Arxiu d'etiquetes: cromosomes

La seqüenciació del genoma humà

La genòmica és una ciència recent que ha tingut un important auge en els últims anys, sobretot gràcies a les tecnologies avançades de seqüenciació d’ADN, als avenços en bioinformàtica i a les tècniques cada cop més sofisticades per a realitzar anàlisis de genomes complets. I dels genomes complets i la seva seqüenciació és del que us parlaré en aquest article, fent esment al Projecte Genoma Humà, que va permetre la seqüenciació del genoma humà.

PER QUÈ SEQÜENCIEM?

La seqüenciació és el conjunt de mètodes i tècniques bioquímiques que tenen com a finalitat la determinació de l’ordre dels nucleòtids (A, T, C i G). El seu objectiu és obtenir tots els nucleòtids ordenats de l’ADN d’un organisme.

Els primers organismes que es van seqüenciar van ser dues bactèries, Haemophilus influenzae i Mycoplasma genitalium en el 1995. Només un any després es va seqüenciar el genoma d’un fong (Saccharomyces cerevisiae).

A partir d’aquí neix el projecte de seqüenciació d’eucariotes: el 1998 es seqüencia Caenorhabditis elegans (nematode), el 2000 Drosophila melanogaster (mosca de la fruita) i el 2001 el genoma humà.

Però, per què seqüenciem? En el cas del genoma humà hi ha la necessitat de conèixer-lo per ajudar a pal·liar o evitar malalties.

Alguns dels organismes que s’han seqüenciat són organismes models, els quals tenen:

  • Importància mèdica: hi ha organismes patògens i coneixem les malalties que poden causar.
  • Importància econòmica: els organismes que els humans consumim, amb tècniques moleculars els podem millorar.
  • Estudi de l’evolució: en l’any 2007 es van seqüenciar més d’11 espècies de Drosophila i es va intentar entendre la relació evolutiva dels cromosomes d’aquestes. També s’ha fet en mamífers (Projecte ENCORE).

QUÈ ENTENEM PER GENOMA SEQÜENCIAT?

El genoma humà té 46 cromosomes, és a dir, 23 parelles de cromosomes (22 parelles de cromosomes autosòmics i 1 parella de cromosomes sexuals, XX o XY depenent de si és dona o home).

La mida del genoma humà és de 32.000Mb, és a dir, els 23 cromosomes més el cromosoma Y.

El genoma humà es va obtenir de la barreja de genomes humans per obtenir una representació del genoma de tota la humanitat.

PARADOXES QUE TROBEM EN EL GENOMA

Una paradoxa és un fet que sembla contrari a la lògica. Amb els genomes trobem dues clares paradoxes.

La primera paradoxa fa referència al valor C, el valor que representa la quantitat d’ADN del  genoma. Com seria d’esperar, com més gran i complex sigui l’organisme, més gran serà la mida del seu genoma. Però això no és així ja que no existeix aquesta correlació. Això és degut a que el genoma no solament conté genoma codificant i proteïnes, sinó que també conté ADN repetitiu. A més, els genomes més compactats es troben en organismes menys complexos.

La segona paradoxa fa referència al valor G, el valor que representa el número de gens. Tampoc trobem una correlació entre el número de gens i la complexitat. Un exemple clar és que en el genoma humà hi ha al voltant de 20.000 gens i Arabidopsis thaliana (planta herbàcia) té 25.000 gens. L’explicació es troba en el món de l’ARN, que és més complex del que es pensava i té a veure amb la regulació dels gens.

EL PROJECTE GENOMA HUMÀ

El projecte de seqüenciació del genoma humà ha sigut el major projecte d’investigació biomèdica de la història. Amb un pressupost de 3 mil milions de dòlars i la participació d’un Consorci Públic Internacional, format per EEUU, Regne Unit, Japó, França, Alemanya, Xina i altres països, tenia com a objectiu la consecució de la seqüencia completa del genoma humà.

Va començar el 1990, però la cosa es va complicar quan, el 1999, va aparèixer en escena una empresa privada, Celera Genomics, presidida pel científic Craig Venter, que va llençar el repte d’aconseguir la seqüència humana en un temps rècord, abans del previst pel Consorci Públic.

Al final es va deixar en empat. El Consorci Públic va accelerar el procés i va obtenir l’esborrany quasi al mateix temps. El 26 de juny del 2000, en un acte a la Casa Blanca amb el president Bill Clinton, es van trobar els dos màxims representants de les parts en competició: Craig Venter per Celera i el director del Consorci Públic, Francis Collins. Es va anunciar de forma conjunta la consecució de dos esborranys de la seqüència completa del genoma humà (Vídeo 1, en anglès). Va ser un moment històric, com el descobriment de la doble hèlix o la primera vegada que l’home va trepitjar la Lluna.

Vídeo 1. Acte de l’anunci del Genoma Humà a la Casa Blanca (Font: YouTube)

Les publicacions corresponents d’ambdues seqüències no van aparèixer fins el febrer del 2001. El Consorci Públic va publicar la seva seqüència a la revista Nature, mentre que Celera ho va fer a Science (Figura 1). Tres anys després, el 2004, el Consorci va publicar la versió final o completa del genoma humà.

portadasGH
Figura 1. Portades de les publicacions de la seqüència esborrany del genoma humà en les revistes NatureScience el febrer de 2001 (Font: Bioinformática UAB)

GENOMES PERSONALS

El genoma que es va obtenir el 2001 és el genoma de referència. A partir d’aquí s’ha entrat a l’era dels genomes personals, amb nom i cognoms. Craig Venter va ser el primer que va seqüenciar el seu genoma i el següent va ser James Watson, un dels descobridors de la doble hèlix.

Es va trigar 13 anys en seqüenciar el genoma de referència (HGP). Amb el de Craig Venter es va trigar molt menys i amb el de Watson només uns mesos.

APLICACIONS CLÍNIQUES DE LA SEQÜENCIACIÓ

Sense arribar a seqüenciar el genoma sencer s’han identificat gens causants de malalties. L’exoma no és el genoma sencer, sinó la part del genoma que correspon als exons.

Un exemple és el cas de Nicholas Volker (Figura 2), el primer cas de medicina genòmica. Aquest nen tenia una malaltia inflamatòria intestinal greu i intractable de causa desconeguda. Amb la seqüenciació de l’exoma es va permetre descobrir una mutació en el gen XIAP del cromosoma X, que substitueix un aminoàcid funcionalment important per un altre. Un transplantament de medul·la òssia li va salvar la vida al pacient.

nicholas volker
Figura 2. Nicholas Volker amb el seu llibre One in a Billion, que explica la seva història (Font: Rare & Undiagnosed Network)

REFERÈNCIES

  • L. Pray. Eukaryotic genome complexity. Nature Education 2008; 1(1):96
  •  Brown. Genomes 3, 3rd edition (2007)
  • Bioinformática UAB
  • BT.com
  • E. A. Worthey et al. Making a definitive diagnosis: Successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genetics in Medicine 2011; 13, 255-262
  • Foto portada: Noticias InterBusca

MireiaRamos-catala

Per què m’assemblo als meus pares?

Que ens assemblem als nostres pares és gràcies a la genètica. Aquesta, és la ciència que estudia l’herència, és a dir, com els fills s’assemblen als pares, les malalties que passen d’una generació a una altra… És una disciplina de la biologia en creixement, que ha experimentat una expansió accelerada i està afectant de manera decisiva la biologia, la salut i la societat en general. En aquest article us parlaré sobre què és la genètica i el gran descobriment de l’ADN.

COM S’HERETA LA INFORMACIÓ GENÈTICA?

La informació genètica es transmet a la descendència gràcies als gens, que són la unitat d’emmagatzematge d’aquesta informació. Es localitzen dins els cromosomes i ocupen posicions concretes. El número de cromosomes és constant dins una espècie, però diferent entre altres.

En l’espècie humana el número de cromosomes és de 46. A cada cèl·lula tenim 46 cromosomes, dels quals 44 són autosòmics, és a dir, cromosomes no sexuals, i 2 que sí que ho són. El conjunt dels 46 cromosomes és el que s’anomena genoma humà.

El nostre genoma, en realitat està format per 2 jocs de 23 cromosomes homòlegs. Això significa que els dos jocs tenen les mateixes característiques i un prové de la nostra mare a través de l’òvul i l’altre prové del nostre pare a través de l’espermatozou (Figura 1). Heretar cada joc dels nostres progenitors és el que fa que ens assemblem a ells, però també és la via per la qual podem heretar algunes malalties.

Picture1
Figura 1. Cariotip humà femení, és a dir, la representació gràfica dels cromosomes. Es col·loquen ordenats per parells i mida, des del parell més gran fins el més petit, més els cromosomes sexuals (Font: Mireia Ramos, Cerba Internacional SAE)

LA QUÍMICA DELS GENS

Els gens corresponen a regions de l’ADN (àcid desoxiribonucleic), format per la unió de petites molècules que s’anomenen nucleòtids. Aquests nucleòtids estan formats per una pentosa (compost de 5 carbonis), un fosfat i una base nitrogenada (compost orgànic amb un àtom de nitrogen) (Figura 2). Hi ha 4 bases nitrogenades: dues purines (adenina i guanina) i dues pirimidines (timina i citosina). Aquestes bases nitrogenades són les que diferencien els nucleòtids i la seva ordenació constitueix el codi genètic.

Figura 2. Detall de la química de l'ADN
Figura 2: Detall de la química de l’ADN (Font: Eduredes: Los ácidos nucleicos)

Però tot el que es coneix sobre l’ADN i els gens és recent. L’estructura de l’ADN va ser descoberta per James Watson i Francis Crick el 1953 a Cambridge (Figura 3). Anteriorment, s’havien fet estudis per intentar esbrinar la semblança entre familiars, però no va ser fins aquest descobriment que es va entendre la química que hi havia darrere.

Figura 3. Francis Crick (dreta) i James Watson (esquerra) anb la construcció de l’estructura de l’ADN (Font: The DNA store)

EL PRINCIPI DE LA SEVA HISTÒRIA

Watson, un biòleg americà de 23 anys, i Crick, un físic anglès de 35 anys, treballaven plegats en el Laboratori Cavendish a Cambridge. Van passar molts mesos construint models de molècules i comparant-los amb la informació que tenien, però no trobaven l’estructura correcta de l’ADN.

Al King’s College de Londres treballaven el físic Maurice Wilkins i Rosalind Franklin, una fisicoquímica amb formació en cristal·lografia. Ella feia fotografies de l’ADN amb raigs X (Figura 4).

dnafour
Figura 4. Les 4 persones que van contribuir al descobriment de l’ADN (Font: Biology: The people responsible for the discovery of DNA)

Watson i Crick, després de presentar el model erroni de la triple hèlix, van parlar amb Maurice Wilkins demanant ajuda i ell els va mostrar una nova i millor fotografia de l’ADN feta amb raigs X, que li havia proporcionat Rosalind Franklin, però sense que ella ho sabés. Aquesta era la fotografia número 51 i Watson i Crick la van utilitzar per resoldre el misteri (Figura 5).

photo 51 explanation
Figura 5. Explicació de la fotografia 51 que van utilitzar Watson i Crick. Primerament una cadena d’ADN va ser estirada a través d’un clip, muntat en un tros de suro. Després, els raigs X van passar a través de la cadena d’ADN i la difracció va ser capturada en paper, creant la foto 51. Finalment, la “X” en el centre de la foto 51 és causada per la forma d’hèlic de les molècules d’ADN de la mostra (Font: Seguramente estaré equivocado: La “fotografía 51”

Quan el Laboratori Cavendish encara es trobava a prop del Free School Lane, el pub The Eagle era una destinació popular pel personal que hi treballava per anar a menjar. El 28 de febrer de 1953, Francis Crick va interrompre l’hora de dinar dels clients per anunciar que ell i James Watson havien “descobert el secret de la vida” després d’arribar amb la seva proposta definitiva de l’estructura de l’ADN. Aquest dia és anomenat per alguns com el 8è dia de la creació. James Watson va dir que una estructura tan maca per força havia d’existir, referint-se a l’estructura de la doble hèlix de l’ADN. També va dir que abans pensàvem que el nostre futur estava a les estrelles, però que ara sabem que està als nostres gens.

El 25 d’abril de 1953 es va publicar l’article, de 900 paraules, firmat per Watson i Crick sobre el seu descobriment a la revista Nature (Figura 6). Tres anys abans s’havia publicat la llei de Chargaff, que va ser una de les bases per a postular la teoria de la doble hèlix de l’ADN. Aquesta llei estableix la complementarietat de les bases nitrogenades en l’ADN, és a dir, la base adenina (A) s’aparella amb la base timina (T) i el mateix passa amb la guanina (G) i la citosina (C) (Figura 2). De manera que la suma de bases nitrogenades púriques (A i G) és igual a la suma de les pirimidíniques (T i C).

8
Figura 6. Article publicat a la revista Nature, on es mostra la fotografia 51 (Font: The DNA store)

IMPACTE DE LA GENÈTICA AVUI EN DIA

S’ha argumentat que el descobriment de l’ADN, així com la comprensió de la seva estructura i funció, pot ser el descobriment més important del segle passat. L’efecte del descobriment de l’ADN en el progrés científic i mèdic ha estat enorme, tant si es tracta de la identificació dels gens que desencadenen les principals malalties, com de la creació i fabricació de medicaments per tractar aquestes malalties devastadores. De fet, la identificació d’aquests gens i el seu posterior anàlisi, en termes de tractament terapèutic, han influït en última instància en la ciència i seguiran fent-ho en el futur.

Mentre el descobriment de l’ADN ha estat significant en el segle XX, continua revolucionant la medicina, l’agricultura, les ciències forenses, la paternitat i molts altres camps en la societat avui en dia. La investigació de l’ADN abasta una àrea d’evolució del progrés i la continuació del finançament i l’interès per la seva rellevància probablement impulsarà nous descobriments en el futur.

REFERÈNCIES

MireiaRamos-catala