera que hasta los animales se veían afectados por la guerra. Fuente: Dailymail.

caballos-muertos
Los continuos bombardeos en la franja de Gaza causan numerosas víctimas, como la de estos equinos que aparecen en la imagen. Lamentablemente, el fin del conflicto se antoja lejano. Fuente: helpinganimalsingaza.

Segunda Guerra del Congo (1998-2003)

Esta guerra, también conocida como la Gran Guerra de África o la Guerra Mundial Africana, ha provocado la muerte de más de 5 millones de personas desde entonces, lo que le ha brindado el dudoso honor de ser el conflicto armado más mortífero desde la Segunda Guerra Mundial. Aunque oficialmente terminó en 2003 y hay un gobierno electo desde 2006, la República Democrática del Congo vive sumida en un estado de inestabilidad propio de un país en guerra.

Los guerrilleros usan los numerosos recursos naturales del país para obtener dinero y así poder continuar con la guerra. Y el marfil es el bien más preciado, el que produce más beneficios. Es por ello que las poblaciones de elefante africano (Loxodonta africana) se han visto reducidas en un 90% desde el inicio de los conflictos armados. Algo peor le ha ido al rinoceronte blanco del norte (Ceratotherium simum cottoni), una subespecie del rinoceronte blanco. Se cree que sus últimos ejemplares, 2 machos y 2 hembras residentes en el Parque Nacional Garamba, murieron entre 2006 y 2008 a manos de los guerrilleros, provocando la extinción de dicha subespecie

gorila-de-montana
El gorila de montaña (Gorilla beringei beringei), del que tan sólo quedan 700 ejemplares en libertad, vive casi exclusivamente en las montañas Virunga, un territorio compartido por la República Democrática del Congo, Rwanda y Uganda. En la imagen, un gorila de montaña muerto por causas desconocidas en 2007. Se cree que los guardabosques estuvieron implicados en su muerte. Fuente: The Guardian.

El ‘bushmeat‘ o comida de animales salvajes, es otro gran problema derivado de los numerosos conflictos militares en el país. A raíz de la pobreza extrema, muchos aldeanos se han visto obligados a cazar para sobrevivir. Y uno de los grupos más perjudicados ha sido el de los primates. Las poblaciones de los grandes primates, en otro tiempo contadas por millones, se han visto reducidas drásticamente. Se cree que quedan tan sólo 200.000 gorilas de llanura, 100.000 chimpancés y  10.000 bonobos en libertad.

bonobo-killed
Los bonobos (Pan paniscus), son nuestros parientes más cercanos, y uno de los animales más amenazados en el Congo. Es una especie endémica de ese país, pero está siendo fuertemente cazado para comida y, más recientemente, para servir como manjar al mercado asiático. Ejemplares como el de la imagen pueden ser fácilmente encontrados en los mercados de Kinshasa y Brazzaville. Fuente. National Geographic.

Guerra Civil de Siria (2011-actualidad)

Sin duda la guerra en activo de la que más oímos a hablar. Este conflicto ha costado la vida a más de 500.000 personas y ha provocado una de las crisis humanitarias más importantes de nuestro tiempo: se estima que hay más de 10 millones de refugiados por culpa de la guerra. Los que se han quedado en Siria, se han ido desplazando desde el interior a la zona costera, constituyendo una gran amenaza para los bosques de la región. Según Aroub Almasri, un ecologista del gobierno sirio, la mayoría de gente necesita comida, electricidad y combustible para cocinar y calentarse, con lo que han empezado a talar los bosques de la zona, la mayoría en áreas protegidas. A parte del propio impacto de la deforestación, se suman un gran número de fuegos que se han ido extendiendo por la región en los últimos tiempos. Un área especialmente afectada se trata del bosque de Fronlok, en la frontera con Turquía. En esas montañas el grado de endemismo es alto, y hay el peligro de que muchas especies desaparezcan de la zona, en especial un tipo de encino, el Quercus cerris, nativo de la región y que empieza a estar amenazado.

Debido a la fragmentación del hábitat, se cree que una especie icónica del Mediterráneo y catalogada como en peligro crítico de extinción por la UICN, se ha extinguido en Siria. Se trata del ibis eremita (Geronticus eremita), un ave del que solo quedan 500 individuos en libertad y que está presente solamente en tres países: Marruecos, Turquía y Siria. A pesar del enorme esfuerzo de Siria para mantener una población estable en su territorio, la guerra acabó con los últimos individuos de esta especie en la región. Tan sólo queda un individuo de la especie, una hembra llamada Zenobia, que fue vista por última vez en Palmira antes de que las tropas del ISIS entraran en la ciudad.

ibis-eremita
Parece que los numerosos esfuerzos realizados por el gobierno de Siria en los primeros años del siglo XXI han sido insuficientes para salvar de la extinción a esta emblemática especie. Antes presente en grandes partes de Europa (desde Austria a la Península Ibérica) el ibis eremita cuenta con las poblaciones más importantes en Marruecos, su último reducto en estado natural. Fuente: New Scientist.

Segunda Guerra Civil de Libia (2014-actualidad)

Tras la Primera Guerra Civil de Libia, que culminó con la caída del coronel Gadafi, el país se ha visto arrastrado a una espiral de violencia auspiciada por los numerosos grupos armados que gobiernan el país. La importación de carne del exterior se ha detenido, y los propietarios de las ovejas, cabras y camellos guardan a sus animales como si de oro se tratara debido al desabastecimiento. Debido a ello, los grupos armados se están dirigiendo al sur del país, donde la anarquía impera a sus anchas, para abastecerse de comida proveniente de animales salvajes.

Una de las especies más perjudicadas ha sido la gacela de Loder (Gazella leptoceros), catalogada como amenazada según la UICN y con sus poblaciones en franco descenso. Hace diez años la población no superaba los varios centenares de individuos, y se cree que hoy en día la situación es mucho peor.

slender-horned_gazelle_cincinnati_zoo
La gazela de Loder es nativa del norte de África, donde quedan menos de 2500 individuos. Las milicias usan su carne para alimentarse o venderla en el mercado libio, donde escasea. Fuente: Creative Commons.

Pero las gacelas no son la únicas perjudicadas por el vandalismo e impunidad reinantes en Libia. Gran cantidad de aves migratorias, que tienen que cruzar el país africano en su camino hacia Europa, son abatidas por los cazadores. Además, los oasis que usan para descansar están siendo abiertos por los cazadores, lo que provoca que centenares de grullas, patos, garzas y flamencos sean aniquilados sin que nadie pueda hacer nada.

Además, el efecto de la guerra de Libia sobre la naturaleza no queda dentro de sus fronteras. En 2015, cerca de unos cadáveres de elefante de Mali, una subespecie de elefante gravemente amenazada, se encontraron armas provenientes de Libia. Se cree que el marfil de los elefantes de Mali está sirviendo para financiar a las milicias libias.

A slaughtered elephant is seen in Bambara-Maoude
Los elefantes de Mali son una de las dos unicas poblaciones de elefantes que viven en el desierto. El último censo aereo (de 2007) reveló la presencia de tan sólo 350 individuos en el país. En 2015 se hallaron 80 individuos cazados, con lo que los pronósticos no son nada halagüeños: los científicos creen que la población se extinguirá en 3 años  Fuente: Reuters.

Guerra del Gobierno colombiano contra las FARC y otras guerrillas (1964-2016)

A pesar del acuerdo de paz alcanzado hace poco meses entre el gobierno colombiano y las FARC, las heridas, tanto sociales como medioambientales, tardarán mucho tiempo en cerrarse. Durante mucho tiempo las milicias se han financiado en gran parte del dinero generado por los cultivos ilegales de cocaína. Emplazadas en lo más profundo de la selva colombiana, miles de hectáreas de bosque prístino han sido aclaradas para la construcción de laboratorios y la siembra de cultivos de coca. Además, en un intento para acabar con este tipo de cultivos ilegales, el gobierno ha fumigado extensas zonas de selva con glifosato, un herbicida que, a pesar de ser considerado inofensivo, ha podido provocar la muerte de aves, pequeños mamíferos e insectos, dejando de está forma sin sustento a la gente que vive de la caza. Otro problema añadido es que los cultivos de uso ilícito se han extendido a las zonas protegidas. Así pues, según un informe de Parques Naturales de Colombia, las FARC estaban presentes en 37 áreas protegidas del país , y se detectaron, además, 3.791 hectáreas de coca sembrada.

Sin embargo, la actividad ilícita que más amenaza la naturaleza de Colombia es la minería ilegal, una de las actividades más lucrativas para los grupos armados. Y es que, mientras 1 kg de coca se vende a unos 4,3 millones de pesos, uno de oro se vende a 85 millones de pesos, unas 20 veces más. Por ese motivo, grandes extensiones de selva han sido destruidas por las máquinas retroexcavadoras para abrir minas de oro (el 60%), coltán (25%), carbón (10%) y tungsteno (5%). La deforestación derivada de la minería ilegal alcanza cifras inimaginables: entre el 1990 y el 2010 se deforestaron, en promedio, 310.349 hectáreas de selva al año, es decir, 6.206.000 hectáreas en todo este tiempo, o lo que es lo mismo, el 5,4% de la superficie de Colombia.

mineria-ilegal2
Para la extracción del oro se utilizan mercurio y cianuro, metales altamente contaminantes. Se estima que alrededor de 200 toneladas de mercurio van a parar, cada año, a ríos colombianos. Esto ha provocado que almenos 90 ríos estén contaminados por este tipo de metales, afectando a la fauna y flora local. Fuente: Semana.

Por último, las acciones llevadas a cabo por las FARC contra las extracciones petroleras ha causado graves vertidos de crudo en áreas de alto valor ambiental. Es el caso, por ejemplo, del derrame de 492 litros de petroleo en Puerto Asís, Putumayo, en junio de 2015. Las FARC interceptaron un convoy que contenía tanques con petróleo y los derramó, afectando a 9 humedales y extendiendo el petróleo a lo largo del río Putumayo.

petroleo-derramado
Los ataques sistemáticos de las FARC contra la industria petrolera llegaron, tan sólo en la provincia de Putumayo, a los 132 en 2013. Los hidrocarburos contaminan los suelos y permanecen ahí durante años. En el agua, el petróleo, debido a su consumo de oxígeno, crea condiciones anóxicas que provoca la muerte de los peces cercanos. Fuente: elcolombiano.

Guerra de Afganistán (2001-2014)

Tanto la última guerra de Afganistán como la anterior tuvieron un fuerte impacto sobre la vida salvaje de la región. Se calcula que entre el 1990 y el 2007 más de un tercio de los bosques de Afganistán fueron talados, tanto por refugiados para usar la madera para cocinar, combustible o construcción como por las industrias madereras, que talan impunemente los bosques de la región.

A pesar de todo, las noticias son más optimistas de lo que se esperaría de un país sumido en la guerra durante décadas. Entre los años 2006 y 2009 se llevaron a cabo, en la provincia de Nuritán, los primeros censos desde la década de los 70, con la ayuda de cámaras-trampa, el estudio de las heces y la realización de transectos. Los resultados fueron alentadores: se observaron 18 osos negros, 280 ejemplares de puercoespín, muchos zorros rojos, lobos grises y chacales dorados, algunos gatos monteses, civetas de las palmeras y macacos rhesus y, sobre todo, se detectó la presencia del esquivo leopardo de las nieves (Panthera uncia), en concreto de 3 individuos distintos.

leopardo-de-las-nieves
Cámaras de foto-trampeo lograron fotografiar al esquivo leopardo de las nieves en las agrestes montañas afganas. Sin duda, una noticia esperanzadora para su conservación. Fuente: James Nava.

Sin embargo, aún no se puede cantar victoria. La gran cantidad de bombas lanzadas durante años hicieron mella en la abundancia de aves migratorias. Muchas de las aves murieron directamente por el impacto de las bombas o envenenadas al entrar en contacto con agua contaminada. Otras, sin embargo, variaron su rumbo debido a los bombardeos y ya no cruzan el país.  Es el caso de la grulla siberiana (Grus leucogeranus), una especie críticamente amenazada de extinción por la UICN y que no se ha vuelto a ver en Afganistán desde el 1999. Además, debido a la guerra y a la incipiente economía afgana, cientos de cazadores se ven obligados a atrapar pájaros vivos para su posterior contrabando hacia países árabes ricos. Esta situación ha propiciado que, en algunas regiones de Afganistán, la observación de aves migratorias haya descendido un 85% desde el inicio de la guerra.

afganistan-pajaros
Según el director de Protección Ambiental de Afganistán, cada año alrededor de 5000 aves son cazadas para contrabando, sobretodo en las regiones de Syed Khel y Kohistan. Muchas de las avutardas hubara (Chlamydotes undulata) y diferentes tipos de halcones son enviados a los países ricos del Golfo para servir como mascotas. En la imagen, cazadores afganos junto a sus jaulas rudimentarias. Fuente: focusingonwildlife.

El conflicto de Corea (1950-actualidad)

La Zona Desmilitarizada de Corea es la prueba de que hasta algo tan trágico como una guerra puede traer consecuencias positivas. A raíz de la paz acordada por ambos países en 1953, se llevó a cabo la creación de la Zona Desmilitarizada de Corea, una franja de tierra de 4 km de ancho y 250 km de largo que separa ambos países. La zona, que cuenta con una fuerte presencia militar de cerca de 2 millones de soldadosha permanecido prácticamente inalterada y escasamente habitada desde entonces.

separacion-corea
La Zona Desmilitarizada de Corea, o ZDC, separa ambos países gracias a una zona ‘buffer’ de 4 km de ancho. En este enclave se suelen celebrar las infrecuentes y tensas reuniones entre los mandatarios de ambos países. Fuente: Creative Commons.

La zona se caracteriza por poseer una gran riqueza topográfica y alta variedad de ecosistemas, lo que le permite ostentar una gran diversidad. Algunas expediciones científicas han podido documentar más de 1.100 especies de plantas, 80 especies de peces, 50 de mamíferos y centenares de aves. Además, es una frecuente parada para muchas especies de aves migratorias que se dirigen hacia Mongolia, Filipinas o Australia.

zdc2
La zona tiene una gran riqueza florística y faunística. Ciervos, osos, jabalíes y gran cantidad de aves pueblan el territorio. Se cree, incluso, que podría contener algunos individuos de tigre siberiano, habitante habitual de la zona antes de la ocupación japonesa de Corea. Fuente: BBC.

Recientemente, gracias a la mejoría de las relaciones entre ambos países, la zona puede ser visitada por tan sólo unos 43 euros. Además, debido a su excepcional estado de conservación y alta diversidad, están surgiendo campañas para convertir la zona en un área protegida. Una de estas campañas, la DMZ Forum, propone declarar la zona Patrimonio de la Humanidad y Parque Mundial para la Paz, y poder protegerla así de un posible desarrollo urbanístico el día en que se alcance la paz entre los dos países.

zdc
La zona ha recibido numerosos apoyos para convertirla en una reserva natural que la proteja de una posible explotación futura. Entre las personalidades que han apoyado el plan se encuentran el ex-presidente de Estados Unidos, Bill Clinton, o el fundador de la CNN, Ted Turner. Fuente: BBC.

BIBLIOGRAFIA

DeWeerdt, Sarah (January 2008). “War and the Environment”. World Wide Watch. 21
King, Jessie (8 July 2006). “Vietnamese wildlife still paying a high price for chemical warfare”. The Independent.
Kanyamibwa S (1998). Impact of war on conservation: Rwandan environment and wildlife in agony. Biodiversity and Conservation, 7: 1399-1406.
Foto de portada: Earth in transition.

Ricard-castellà

¿Por qué cambian de color las aguas?

En Agosto de 2016, la noticia de una piscina verde en los Juegos Olímpicos de Río de Janeiro se publicó en todos los medios de comunicación. Todo el mundo se sorprendió y habló sobre el tema, pero este fenómeno ocurre en la naturaleza  con mayor frecuencia de la que creemos: el lago Urmía (Irán), Lago de los Clicos (Lanzarote), Lago rosa Hilier (Australia), etc. ¿Quieres conocer el porqué de estos cambios?

EUTROFIZACIÓN: CONCEPTO Y EJEMPLOS

10 de Agosto del 2016. Plenos juegos olímpicos de Rio de Janeiro. Salta a los medios de comunicación una curiosa noticia: “La piscina de trampolines ha cambiado de color”. El agua había perdido su tono azulado y presentaba un color verde. El mundo se revolucionó ante este cambio, pero ¿qué había sucedido?

1470812789_613295_1470814544_sumario_normal
Piscina de Saltos en los Juegos Olímpicos de Rio de Janeiro 2016. Se volvió verde debido a la proliferación de algas. (Imagen: Verne. El País).

Este fenómeno de cambio de color de determinados cuerpos de agua es un fenómeno muy común en la naturaleza. Se trata de la eutrofización del agua. Este concepto hace referencia a la proliferación masiva de organismos debido a un aumento en la concentración de nutrientes en el agua. Para que nos entendamos fácilmente: en el agua se produce un aumento de los alimentos y por tanto, se produce un aumento de los organismos que condicionan las características del agua como el color, la turbulencia, etc.

En los cuerpos de agua cerrados (lagos, piscinas, estanques…) es mucho más sencillo que ocurra este fenómeno. Aún así en mar abierto también se dan estas explosiones de microorganismos (sobre todo de fitoplacton).

eutrofizacion_as_conchas_2011-05-31d
Ejemplo de eutrofización por algas en un cuerpo de agua cerrado. (Imagen: Radio wtcv)

Los principales nutrientes que influyen en la eutrofización de los lagos son los limitantes nitrógeno y fósforo. En cuerpos de agua dulce este último es determinante, mientras que en aguas saladas el nitrógeno suele ser el factor limitante. Un aumento de las concentraciones de estos nutrientes inicia el proceso de eutrofización y proliferación de productores primarios (en su mayoría microalgas y bacterias fotosintéticas como Cianobacterias o arqueobacterias como las Holobacterias).

En estos cuerpos de agua cerrados, el equilibrio natural del ciclo de nutrientes se perturba con mucha facilidad. Cuando un lago recibe nutrientes de forma excesiva, toda la estructura trófica puede cambiar rápidamente. El agua se sobrefertiliza y los organismos fotosintéticos proliferan a sus anchas provocando una explosión de algas y microorganismos.

diagramaeutofizacion
Diagrama básico del proceso de eutrofización (imagen: Verdezona)

Normalmente hablamos de explosiones demográficas de microalgas (fitoplacton) y cianobacterias, pero en ciertos casos, cuando el cambio de nutrientes es más drástico (que afecta a la composición físico-química del agua) hablamos de la proliferación de bacterias y arqueas. Este caso seria el del Lago Urmía (Irán), donde proliferan exponencialmente las Halobacterias que soportan grandes concentraciones salinas. Debido a las escasas lluvias y la continua extracción del agua para la agricultura, el agua se torna más salada, impendiendo la vida de la mayoría de organismos y favoreciendo la explosión demográfica de los más especializados, como Halobacterias. La pigmentación roja surge por la presencia de un pigmento conocido como Bacteriorodopsina.

img_cvillalonga_20160730-175846_imagenes_lv_otras_fuentes_lago-kydd-u403578585540yod-992x558lavanguardia-web
Imagen de satélite del Lago Urmía (Irán). El cambio de color se debe a la proliferación de bacterias de la familia Halobacteriaceae. (Imagen: La Vanguardia)

El ejemplo de la piscina de Rio de Janeiro muestra las etapas iniciales de la explosión demográfica de algas. Algunos lagos, sin embargo, muestran etapas más avanzadas de eutrofización, como seria el caso del lago Clicos en Lanzarote. En este lago proliferan exponencialmente algas de la especie Ruppia maritima.

clicos
Fotografía del Lago de Clicos en Lanzarote. (Imagen: National Geographic)

EUTROFIZACIÓN NATURAL Y ANTROPOGÉNICA

El proceso natural de eutrofización está altamente regulado, ya que se tiende a un equilibrio entre las entradas (precipitación, escorrentia, erosión…) y salidas de nutrientes. Existen tres estados tróficos en los cuerpos de agua cerrados: el oligotrófico, el mesotrófico y el eutrófico, dependiendo de ciertas características del agua como la concentración de nutrientes y oxigeno, la turbulencia del agua, la producción primaria etc. Estos estados marcan la “edad” de los lagos, es decir, un lago joven sera oligrotrófico mientras que uno más antiguo tenderá a la eutrofización. En la siguiente tabla encontramos algunas diferencias resumidas entre estos tres estados tróficos:

jajaajajkbdicidkb
Tabla con algunas diferencias entre los diferentes estados tróficos de los cuerpos de agua cerrados. Elaboración propia.

Los ecosistemas naturales presentan resilencia, es decir, capacidad para volver al estado normal después de una perturbación brusca.

Aún así, con el paso del tiempo, los lagos más antiguos tienden a acumular sedimentos y restos orgánicos, convirtiendo finalmente el lago en un pantano. Este proceso puede durar miles de años.

Aunque el fenómeno natural de eutrofización es bastante común, no es tan explosivo como el producido por la eutrofización antropogénica. ¿Que significa este concepto? Hablamos de eutrofización antropogénica haciendo referencia al tipo de eutrofización causada por el hombre. Aguas residuales, aguas ricas en fertilizantes y otro tipo de contaminación son las principales causas de este tipo de eutrofización. El ecosistema no tiene la capacidad de eliminar tantos nutrientes de forma equilibrada y tienden a acumularse. En este caso, el proceso dura mucho menos que el natural: tan solo unas décadas son suficientes.

eutrophication
Comparación entre la eutrofización natural y la antropogénica. (Imagen: New Brunswick, CanadáNew Brunswick, Canadá).

EL INICIO DEL FIN

La eutrofización , sin embargo, marca el inicio de la muerte del cuerpo de agua. ¿Cómo?

El aumento de las concentraciones de nutrientes produce un aumento en la proliferación de plantas acuáticas y algas que realizan la fotosintesis. La concentración de oxigeno aumenta y los organismos también proliferan. Por tanto se da una explosión en la densidad poblacional que provoca la formación de una barrera en el agua. En la superficie la concentración de oxigeno se mantiene mientras que en zonas profundas, donde la luz no penetra con facilidad, se produce un aumento de la respiración aeróbica y disminuye la fotosintesis. Este proceso de consumo de oxigeno provoca que cada vez haya menos concentración de este gas y el medio se vuelva anóxico. Al no haber oxigeno suficiente, las especies que antes vivían plácidamente en el lago, ahora desaparecen.

sin-titulo
En el diagrama se puede observar la barrera que se crea por la proliferación de algas, dejando las zonas más profundas en un ambiente oscuro y sin oxigeno. (Imagen modificada de SPE International)

Por otro lado, una elevada actividad biológica implica una disminución de la disolución de determinados nutrientes en el agua, provocando un cambio en el pH y salinidad de esta, condicionando gravemente también la habitabilidad de estas aguas y favoreciendo la proliferación de organismos extremófilos. Además, la presencia de ciertas algas implica la producción de toxinas que afectan negativamente a las poblaciones autoctónas del lago. Las principales cianobacterias tóxicas que suelen proliferar fácilmente son Anabaena sp, Cylindrospermopsis sp, Microcystis sp. y Oscillatoria sp. Esto implica una gran pérdida en la diversidad de la zona.

o_perdida-de-biodiv-impacto
Comparación de la diversidad en un cuerpo de agua oligotrófico y uno eutrófico. (Imagen: Madrid+d)

Finalmente, los restos orgánicos de los organismos muertos se acumulan en el fondo del cuerpo de agua, aumentando así la capa de sedimentos. Al cabo de los años, el volumen de agua se ha reducido significativamente, convirtiendo el lugar en un pantano.

·

Como en la mayoría de casos, las acciones del hombre tienen graves consecuencias en el medio ambiente. Debemos evitar la contaminación si no queremos perder la gran diversidad de organismos y parajes que nos rodea. 

REFERENCIAS

  • Eutrofización. Nestor Mazzeo. (PDF, en castellano)
  • Apuntes personales y Generales del Grado en Biología, UIB.
  • Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems. Michael Chislock. Disponible aquí en inglés.

  • Imagen de Portada: Axena.

Maribel-castellà

¿Qué nos dicen los insectos sobre la salud de nuestros ríos?

En la actualidad, la preocupación por el estado de salud de las aguas continentales (ríos, lagos, etc.) va en aumento, sobre todo debido al creciente uso (y abuso) de éstas para el consumo humano. Desde hace ya unos años, se ha ido expandiendo el uso de índices que, en base a datos de presencia, ausencia o abundancia de ciertos organismos en el medio de estudio (conocidos como “organismos bioindicadores”), nos permiten determinar la calidad de las aguas. Entre estos organismos, encontramos muchos artrópodos.

En este artículo, trataré de explicaros brevemente qué son los bioindicadores, el papel de los artrópodos en la bioindicación y algunos de los índices de bioindicación más usados para medir la calidad de los ecosistemas fluviales de la Península Ibérica.

¿Qué es un bioindicador?

El término bioindicador se usa para referirse a aquellos procesos biológicos, especies y/o comunidades de organismos que nos sirven para evaluar cualitativamente la calidad o estado de un ecosistema y la forma cómo éste evoluciona en el tiempo, lo que es especialmente útil en el caso de cambios introducidos por perturbaciones antropogénicas (p.ej. contaminación).

Un bioindicador puede ser, por lo tanto:

  • Tanto una especie en concreto, cuya presencia/ausencia o abundancia en el lugar de estudio nos informa del estado de salud del ecosistema.
  • Una población o una comunidad de distintos organismos que varíe, funcional o estructuralmente, acorde con las condiciones de su medio.

Ejemplo: el líquen Lecanora conizaeoides es muy resistente a la contaminación. Su presencia, sumada a la desaparición de otros líquenes, es indicativo de una elevada contaminación atmosférica.

Lecanora conizaeoides (Foto por James Lindsey).

¿Qué consideramos un “buen bioindicador”?

No todos los organismos son aptos para ser usados como bioindicadores. Aunque no existe un prototipo de bioindicador, pues todo depende del ecosistema que se estudie, sí que podemos resumir algunos de los principales requisitos para que uno o varios organismos sean considerados “buenos bioindicadores”:

  • Han de responder a las perturbaciones que acontecen en su medio en mayor o menor grado. Esta respuesta debe ser equiparable al resto de organismos de la misma especie y correlacionarse bien con la perturbación.
  • Su respuesta debe ser representativa de la de toda la comunidad o población.
  • Deben localizarse de forma natural en el medio que se estudia y ser ubicuos (es decir, estar presentes en casi todos los ecosistemas de similar o igual índole).
  • Ser abundantes (las especies raras no suelen ser óptimas).
  • Ser relativamente estables ante cambios moderados del clima (es decir, que una tormenta o un cambio natural de la temperatura no les afecte más allá de lo normal).
  • Ser fáciles de detectar y, a poder ser, de poca movilidad (sedentarios).
  • Estar bien estudiados, tanto desde un punto de vista ecológico como taxonómico (saber, por lo tanto, cuál es su tolerancia a las perturbaciones).
  • Ser fáciles de manipular y testear en el laboratorio.

El uso de bioindicadores siempre será más óptimo si no nos limitamos a tomar como referencia poblaciones de una o dos especies y usamos comunidades enteras, permitiendo abarcar un rango amplio de tolerancias ambientales: desde organismos con unas necesidades ambientales de rango muy limitado (es decir, estenoicos) y sensibles a la contaminación, hasta organismos muy tolerantes capaces de sobrevivir en medios muy perturbados.

Así, podremos saber que un ecosistema está muy perturbado si, por ejemplo, sólo encontramos una única especie muy tolerante y ninguna de las consideradas sensibles.

Animales bioindicadores de aguas continentales

A día de hoy se usan muchos animales como bioindicadores: desde pequeños microorganismos e invertebrados, hasta vertebrados terrestres y acuáticos (micromamíferos, aves, peces, etc.). En aguas continentales, y especialmente en estudios de calidad de aguas fluviales, se utilizan sobre todo macroinvertebrados acuáticos. Veamos, a continuación, qué es un macroinvertebrado.

¿Qué son los macroinvertebrados?

El término macroinvertebrado no corresponde a ninguna clasificación taxonómica, sino a un concepto artificial que engloba a distintos organismos invertebrados acuáticos.

Por lo general, se dice que un organismo es un macroinvertebrado cuando puede ser capturado por una red cuyos orificios (lo que técnicamente se conoce como “luz de la malla”) sean de 250μm.

9895263846_fd51b55e3f_c
Recogida de macroinvertebrados usando una red de arrastre (Imagen por USFWS/Southeast , Creative Commons).

Los macroinvertebrados son, en su mayoría, bentónicos, es decir, habitantes del sustrato de fondo de los sistemas acuáticos, al menos durante alguna fase de su ciclo vital (aunque también los hay que se desplazan libremente por la columna de agua o por su superficie).

En ríos y lagos encontramos muchos grupos de macroinvertebrados, que podemos clasificar en dos grupos:

macroinv
Fuentes de las fotografías: (1) Luis Silva Margareto ©, (2) DPDx Image Library, (3) Oakley Originals, Creative Commons, (4) Ryan Hodnett, Creative Commons, (5) Will Thomas, Creative Commons, (6) Duncan Hull, Creative Commons.

Entre estos grupos, encontramos tanto organismos muy tolerantes a perturbaciones del medio (p.ej. las sanguijuelas) como especies sensibles (muchas larvas de insectos).

La mayoría de macroinvertebrados de aguas continentales (≃80%) son artrópodos (de los cuales os hablaré en el siguiente apartado), entre los que destacan muchos insectos y, en especial, sus formas larvarias (generalmente bentónicas), la observación y análisis de las cuales es vital para el cálculo de muchos índices de calidad de aguas continentales.

Los insectos en la bioindicación

Como os he comentado en el apartado anterior, alrededor de un 80% de los macroinvertebrados de aguas continentales son, en efecto, artrópodos y, en su mayoría, órdenes de insectos en su forma larvaria o de ninfa. Veamos algunos de los más frecuentes:

Tricópteros

Insectos muy emparentados con los lepidópteros (mariposas y polillas). Sus ninfas acuáticas construyen refugios alrededor de su cuerpo usando materiales del lecho fluvial. Se diferencian del resto de larvas acuáticas de insectos porque presentan un par de filamentos anales provistos de fuertes uñas. Suelen aparecer en zonas de aguas limpias con bastantes corrientes.

Ninfa (dentro de su refugio, izquierda) y adulto de tricóptero (derecha). Fotos de la ninfa por Matt Reinbold (Creative Commons) y del adulto por Donald Hobern (Creative Commons).

Efemerópteros (o efímeras)

Uno de los órdenes de insectos alados más primitivo. Sus ninfas acuáticas, las cuales suelen vivir en ríos, se caracterizan por presentar tres pelos anales muy largos. Los adultos, que vuelan cerca del agua, son muy frágiles, y su ciclo de vida es muy corto en comparación al de las ninfas (de ahí el nombre de “efímeras”).

Ninfa (izquierda) y adulto de efemeróptero (derecha). Fotos de la ninfa por Keisotyo (Creative Commons) y del adulto por Mick Talbot (Creative Commons).

Plecópteros

Insectos alados con larvas acuáticas muy similares a las de los efemerópteros. Presentan, como éstos, pelos anales, pero se diferencian por desarrollar dos uñas apicales en cada pata. Viven sobre todo en  lagos y arroyos.

Ninfa (izquierda) y adulto de plecóptero (derecha). Fotos de la ninfa por Böhringer (Creative Commons) y del adulto por gailhampshire (Creative Commons).

Otros grupos con larvas o ninfas acuáticas

Entre los insectos más comunes en ríos y lagos también encontramos representantes del orden Odonata (libélulas y caballitos del diablo), Coleoptera (escarabajo), Diptera (moscas y mosquitos), etc.

Entre todos los insectos que os he introducido, los hay muy tolerantes a la contaminación (p.ej, larvas de muchas especies de dípteros –moscas y mosquitos-; este es el caso de algunas especies de quironómidos tolerantes a la contaminación orgánica e inorgánica por metales pesados) hasta especies muy sensibles (p.ej, algunas especies de tricópteros), pasando por estadios intermedios.

Según su grado de tolerancia a las perturbaciones, los científicos agrupan a estos organismos (más el resto de macroinvertebrados) en categorías a las que se les asigna un valor que, posteriormente, permite calcular índices de calidad de su medio.

Índices bióticos para aguas fluviales

Los diferentes grados de tolerancia que manifiestan los macroinvertebrados de una comunidad ante las perturbaciones de su medio nos permiten clasificarlos y asignarles un valor cualitativo dentro de una escala (cuanto mayor sea el número, más sensible es el organismo a la contaminación). Mediante estos valores, podemos calcular distintos índices bióticos, que no son más que valores cualitativos que se asignan a una comunidad para clasificarla según su calidad: cuanto mayor sea el índice, mayor calidad tendrá el agua.

Uno de los índices más usados en la evaluación del estado ecológico de los ríos de la Península Ibérica es el IBMWP (Iberian Bio-Monitoring Working Party), una adaptación del índice británico BMWP por Alba Tercedor (1998). A grandes rasgos, cuanto mayor sea su valor, mayor será la calidad de las aguas. En esta web podéis ver los detalles de este índice, así como los valores que se asignan a cada macroinvertebrado.

También se usa el índice IASPT, un índice complementario que corresponde al valor de IBMWP dividido por el número de taxones identificados. Éste nos aporta información sobre el tipo de comunidad dominante en el tramo estudiado. Podéis ver más detalles en este link.

.      .      .

Como habréis podido ir viendo a lo largo de este artículo, los macroinvertebrados, y especialmente los insectos, juegan un papel vital en el estudio de la calidad de las aguas continentales. Además, su presencia o ausencia es de suma importancia para el resto de organismos de su ecosistema, por lo que debemos ser conscientes de que, a pesar de ser aparentemente tan abundantes, la reducción de su número y/o diversidad puede conllevar efectos negativos en cadena de difícil reparación.

REFERENCIAS

Foto de portada por U.S. Fish and Wildlife Service Southeast Region.

Difusió-castellà

Foca monje del Mediterráneo: ¿Hasta cuando sobrevivirá?

En este post, vamos a hacer una aproximación a la foca monje del Mediterráneo (Monachus monachus), una especie críticamente amenazado que, de hecho, es la especie de pinnípedo más amenazada del mundo. Aquí, vamos a hacer una revisión histórica y vamos a hablar sobre su historia de vida, su hábitat y distribución, su estado de conservación y amenazas y, finalmente, su conservación. 

INTRODUCCIÓN

La foca monje del Mediterráneo (Monachus monachus) es una de las tres especies incluida en el género Monachus (Focas monje). Las otras dos especies son la foca monje de Hawaii (Monachus schauinslandi), que está críticamente amenazada, y la foca monje del Caribe (Monachus tropicalis), que está extinguida.

mediterranean monk seal, monachus monachus
Foca monje del Mediterráneo (Monachus monachus) (Foto: Sá, Wild Wonders of Europe)

En la antigüedad, la foca monje del Mediterráneo fue cazada por su pelaje, aceite, carne y medicinas, pero ésto no amenazó su existencia. La evidencia sugiere que fue severamente reducida durante la era romana, pero debido a la caída del imperio, se pudo recuperar. Las dos guerras mundiales, la revolución industrial, la explosión del turismo y el inicio de la pesca industrial causaron el declive del animal y la desaparición de gran parte de su rango original.

HISTORIA NATURAL DE LA FOCA MONJE DEL MEDITERRÁNEO

Al nacer, su longitud es de 94 cm y su peso es de 15-20 kg. Hasta el destete (al cabo de 16-17 semanas), el crecimiento es rápido y tiene lugar un incremento importante del tamaño en sólo dos semanas. Las crías tienen un pelaje suave y lanudo, con una mancha blanca en el vientre y el resto de color de negro a chocolate oscuro.

Los individuos adultos miden 2,4 m de longitud desde la nariz hasta la cola y pesan 250-300 kg. Los machos sólo son ligeramente mayores que las hembras. Los juveniles y los adultos tienen el pelo corto y erizado. Mientras que los machos adultos son negros con una mancha blanca en el vientre, las hembras adultas son marrones y grises con una coloración más clara en el vientre. En cualquier caso, pueden presentar más manchas en la garganta (machos) y en la espalda (hembras). También tienen bigotes muy finos.

Female individual of Mediterranean Monk Seal (Photo: Sá,
Hembra de foca monje del Mediterráneo (Foto: Sá, Wild Wonders of Europe)

Male individual of Mediterranean Monk Seal (Photo: Sá,
Macho de foca monje del Mediterráneo (Foto: Sá, Wild Wonders of Europe)

Los machos y las hembras son sexualmente maduros entre los 5 y 6 años. Después de una gestación que dura 9-11 meses, nace una única cría (generalmente en otoño).

Se alimentan de pescado o cefalópodos.

HÁBITAT Y DISTRIBUCIÓN

El hábitat de la especie son las cuevas inaccesibles, a menudo en costas de acantilados, con entradas subacuáticas. La verdad es que en tiempos anteriores, habitaban en playas abiertas de arena y en costas de rocas. Las focas monje del Mediterráneo se pueden encontrar en aguas templadas, subtropicales y tropicales del Mediterráneo y el océano Atlántico este.

Mediterranean Monk Seal habitat
Hábitat de la foca monje del Mediterráneo  (Foto: Sá, Wild Wonders of Europe)

Mediterranean Monk Seal on beach
Foca monje del Mediterráneo en una playa (Foto: Hellio & Van Ingen)

En tiempos pasados, la foca monje ocupaba un rango geográfico amplio y las colonias se podían encontrar en todo el Mediterráneo, Mar Negro y en la costa atlántica de África y en algunas islas atlánticas. En la actualidad, la especie ha desaparecido de casi todo su rango pasado. El resultado de ésto es que Monachus monachus está presente sólo en el Mediterráneo noreste y el Atlántico noreste.

mediterranean monk seal distribution, monachus monachus distribution
Mapa de distribución de la foca monje del Mediterráneo (Monachus monachus). En azul, distribución histórica; en rojo, distribución actual. (Foto: Matthias Schnellmann, The Monachus Guardian)

ESTADO DE CONSERVACIÓN Y AMENAZAS

La foca monje del Mediterráneo es una de las especies de mamífero marino más amenazadas del mundo y es la especie de pinnípedo más amenazada, con 350 – 450 individuos, puede que 550. De hecho, está descrita como críticamente amenazada por la IUCN. Está incluida en el Apéndice I de CITES, la Convención de Boon, la Convención de Bern, la Convención sobre Diversidad Biológica y la Directiva Hábitats de la UE.

Mediterranean Monk Seal is critically endangered, according to IUCN (Picture: IUCN).
La foca monje del Mediterráneo está críticamente amenazada, según la IUCN (Foto: IUCN).

Las principales amenazas en contra de la especie son:

  • Deterioración y pérdida del hábitat por el desarrollo de la costa. Las causas de ésto pueden ser la caza, el turismo de masas, una explosión de los barcos de recreo y la inmersión. El resultado es que las cuevas ocupadas ahora pueden no ser adecuadas para la supervivencia de la especie y su recuperación es sólo posible con su retorno a las playas de arena.
  • Muerte deliberada por los pescadores y los operadores de las granjas acuícolas porque lo consideran una amenaza que destruye sus redes y les roba el pescado. En Grecia, la muerte directa representa el 43% de las muertes de animales jóvenes y adultos y en Turquía son sólo 5 de cada 22.

Deliberate killing of a Mediterranean Monk Seal (Monachus monachus) (Picture: A. Karamanlidis, MOm).
Muerte deliberada de una foca monje del Mediterráneo (Monachus monachus) (Foto: E. Tounta, MOm).

  • Enredamiento accidental en aparatos de pesca. Es desconcido si esto tiene un impacto importante actualmente, pero en el pasado reciente lo era y, de hecho, ha sido la causa de la eliminación de la especie en algunas partes.
  • Reducción de la disponibilidad de comida debido a la sobrepesca. Los efectos posibles de la sobrepesca son la malnutrición, la susceptibilidad contra los patógenos, puede afectar al crecimiento, la reproducción, la supervivencia de los jóvenes y la tasa de mortalidad y causar su dispersión.
  • Eventos puntuales: como las enfermedades epidèmicas (como por ejemplo el morbillivirus), algas tóxicas, caídas de rocas, colapso de cuevas y derrames de petróleo.
  • Contaminación, probablemente causada por los componentes organoclorados usados en los pesticidas.
  • Depresión por endogamia, resultando en la reducción de la fecundidad y la supervivencia de las crías. Este factor no es significante a corto plazo, pero sí lo es en el futuro. La pérdida de variabilidad genética causa la reducción de la fertilidad, el aumento de la mortalidad de los más jóvenes y la distorsión en la relación de sexos.
  • Falta de coordinación internacional y fondos para la conservación y gestión de las acciones.

CONSERVACIÓN

La conservación de la foca monje empezó en la década de los 1970, aunque las mejoras han sido aisladas y lentas. Las medidas de conservación incluyen:

  • Establecimiento de áreas marinas protegidas (AMP). Estas áreas protegidas han sido establecidas en sólo algunas áreas (como Madeira, Grecia, Turquía y Cabo Blanco). Lo que es necesario es una red de AMP.
  • Rescate y rehabilitación de focas heridas y huérfanas.
  • Educación y conciencia pública.
  • Investigación científica para identificar y monitorear el hábitat de la especie.
  • Coordinación internacional efectiva de las actividades de conservación.
  • Aplicación efectiva de la legislación que prohíbe la muerte directa y el acoso de las especies, y acciones gubernamentales para estimular la coexistencia entre pescadores y focas.

Por otro lado, las medidas ex situ (como la cría en cautividad y la traslocación) han sido abandonadas porque la especie es demasiado sensible a las molestias humanas que podría ser otra amenaza.

REFERENCIAS

Si te ha gustado este artículo, por favor compártelo en las redes sociales. El objetivo del blog, al fin y al cabo, es divulgar la ciencia y llegar a tanta gente como sea posible. Siéntete libre de dar tus comentarios. 

Esta publicación tiene una licencia Creative Commons:

Llicència Creative Commons

Océanos: una sopa de plástico

Los mares y océanos del planeta Tierra cada vez se parecen más a una sopa de plástico. Imágenes como la de debajo cada vez serán menos raras de ver si no lo paramos. En esta entrada hablaremos de la cantidad de plásticos que hay en los océanos del planeta, según un estudio publicado recientemente en la revista Plos One

2014-04-08-OceanPlasticsEarthDrReeseHalter

INTRODUCCIÓN

La contaminación por plásticos es un fenómeno presente en todos los océanos debido a su capacidad de flotación y su durabilidad, pues algunos tipos de plástico pueden permanecer en el agua hasta pasados 400 años. Mediante la fotodegradación (degradación por luz) y otros procesos de meteorización, los plásticos se van fragmentando y dispersando por el océano, y acaban convergiendo en los giros oceánicos, aunque también se acumulan en bahías cerradas, golfos y en los mares rodeados por poblaciones importantes.

Oceanic_gyresHay cinco grandes giros oceánicos: Atlántico Norte y Sur, Pacífico Norte y Sur e Índico. Se trata de grandes sistemas de corrientes marinas rotativas, relacionadas sobre todo con el movimiento de rotación de la Tierra. (NOAA, Creative Commons)

Estos plásticos tienen un efecto negativo sobre el ecosistema marino, afectando desde los pequeños organismos del plancton hasta las grandes ballenas, pues o bien los ingieren porque los confunden con su alimento bien quedan atrapados. Un problema asociado es que los plásticos absorben los contaminantes orgánicos persistentes (como por ejemplo el hexaclorobenzeno, el aldrín, el lindano, las dioxinas y el tributilo de estaño).

¿QUÉ CANTIDAD DE PLÁSTICO HAY EN LOS OCÉANOS?

Según el estudio presentado arriba, se estima que hay 5,25 trillones de partículas de plástico en los océanos del planeta, equivalentes a un peso de 268.940 toneladas. La cantidad de plástico encontrada en este estudio parece ser que representa sólo un 0,1% de la producción total anual. Además, el hemisferio norte contiene poco más de la mitad del plástico (55,6% de las partículas y 56,8% de la masa), siendo el Pacífico Norte la zona con más acumulación (37,9% y 35,6% respectivamente). Por otro lado, en el hemisferio sur, es el océano Índico el que presenta la mayor acumulación. Estos resultados muestran que, a pesar de que la densidad poblacional es muy superior en las costas del hemisferio norte, los plásticos quedan distribuidos homogéneamente por todos los océanos, lo que indica que la contaminación por plásticos se esparce gracias a las corrientes y los vientos. Una explicación alternativa podría ser que hay fuentes de contaminación en el hemisferio sur que aún no se conocen.

La mayor parte de las partículas encontradas (92,4%) a lo largo de todos los océanos eran microplásticos (entre 0,33 y 4,75 mm), procedentes de partículas más grandes que se han ido rompiendo.

plàsticsDistribución de los plásticos en los océanos: microplásticos pequeños(0,33-1,00 mm), microplásticos grandes (1,01-4,75 mm), mesoplásticos (4,76-200 mm) y macroplásticos (>200 mm). Los difrentes colores expresan la densidad de plásticos en partículas/m2.(Eriksen et al. 2014, Creative Commons)

polietilè expandit

El estudio revela que, entre los macroplásticos (partículas de más de 2 cm de diámetro), las piezas mayoritarias eran de polietileno expandido (foto lateral), mientras que la mayor parte del peso se debía a restos de boyas de pesca.

El estudio también determina, gracias a la relación entre las partículas encontradas y las esperadas a través de modelos, que se produce una pérdida importante (por hundimiento y degradación) de plástico de la superficie marina, especialmente en el hemisferio norte. Esta diferencia entre lo encontrado y lo esperado se hace especialmente importante en los microplásticos. Los procesos implicados en la pérdida de estos plásticos pueden ser varios: degradación por ultravioletas, biodegradación, ingestión por organismos, pérdida de flotabilidad debido a la adhesión de organismos, entierro en el fondo marino y acumulación en las costas.

Esta publicación está bajo una licencia Creative Commons:
Llicència Creative Commons Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.