Arxiu d'etiquetes: Darwin

The reality of mutations

Do you remember the ninja turtles? Leonardo, Raphael, Michelangelo and Donatello were four turtles that suffered a mutation when they were bathed with a radioactive liquid. Fortunately or unfortunately, a mutation cannot turn us into ninja turtles, but it can have other effects. Next, I tell you what mutations are.

WHAT ARE MUTATIONS?

Our body is like a great factory in which our cells are the workers. These, thanks to their internal machinery, make the factory stay afloat with the least possible problems. The constant operation of our cells (24/7), sometimes causes errors in their machinery. This generates imperfections in the genetic code, which generally go unnoticed. It is true that cells do everything possible to fix the failures produced, but sometimes they are inevitable and lead to the generation of diseases or even to the death of the cell.

Mutations are these small errors, it means, mutations are stable and inheritable changes that alter the DNA sequence. This fact introduces new genetic variants in the population, generating genetic diversity.

Generally, mutations tend to be eliminated, but occasionally some can succeed and escape the DNA repair mechanisms of our cells. However, they only remain stable and inheritable in the DNA if they affect a cell type, the germ cells.

The organisms that reproduce sexually have two types of cells: germinal and somatic. While the former transmit genetic information from parents to children, somatic cells form the body of the organism. Because the information of germ cells, which are what will give rise to gametes (sperm and oocytes) passed from generation to generation, they must be protected against different genetic changes to safeguard each individual.

Most mutations are harmful, species cannot allow the accumulation of large number of mutations in their germ cells. For this reason not all mutations are fixed in the population, and many of these variants are usually eliminated. Occasionally some may be incorporated into all individuals of the species.

The mutation rate is the frequency at which new mutations occur in a gene. Each specie has a mutation rate of its own, modulated by natural selection. This implies that each species can be confronted differently from the changes produced by the environment.

Spontaneous mutation rates are very low, in the order of 10-5-10-6 per gene and generation. In this way, mutations do not produce rapid changes in the population.

THE ROLE OF NATURAL SELECTION

Changes of nucleotides in somatic cells can give rise to variant or mutant cells, some of which, through natural selection, get more advantageous with respect to their partners and proliferate very fast, giving us as a result, in the extreme case, cancer, that is, uncontrolled cell proliferation. Some of the cells in the body begin to divide without stopping and spread to surrounding tissues, a process known as metastasis

But the best way to understand the role of natural selection of which the naturist Charles Darwin spoke is with the example of spotted moths (Biston betularia). In England there are two types of moths, those of white colour and those of black colour (Figure 1). The former used to be the most common, but between 1848 and 1898 black moths were imposed.

biston
Figure 1. Biston betularia, white and black moths (Source: TorruBlog)

This change occurred at the same time that cities became more industrial, in which coal became the main fuel for power plants. The soot of this rock dyed the sky, the soil and the buildings of the cities black. Tree trunks were also affected, where the moths were camouflaged.

The consequence of this fact was that white moths could not hide from their predators, whereas those that were black found a successful exit camouflaging well on the tinted trunks. With the change of colour of their hiding place they had more opportunities to survive and reproduce (Video 1).

Video 1. Industrial melanism, white and black moth (Source: YouTube)

This is a clear example of how changes in the environment influence the variability of gene frequencies, which vary in response to new factors in the environment.

TYPES OF MUTATIONS

There is no single type of mutation, but there are several types of mutation that can affect the DNA sequence and, rebound, the genetic code. However, not all mutations have the same effect.

There are many and different types of mutations, which are classified by mutational levels. These levels are based on the amount of hereditary material affected by the mutation and go up in rank according to the number of genes involved. If the mutation affects only one gene we speak of gene mutation, whereas if it affects a chromosomal segment that includes several genes we refer to chromosomal mutation. When the mutation affects the genome, affecting whole chromosomes by excess or by defect, we speak of genomic mutation.

An example of a point mutation is found in cystic fibrosis, a hereditary genetic disease that produces an alteration in the secretion of mucus, affecting the respiratory and digestive systems. A point mutation affects the gene that codes for the CFTR protein. The affected people receive from both parents the defective gene, which, having no copy of the good gene, the protein will not be functional. The result is that the secretions produced by the human body are thicker than usual, producing an accumulation in the respiratory tract.

REFERENCES

  • Ramos, M. et al. El código genético, el secreto de la vida (2017) RBA Libros
  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Bioinformática UAB
  • Webs UCM
  • Main picture: Cine Premiere

MireiaRamos-angles2

La realidad de las mutaciones

¿Recordáis las tortugas ninja? Leonardo, Raphael, Michelangelo y Donatello eran cuatro tortugas que sufrieron una mutación al ser bañadas con un líquido radioactivo. Por suerte o por desgracia, una mutación no nos puede convertir en tortugas ninja, pero sí que puede tener otros efectos. A continuación, os cuento qué son las mutaciones.

¿QUÉ SON LAS MUTACIONES?

Nuestro cuerpo es como una gran fábrica en la que nuestras células son los trabajadores. Éstas, gracias a su maquinaria interna, hacen que la fábrica se mantenga a flote con los menores problemas posibles. El funcionamiento constante de nuestras células las 24 horas del día durante los 365 días del año, causa que, a veces, se produzcan errores en su maquinaria. Esto genera imperfecciones en el código genético, las cuales generalmente pasan desapercibidas. Sí que es cierto que las células hacen todo lo posible para arreglar los fallos producidos, pero a veces son inevitables y conducen a la generación de enfermedades o, incluso, a la muerte de la célula si ésta se ve desbordada y no puede superar las adversidades.

Así pues, las mutaciones son estos pequeños errores, es decir, las mutaciones son cambios estables y heredables que alteran la secuencia del ADN. Este hecho hace que se introduzcan nuevas variantes genéticas en la población, generando diversidad genética.

Generalmente, las mutaciones acostumbran a ser eliminadas, pero ocasionalmente algunas pueden tener éxito y escaparse de los mecanismos de reparación del ADN de nuestras células. Sin embargo, sólo se mantienen estables y heredables en el ADN si afectan a un tipo de células, las células germinales.

Los organismos que nos reproducimos sexualmente tenemos dos tipos de células: germinales y somáticas. Mientras que las primeras transmiten la información genética de padres a hijos, las células somáticas forman el cuerpo del organismo. Debido a que la información de las células germinales, que son las que darán lugar a gametos (espermatozoides y ovocitos) pasa de generación a generación, éstas tienen que estar protegidas contra los diferentes cambios genéticos para poder salvaguardar cada individuo.

Debido a que la mayoría de las mutaciones son perjudiciales, ninguna especie puede permitir que se acumulen mutaciones en gran número en sus células germinales. Es por este motivo que no todas las mutaciones quedan fijadas en la población, sino que muchas de estas variantes suelen ser eliminadas. Ocasionalmente algunas sí que se pueden incorporar a todos los individuos de la especie.

La tasa de mutación es la frecuencia en la que se producen nuevas mutaciones en un gen. Cada especie tiene una tasa de mutación propia, modulada por la selección natural. Esto implica que cada especie se pueda enfrontar de manera distinta a los cambios producidos por el ambiente.

Las tasas de mutación espontaneas son muy bajas, del orden de     10-5-10-6 por gen y generación. De esta manera, las mutaciones no producen cambios rápidos en la población.

EL PAPEL DE LA SELECCIÓN NATURAL

Cambios de nucleótidos en las células somáticas pueden dar lugar a células variantes o mutantes, algunas de las cuales, a través de la selección natural, consiguen ser más ventajosas respecto a sus compañeras y proliferan muy rápido, dándonos como resultado, en el caso extremo, el cáncer, es decir, una proliferación celular descontrolada. Algunas de las células del cuerpo empiezan a dividirse sin detenerse y se diseminan a los tejidos de alrededor, proceso conocido como metástasis

Pero la mejor manera de entender el papel de la selección natural de la cuál hablaba el naturista Charles Darwin es con el ejemplo de las polillas moteadas (Biston betularia). En Inglaterra habitan dos tipos de polillas, las de color gris claro y las de color gris oscuro (Figura 1). Las primeras solían ser las más comunes, pero entre los años 1848 y 1898 se impusieron las polillas de color gris.

biston
Figura 1. Polillas moteadas (Biston betularia) de color gris clar y oscuro (Fuente: TorruBlog)

Este cambio se produjo al mismo tiempo que las ciudades se volvieron más industriales, en las cuales el carbón se convirtió en el combustible principal para las plantas eléctricas. El hollín de esta roca tiñó de gris oscuro el cielo, el suelo y los edificios de las ciudades. También se vieron afectados los troncos de los árboles, donde se camuflaban las polillas.

La consecuencia de este hecho fue que las polillas de color gris claro no podían esconderse de sus depredadores, en cambio, las que eran de color gris oscuro encontraron una salida exitosa camuflándose bien en los troncos tintados. Con el cambio de color de su escondite tenían más oportunidades de sobrevivir y reproducirse (Video 1).

Video 1. Polillas moteadas y la industrialización (en inglés) (Fuente: YouTube)

Este es un ejemplo claro de cómo los cambios del entorno influyen en la variabilidad de las frecuencias génicas, que varían en respuesta a nuevos factores en el medio ambiente.

TIPOS DE MUTACIONES

No existe un solo tipo de mutación, sino que hay varios tipos de mutación que pueden afectar la secuencia de ADN y, de rebote, el código genético. Sin embargo, no todas las mutaciones tienen el mismo efecto.

De mutaciones hay muchas y de diferentes tipos, que se clasifican por niveles mutacionales. Estos niveles se basan en la cantidad de material hereditario afectado por la mutación y van subiendo de rango según el número de genes implicados. Si la mutación sólo afecta a un gen hablamos de mutación génica, mientras que si afecta a un segmento cromosómico que incluye varios genes nos referimos a mutación cromosómica. Cuando la mutación afecta al genoma, afectando a cromosomas completos por exceso o por defecto, hablamos de mutación genómica.

Un ejemplo de mutación puntual lo encontramos en la fibrosis quística, una enfermedad genética hereditaria que produce una alteración en la secreción de mucosidades, afectando al sistema respiratorio y digestivo. Una mutación puntual afecta el gen que codifica para la proteína CFTR. Las personas afectadas reciben de ambos progenitores el gen defectuoso que, al no tener ninguna copia del gen buena, la proteína no será funcional. El resultado es que las secreciones producidas por el cuerpo humano son más espesas de lo habitual, produciendo una acumulación en las vías respiratorias.

REFERENCIAS

  • Ramos, M. et al. El código genético, el secreto de la vida (2017) RBA Libros
  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Bioinformática UAB
  • Webs UCM
  • Foto portada: Cine Premiere

MireiaRamos-castella2

La realitat de les mutacions

Recordeu les tortugues ninja? En Leonardo, Raphael, Michelangelo i Donatello eren quatre tortugues que van patir una mutació al ser banyades amb un líquid radioactiu. Per sort o per desgràcia, una mutació no ens pot convertir en tortugues ninja, però sí que pot tenir altres efectes. A continuació us explico què són les mutacions.

QUÈ SÓN LES MUTACIONS?

El nostre cos és com una gran fàbrica en la que les nostres cèl·lules són els treballadors. Aquestes, gràcies a la seva maquinària interna, fan que la fàbrica segueixi endavant amb els menors problemes possibles. El funcionament constant de les nostres cèl·lules les 24 hores del dia durant els 365 dies de l’any, provoca que, a vegades, es produeixin errors en la seva maquinària. Això genera imperfeccions en el codi genètic, les quals generalment passen desapercebudes. Sí que és cert que les cèl·lules fan tot el possible per arreglar els errors produïts, però a vegades són inevitables i condueixen a la generació de malalties o, inclús, a la mort de la cèl·lula si aquesta es veu desbordada i no pot superar les adversitats.

Així doncs, les mutacions són aquests petits errors, és a dir, canvis estables i heretables que alteren la seqüència de l’ADN. Aquest fet fa que s’introdueixin noves variants gèniques a la població, generant diversitat genètica.

Generalment, les mutacions acostumen a ser eliminades, però ocasionalment algunes poden tenir èxit i escapar-se dels mecanismes de reparació de l’ADN de les nostres cèl·lules. No obstant, només es mantenen estables i heretables en l’ADN si afecten a un tipus de cèl·lules, les cèl·lules germinals.

Els organismes que ens reproduïm sexualment tenim dos tipus de cèl·lules: germinals i somàtiques. Mentre que les primeres transmeten la informació genètica de pares a fills, les cèl·lules somàtiques formen el cos de l’organisme. Degut a que la informació de les cèl·lules germinals, que són les que donen lloc a gàmetes (espermatozoides i oòcits) passa de generació en generació, aquestes han d’estar protegides contra els diferents canvis genètics per poder salvaguardar cada individu.

Degut a que la majoria de les mutacions són perjudicials, cap espècie pot permetre que s’acumulin mutacions en gran número en les seves cèl·lules germinals. És per això que no totes les mutacions queden fixades a la població, sinó que moltes d’aquestes variants solen ser eliminades. Ocasionalment algunes sí que es poden incorporar a tots els individus de l’espècie.

La taxa de mutació és la freqüència en la que es produeixen noves mutacions en un gen. Cada espècie té una taxa de mutació pròpia, modulada per la selecció natural. Això implica que cada espècie es pot enfrontar diferent als canvis produïts per l’ambient.

Les taxes de mutació espontànies són molt baixes, de l’ordre de 10-5-10-6 per gen i generació. D’aquesta manera, les mutacions no produeixen canvis ràpids en la població.

EL PAPER DE LA SELECCIÓ NATURAL

Canvis de nucleòtids en les cèl·lules somàtiques poden donar lloc a cèl·lules variants o mutants, algunes de les quals, a través a de la selecció natural, aconsegueixen ser més avantatjoses respecte a les seves companyes i proliferen molt ràpid. Com a resultat, en el cas extrem, es produeix el càncer, és a dir, una proliferació cel·lular descontrolada. Algunes de les cèl·lules del cos comencen a dividir-se sense aturar-se i es disseminen als teixits del voltant, procés conegut com a metàstasi.

Però la millor manera d’entendre el paper de la selecció natural de la qual en parlava el naturista Charles Darwin és amb l’exemple de les papallones del bedoll (Biston betularia). A Anglaterra habiten dos tipus de papallones, les de color gris clar i les de color gris fosc (Figura 1). Les primeres acostumaven a ser les més comuns, però entre els anys 1848 i 1898 es van invertir els papers i les papallones de color gris es van imposar.

biston
Figura 1. Papallones del bedoll (Biston betularia) de color gris clar i gris fosc (Font: TorruBlog)

Aquest canvi es va produir al mateix temps que les ciutats es van tornar més industrials, en les quals el carbó es va convertir en el combustible principal per a les plantes elèctriques. El sutge d’aquesta roca va tenyir de gris fosc el cel, el sòl i els edificis de les ciutats. També es van veure afectats els troncs dels arbres, on es camuflaven les papallones del bedoll.

La conseqüència d’aquest fet va ser que les papallones de color gris clar no podien amagar-se dels seus depredadors, en canvi, les que eren de color gris fosc van trobar una sortida amb èxit camuflant-se bé en els troncs pintats. Amb el canvi de color del seu amagatall tenien més oportunitats de sobreviure i reproduir-se (Vídeo 1).

Vídeo 1. Papallones del bedoll i la industrialització (en anglès) (Font: YouTube)

Aquest és un exemple clar de com els canvis en l’entorn influeixen en la variabilitat de les freqüències gèniques, que varien en resposta a nous factors en el medi ambient.

TIPUS DE MUTACIONS

No existeix un sol tipus de mutació, sinó que hi ha varis tipus de mutacions que poden afecta la seqüència d’ADN i conseqüentment el codi genètic. No obstant, no totes les mutacions tenen el mateix efecte.

Les mutacions acostumen a classificar-se per nivells mutacionals. Aquests nivells es basen en la quantitat de material hereditari afectat per la mutació i van pujant de rang segons el número de gens implicats. Si la mutació només afecta a un gen parlem de mutació gènica, mentre que si afecta a un segment cromosòmic que inclou varis gens ens referim a mutació cromosòmica. Quan la mutació afecta al genoma, afectant a cromosomes complets per excés o per defecte, ens referim a mutació genòmica.

Un exemple de mutació puntual el trobem en la fibrosi quística, una malaltia genètica hereditària que produeix una alteració en la secreció de mucositats, afectant al sistema respiratori i digestiu. Una mutació puntual afecta el gen que codifica per a la proteïna CFTR. Les persones afectades reben de tots dos progenitors el gen defectuós que, al no tenir cap còpia del gen bona, la proteïna no serà funcional. El resultat és que les secrecions produïdes per l’organisme humà són més espesses del que és habitual, produint una acumulació en les vies respiratòries.

REFERÈNCIES

  • Ramos, M. et al. El código genético, el secreto de la vida (2017) RBA Libros
  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Bioinformática UAB
  • Webs UCM
  • Foto portada: Cine Premiere

MireiaRamos-catala2

The blue-footed bird that fascinated Darwin

Blue-footed booby (Sula nebouxii) was studied by Charles Darwin during his trip to the Galapagos Islands. Definitely, this bird is a wonder of the evolution of the species. We will know more about this amazing bird that is increasingly threatened.

1. WHERE TO FIND IT AND HOW TO RECOGNIZE IT

The Blue-footed booby (Sula nebouxii) is a species of bird of the order Suliformes (gannets and other related birds), family Sulidae (gannets or piqueros), from the American Pacific. They are medium-large-sized coastal birds that feed on catching fish diving on the water. It is distributed along the coasts between Peru and the Gulf of California, and the Galapagos Islands.

map-blue-footed-booby-160-2999-cb1447107513_national geographic
Picture 1: Blue-footed booby distribution map. Source: http://www.nationalgeographic.com

Blue-footed booby is unmistakable for its curious and striking bright blue paws, as its name suggests. However, this characteristic is only present by adult birds, since when they have not yet completed their development the chickens have pale legs as part of their survival strategy to avoid drawing attention to possible predators. To differentiate between adult males and females, we must look at two characters: size, males are smaller than females; and the unmistakable difference in their pupils, larger in females.

stillnotgrow up_tumb lr
Picture 2: Blue-footed booby male (on the left) and female (on the right), can be observed the difference in the size of their pupils. Source: www.stillnotgrowup.com

They feed mainly on pelagic fish such as pilchards (Sardinops caeruleus), chub mackerel (Scomber japonicus) and flying fishes (Exocoetus sp.). It is fascinating to watch the activity of these birds while they feed: they fly over the sea and dive from the air after their prey, entering the water at high speed, reaching speeds of up to 96 km / hour. This same technique to obtain food is carried out by all the pikemen and gannets. It is a gregarious species both for breeding and feeding, so it is common to see groups of birds hunting in the sea.

pesca_Tui De Roy_Miden Pictures
Picture 3: Group of blue-footed booby feeding on the sea by the diving technique. Source: Roy Tui via Miden Picture.

2. WHY GANNETS AND OTHER CURIOSITIES

Blue-footed booby is a bioindicator species, reflecting both oceanic conditions and marine productivity. They change their diet and growth rate of the chicks according to the available food (Maccall,1982; Ricklefs et al., 1984; and Jahncke and Goya, 2000), as well as their distribution pattern in the marine region during the breeding season (Valle Castillo, 1984; Hayes and Baker, 1989; Tershy et al., 1991).

piquero-patas-azules-683d83b718edc1575315599068d5f46d
Picture 4: Bird resting on rocks in Puerto Ayora, Ecuador. Source: Emilio, Erasmus Photo Puerto Ayora

Courting behavior is very complex (Parkin et al., 1970, Nelson, 1978, Rice, 1984), and its striking blue paws play a very important role. The male shows his legs to the female during the ritual, as it is one of the characters that the female takes into account in the choice of her partner. The color of the legs is due to the accumulation of carotenoids obtained from their diet, which is used as a breeding strategy: it reflects the health status of the individual and increases the chances of success. However, it has been shown that this strategy is not limited to a preference of the females for males with brighter blue paws, but also males show preference for females with brighter colored legs and thus, they may have a higher probability of interactions with other males other than his partner (Torres and Velando, 2003), despite being a monogamous species.

3. THE BLUE-FOOTED BOOBY IN YEARS OF CHANGES

‘El Niño’ is a cyclical climatic phenomenon (every 2-7 years) that wreaks problems worldwide, with the most affected areas being South America and the areas between Indonesia and Australia, causing water warming and huge changes in climate, as it causes severe droughts and floods. Its origin is related to the level of the oceanic surface and its thermal anomalies. The ‘El Niño’ phenomenon reverses the Humboldt current, which brings cold, nutrient-rich water from Antarctica, and warm equatorial water arrives instead, decreasing the number of birds that may depend on marine life.

el-niño
Picture 5: ‘El Niño’ phenomenon process. Source: http://www.ecuadordelsur.blogspot.com.es

In years of the ‘El Niño’ phenomenon, the blue-footed booby modifies its habits feeding on coastal fish almost exclusively (Carboneras 1992, Jancke and Goya 2000). In addition, it has been observed that this phenomenon influences its reproduction being negatively affected parameters such as laying size, hatching, success in flying chicks, … related to the low ocean productivity that causes this phenomenon (Wingfield, 1999).

Blue-footed Booby
Picture 6: Laying and hatching of eggs. Source: http://www.darwinfoundation.org

Currently, scientists have shown that due to global warming the frequency of El Niño has increased, and this seriously threatens the survival of the species in Galapagos since it may assume that there is not enough time for the species to recover, leading to their populations to very low populations and even to extinction.

4. A HARD START FOR CHICKS

The blue-footed booby lays 1-3 eggs incubated for 41 days. Chicks fly about 102 days and parents continue to feed them until their full independence.

pollosyprogenitor_Tui de Roy_Miden Pictures
Picture 7: Father and chicks. Source: Tui de Roy, Miden pictures

In clutches, usually two chickens, a hierarchy is usually established in which the first-born chicken is dominant in front of its smaller brother and receives more food from the parents. It is a species that can present or not the phenomenon of reduction of the clutch by means of the fraticide (Anderson, 1989, Anderson and Ricklefs, 1992), causing the older brother the death of the smaller one. In one way or another, the brother born last will have a difficult beginning because he will have to compete with his older brother for food in a continuous struggle for survival.

Blue-footed Booby
Picture 8: Clutches are usually of two chickens and the older brother shows dominance over the small. Source: http://www.darwinfoundation.org

5. REFERENCES

  • CONABIO – www.biodiversidad.gob.mx
  • Effect of food deprivation on dominance status in blue-footed booby (Sula nebouxii) broods – Miguel A. Rodriguez-Girones,” Hugh Drummond,b and Alex Kacelnik’ – Behavioural Ecology, 1996
  • Male preference for female foot colour in the socially monogamous blue-footed booby, Sula nebouxii – Animal Behaviour, 2005 – Roxana Torres, Alberto Velando.
  • Maternal investment in eggs is affected by male feet colour and breeding conditions in the blue-footed booby, Sula nebouxxi – Behavioral Ecology and Sociobiology, 2008 – Fabrice Dentressangle, Lourdes Boeck and Roxana Torres
  • The Effects of an “El Niño” Southern Oscillation Event on Reproduction in Male and Female Blue-Footed Boobies,Sula nebouxii – John C. Wingfield, Gabriel Ramos-Fernandez, Alejandra Núñez-de la Mora, Hugh Drummond – General and Comparative Endocrinology, 1999
  • http://www.lareserva.com/home/Alcatraz_patas_azules
  • http://www.iucnredlist.org/
  • Cover photo: Credit Asahi Shimbum vía Getty Images

Sara de la Rosa Ruiz

Check the evolution in your own body

42% of the US population and 11.5% of the Spanish people do not believe in evolution. However, there are different evidence that Darwin was right, some of them in your own body. Have you had your appendix or wisdom teeth removed? Find out in this post which vestigial organs you have inherited from your ancestors.

WHAT ARE VESTIGIAL STRUCTURES?

Vestigial structures (often called organs althouth they are not organs properly) are body parts that have been reduced or have lost its original function during the evolution of a species. They can be found in many animals, including humans.

Esqueleto de orca en el que se observan vestigios de las extremidades traseras. Foto: Patrick Gries
Orca skeleton in which vestiges of the hind limbs can be seen. This is a proof of its terrestrial origins. Photo: Patrick Gries

Vestigial structures were fully functional in the ancestors of these species (and in the homologous structures of other existing species), but currently its function is practically useless or it has changed. For example, the second pair of flying wings in some insects such as flies have lost their function and they have been reduced to balance organs (halteres). If you want to know more about the evolution of flight in insects click here.

Besides physical structures, vestigial features can also manifest itself in behavior or biochemistry processes.

WHY ARE THEY  EVIDENCE OF EVOLUTION?

Natural selection acts on species favoring features that increase their survival and eliminating the ones with no benefits, for example when changes appear in the habitat. Individuals with unfavorable characteristics will die or will breed less and that feature will be removed after some generations, while favorable traits will remain as their carriers can pass them to the next generation.

Sometimes there are features that are neither favorable nor unfavorable, so they continue appearing in the next generations. But all has a cost structure (energy, risk to become infected, develop tumors…), so selective pressure continues acting to eliminate something that is not conducive to the success of the species. This is the case of vestigial structures, which “take longer” disappear throughout evolution. Their existence reveal that in the past these structures had an important role in our ancestors.

FIND YOUR VESTIGIAL TRAITS

THE NICTITATING MEMBRANE

We talked about it in How animals see the world. The third eyelid is a transparent or translucent membrane that protects and moisten the eye without losing visibility. It is common in amphibians, reptiles and birds. Among primates, it is only functional in lemurs and lorises.

membrana nictitante, nictitating membrane
Nictitating membrane or third eyelid of a masked lapwing (Vanellus miles). Photo: Toby Hudson

In humans the plica semilunaris is a remnant of the nictitating membrane. Obviously we can not move it but still has some lacrimal drainage function and helps on the eye movement (Dartt, 2006).

Plica semilunaris (pliegue semilunar). Foto: desconocido
Plica semilunaris. Photo: unknown

DARWIN’S TUBERCLE AND EAR MUSCLES

10% of the population has a thickening in the ear, a vestige of the common pointy ear in primates. This structure is called Darwin’s tubercle and has no function.

Variabilidad del Tubérculo de Darwin en la punta de la oreja (0= ausente). Puede presentarse en otras zonas del pabellón auditivo: ver publicación.
Variability of Darwin’s tubercle at the top of the ear (0 = absent).  Credit.
Comparación entre la oreja de un macaco y la nuestra. Fuente
Comparison between the ear of a yellow baboon (Papio cynocephalus) and ours. Credit

Also, primates (and other mammals) have mobile ears to lead the pinna toward the sound source: surely you have noticed it in your house dog or house cat. Humans (and chimps) no longer have that great mobility, although some people may move slightly pinna. It has been proven with electrodes these muscles are excited when we perceive a sound that comes from a particular direction (2002).

Auricular muscles responsible of movement of the pinna. Credit

The occipitofrontalis muscle has lost its function to prevent the head from falling, but participates in facial expression.

PALMARIS LONGUS MUSCLE

16% of Caucasians do not have this muscle on the wrist, neither 31% of nigerian people neither 4,6% of chinese people. It can even appear in one arm and not in the other or be double.

It is believed that this muscle actively participated in the arboreal locomotion of our ancestors, but currently has no function, because it does not provide more grip strength. This muscle is longer in completely arboreal primates (like lemurs) and shorter in land primates, like gorillas (reference).

And do you have it or not? Try it: join your thumb and pinky and raise your hand slightly.

mireia querol, mireia querol rovira, palmaris longus, musculo palmar largo, tendon
I have two palmaris longus in the left arm and one on the right. Photo: Mireia Querol

WISDOM TEETH

35% of people do not have wisdom teeth or third molar. In the rest, its appearance is usually painful and removal is necessary.

Yo no tengo el tercer molar. Foto: Mireia Querol Rovira
I don’t have the third molar. Photo: Mireia Querol Rovira

Our hominin ancestors had them, much bigger than ours. A recent research explains that when a tooth develops, emits signals that determine the size of the neighboring teeth. Reducing the mandible dentition and the other along evolution has resulted in reduced molars (and eventually the disappearance of the third).

Comparativa entre la dentición de un chimpancé, Australopithecus afarensis y Homo sapiens. Fuente
Comparison between the dentition of a chimpanzee, Australopithecus afarensis and Homo sapiens. Look at the reduction of the last three molars between afarensis and sapiens, Credit

THE TAILBONE

If you touch your spine till the end, you will reach the coccyx or tailbone. It is three to five fused vertebrae, vestige of the tail of our primate ancestors. In fact, when we were in the womb, in the early stages of embryo development a 10-12 tail vertebrae formation is observed.

Distintos estados en el desarrollo embrionmario humano y comparación con otras especies. Créditos en la imagen
Different stages in human embryonic development (1 to 8) and comparison with other species. Credits in the image.

Subsequently it is reabsorbed, but not in all cases: it has been reported 40 newborns with a tail.

Neonato nacido con cola. Una mutación ha evitado la inhibición del crecimiento de la cola durante la gestación. Fuente
Infant born with tail. A mutation has prevented the growth inhibition of the tail during pregnancy. Credit

Although we have no tail, currently these bones serve as anchors of some pelvic muscles.

mireia querol, mireia querol rovira, coxis, sacro, sacrum, tailbone, rabadilla
Tailbone position. Photo: Mireia Querol Rovira

SUPERNUMERARY NIPPLES (POLYTHELIA)

It is estimated that up to 5% of the world population has more than two nipples. These “extra” nipples can be presented in different ways so sometimes are confused with freckles or moles. They are located in the mammillary line (from the axilla to the groin), exactly in the same position as other mammals with more than two breasts (observe your house dog, for example). Usually the number of breasts corresponds to the average of offspring that has a mammal, so extra nipples would be a vestige from when our ancestors had more offspring per birth. Usual is 3 nipples, but has been documented a case of up to 8 nipples in a person.

Pezón suplementario debajo del principal. Fuente
Additional nipple below the main one. Credit

FIND YOUR VESTIGIAL REFLEXES AND BEHAVIOURS

PALMAR AND FOOT SOLE GRASP REFLEX

Surely you’ve experienced that if you bring anything into the hands of a baby, automatically he grabs it with such a force that would be able to hold his own weight. This reflex disappears at 3-4 months of age and is a remnant of our arboreal past and the way to grab the hair of the mother, as with the other current primates. Watch the next video in 1934 on a study of twins (minute 0:34):

On the feet there is also a reflex of trying to grab something when the foot of a baby is touched. It disappears at 9 months of age.

By the way, have you noticed how easily children climb on any handrails or higher zones in a playground?

GOOSEBUMPS

Cold, stress or intense emotion (eg, listening to some music) causes the piloerector muscle to raise the hair giving the skin the appearance of a plucked chicken. It is an involuntary reflex in which some hormones, like adrenaline (which is released in the mentioned situations) are involved. What utility had this to our ancestors and has in modern mammals?

  • Increasing the space between the skin and the external surface, so that hot air trapped between hair helps on maintaining temperature.
  • Looking bigger to scare off potential predators or competitors.
Chimpancé con el pelo erizado durante un display antes de un conflicto. Foto: Chimpanzee Sanctuary Northwest
Chimpanzee with hair bristling in a display before a conflict. Photo: Chimpanzee Sanctuary Northwest

Obviously we have lost hair in most parts of the body, so although we retain the reflex, it has no use to us or to keep warm or to ward off predators. The hair has been preserved abundantly in areas where protection is necessary or due to sexual selection (head, eyebrows, eyelashes, beard, pubis…), but in general, can also be considered a vestigial structure.

There are more vestigial structures but in this post we have focused on the most observable. In future posts we will discuss other internal structures, like the famous appendix or vomeronasal organ.

REFERENCES

Comprueba la evolución en tu propio cuerpo

¡ATENCIÓN! ESTE ARTÍCULO ESTÁ ANTICUADO.

LEE LA VERSIÓN ACTUALIZADA Y MEJORADA AQUÍ.

El 42% de la población estadounidense y el 11,5% de la española no cree que la evolución sea cierta. A pesar de ello, existen diferentes pruebas de que el genial Darwin estaba en lo cierto, algunas de ellas en tu propio cuerpo. ¿Te han operado del apéndice o quitado las muelas del juicio? Descubre en este artículo qué estructuras vestigiales heredaste de tus antepasados.

¿QUÉ SON LAS ESTRUCTURAS VESTIGIALES?

Las estructuras vestigiales (a menudo llamadas órganos, aunque no lo sean propiamente dicho) son partes del cuerpo que han visto reducida o perdida su función original durante la evolución de una especie. Se encuentran en muchos animales, incluidos por supuesto los humanos.

Esqueleto de orca en el que se observan vestigios de las extremidades traseras. Foto: Patrick Gries
Esqueleto de orca en el que se observan vestigios de las extremidades traseras, prueba de su origen terrestre. Foto: Patrick Gries

Las estructuras vestigiales eran plenamente funcionales en los antepasados de esas especies (y lo son en las estructuras homólogas de otras especies actuales), pero actualmente su función es prácticamente nula o ha cambiado. Por ejemplo, en algunos insectos como las moscas el segundo par de alas ha perdido su función voladora y ha quedado reducido a órganos del equilibrio (halterios). Si quieres saber más sobre la evolución del vuelo en los insectos entra aquí.

Además de estructuras físicas, las características vestigiales también pueden manifestarse en comportamientos o procesos bioquímicos.

¿POR QUÉ SON PRUEBAS DE LA EVOLUCIÓN?

La selección natural actúa sobre las especies favoreciendo características que aumenten su supervivencia y eliminando las que no, por ejemplo cuando aparecen cambios en el hábitat. Los individuos con características poco favorables morirán o se reproducirán menos y esa característica se verá eliminada a la larga, mientras que las favorables se mantendrán ya que sus portadores la podrán pasar a la siguiente generación.

A veces hay características que no son ni favorables ni desfavorables, por lo que seguirán pasando a las siguientes generaciones. Pero toda estructura tiene un coste (energético, peligro a que se infecte, desarrolle tumores…), por lo que la presión selectiva sigue actuando para eliminar algo que no favorece al éxito de la especie. Es el caso de las estructuras vestigiales, que “tardarían más” en desaparecer a lo largo de la evolución. El hecho que existan revelan que en el pasado esas estructuras sí tenían una función importante en nuestros antepasados.

ENCUENTRA TUS ÓRGANOS VESTIGIALES

LA MEMBRANA NICTITANTE

Ya hablamos de ella en Cómo ven el mundo los animales. Se trata de una membrana transparente o translúcida que sirve para proteger el ojo y humedecerlo sin perder visibilidad. Es común en anfibios, reptiles y aves. Entre los primates, sólo la poseen completa lémures y loris.

membrana nictitante, nictitating membrane
Membrana nictitante o tercer párpado de un avefría militar (Vanellus miles). Foto: Toby Hudson

En humanos la plica semilunaris es un vestigio de la membrana nictitante. Obviamente no la podemos mover pero aún tiene cierta función de drenaje del lagrimal y ayuda al movimiento del ojo (Dartt, 2006).

Plica semilunaris (pliegue semilunar). Foto: desconocido
Plica semilunaris (pliegue semilunar). Foto: desconocido

EL TUBÉRCULO DE DARWIN Y LOS MÚSCULOS DE LA OREJA

El 10% de la población tiene un engrosamiento en la oreja, vestigio de la oreja puntiaguda común en los primates. Esta estructura se llama tubérculo de Darwin y no tiene ninguna función.

Variabilidad del Tubérculo de Darwin en la punta de la oreja (0= ausente). Puede presentarse en otras zonas del pabellón auditivo: ver publicación.
Variabilidad del Tubérculo de Darwin en la punta de la oreja (0= ausente).  Fuente.
Comparación entre la oreja de un macaco y la nuestra. Fuente
Comparación entre la oreja de un babuino amarillo (Papio cynocephalus) y la nuestra. Fuente

Asimismo, los primates (y otros mamíferos) tienen orejas móviles para dirigir los pabellones auditivos hacia la fuente de sonido: seguramente lo habrás observado en tu perro o gato. Los humanos (y chimpancés) ya no tenemos esa gran movilidad, aunque algunas personas pueden mover ligeramente los pabellones auditivos a voluntad. Se ha comprobado mediante electrodos que estos músculos se excitan cuando percibimos un sonido que viene de una dirección concreta (2002).

Músculos auriculares responsables del movimiento del pabellón auditivo. Fuente

El músculo occipitofrontal también ha perdido su función de evitar que se caiga la cabeza, aunque participa en la expresión facial.

MÚSCULO PALMAR LARGO

El 16% de las personas caucásicas no posee este músculo en la muñeca, tampoco un 31% de las nigerianas ni un 4,6% de las chinas. Incluso puede aparecer en un brazo y no en el otro o ser doble según las personas.

Se cree que este músculo participaría activamente en la locomoción arborícola de nuestros antepasados, pero actualmente no tiene ninguna función necesaria, ya que no proporciona más fuerza de agarre. Este músculo es más largo en primates completamente arborícolas (lemures) y más corto en los más terrestres, como los gorilas (referencia).

Y tú, ¿lo tienes o no? Haz la prueba: junta los dedos pulgar y meñique y levanta ligeramente la mano.

mireia querol, mireia querol rovira, palmaris longus, musculo palmar largo, tendon
Yo tengo dos en el brazo izquierdo y uno en el derecho. Foto: Mireia Querol

MUELAS DEL JUICIO

El 35% de las personas no poseen muelas del juicio o tercer molar. En el resto, su aparición suele ser dolorosa y es necesaria la extirpación.

Yo no tengo el tercer molar. Foto: Mireia Querol Rovira
Yo no tengo el tercer molar. Foto: Mireia Querol Rovira

Nuestros ancestros homininos sí las tenían, bastante mayor que el nuestro. Un reciente estudio explica que cuando un diente se desarrolla, emite señales que determinan el tamaño de los dientes vecinos. La reducción de la mandíbula y el resto de dentadura a lo largo de la evolución ha provocado la reducción de los molares (e incluso la desaparición del tercero).

Comparativa entre la dentición de un chimpancé, Australopithecus afarensis y Homo sapiens. Fuente
Comparativa entre la dentición de un chimpancé, Australopithecus afarensis y Homo sapiens. Observa la reducción de los tres últimos molares entre afarensis y sapiens, Fuente

EL COXIS

Si te tocas la columna vertebral hasta el final, llegarás al coxis o cóccix. Se trata de 3 a 5 vértebras fusionadas vestigio de la cola de nuestros ancestros primates. De hecho, cuando estábamos en el útero materno, en los primeros estadíos de desarrollo del embrión se observa una cola con 10-12 vértebras en formación.

Distintos estados en el desarrollo embrionmario humano y comparación con otras especies. Créditos en la imagen
Distintos estadíos en el desarrollo embrionario humano (1 a 8) y comparación con otras especies. Créditos en la imagen

Posteriormente se reabsorbe, pero no en todos los casos: hay reportados 40 nacimientos de bebés con cola.

Neonato nacido con cola. Una mutación ha evitado la inhibición del crecimiento de la cola durante la gestación. Fuente
Neonato nacido con cola. Una mutación ha evitado la inhibición del crecimiento de la cola durante la gestación. Fuente

Aunque no tengamos cola, actualmente estos huesos sirven de anclaje de algunos músculos pélvicos.

mireia querol, mireia querol rovira, coxis, sacro, sacrum, tailbone, rabadilla
Situación del coxis. Foto: Mireia Querol Rovira

PEZONES SUPERNUMERARIOS (POLITELIA)

Se estima que hasta un 5% de la población mundial presenta más de dos pezones. Estos pezones “extra”, pueden presentarse en diferentes formas (completos o no) por lo que a veces se confunden con pecas o lunares.  Se situan en la línea mamilar (de la ingle a la axila), exactamente en la misma posición que el resto de mamíferos con más de dos mamas (observa a tu perro, por ejemplo). Habitualmente el número de mamas corresponde con la media de crías que puede tener un mamífero, por lo que los pezones extra serían un vestigio de cuando nuestros antepasados tenían más crias por parto. Lo habitual son 3 pezones, pero se ha documentado un caso de hasta 8 pezones en una persona.

Pezón suplementario debajo del principal. Fuente
Pezón suplementario debajo del principal. Fuente

ENCUENTRA TUS REFLEJOS Y COMPORTAMIENTOS VESTIGIALES

EL REFLEJO DE PRENSIÓN PALMAR Y PLANTAR

Alguna vez habrás experimentado que al acercar cualquier cosa a las manos de un bebé, automáticamente lo agarra con una fuerza tal que sería capaz de aguantar su propio peso. Desaparece hacia los 3-4 meses y es un remanente de nuestro pasado arborícola y a la forma de agarrarse al pelo de la madre, igual que sucede con los otros primates actuales. Observa el siguiente vídeo de 1934 sobre un estudio de dos gemelos (minuto 0:34):

En los pies también existe el reflejo de intentar agarrar algo cuando se toca la planta del pie de un bebé. Desaparece hacia los 9 meses de edad.

Por cierto, ¿te has fijado en la afición y facilidad que tienen los niños y niñas para subirse a cualquier barandilla o parte elevada en un parque infantil?

LA PIEL DE GALLINA

El frío, el estrés o una emoción intensa (por ejemplo, el escuchar cierta música) provoca que el músculo piloerector nos erice el vello dándole a la piel el aspecto de una gallina desplumada. Es un reflejo involuntario en el que algunas hormonas, com la adrenalina (que se libera en las situaciones mencionadas), están implicadas.  ¿Qué utilidad tenía esto para nuestros ancestros y tiene en los mamíferos actuales?

  • Aumentar el espacio entre la piel y el exterior, por lo que el aire caliente atrapado entre el pelo ayuda a mantener la temperatura.
  • Parecer más grandes para ahuyentar posibles depredadores o competidores.

    Chimpancé con el pelo erizado durante un display antes de un conflicto. Foto: Chimpanzee Sanctuary Northwest
    Chimpancé con el pelo erizado durante un display antes de un conflicto. Foto: Chimpanzee Sanctuary Northwest

Obviamente nosotros hemos perdido el pelo en la mayor parte del cuerpo, por lo que aunque conservamos el reflejo, no nos sirve ni para calentarnos ni para ahuyentar depredadores. El pelo se ha conservado más abundantemente en zonas donde es necesaria protección o  debido a la selección sexual (cabeza, cejas, pestañas, barba, pubis…), pero en general, también puede ser considerado una estructura vestigial.

Existen más estructuras vestigiales aunque en este artículo nos hemos centrado en las más observables. En futuros artículos hablaremos de otras internas, como el famoso apéndice o el órgano vomeronasal.

REFERENCIAS

Comprova l’evolució en el teu propi cos

El 42% de la població nord-americana i l’11,5 de l’espanyola no creu que l’evolució sigui certa. Tot i això, hi ha diferents proves de que el genial Darwin tenia raó, algunes d’elles en el teu propi cos. T’han operat de l’apèndix o tret els queixals del seny? Descobreix en aquest article quins òrgans vestigials vas heretar dels teus avantpassats.

¿QUÈ SÓN LES ESTRUCTURES VESTIGIALS?

Les estructures vestigials (sovint anomenades òrgans, encara que no ho siguin pròpiament dit) són parts del cos que han vist reduïda o perduda la seva funció original durant l’evolució d’una espècie. Es troben en molts animals, inclosos per descomptat els humans.

Esqueleto de orca en el que se observan vestigios de las extremidades traseras. Foto: Patrick Gries
Esquelet  d’orca en el que s’observen vestigis de les extremitats posteriors, prova del seu origen terrestre. Foto: Patrick Gries

Les estructures vestigials eren plenament funcionals en els avantpassats d’aquestes espècies (i ho són en les estructures homòlogues d’altres espècies actuals), però actualment la seva funció és pràcticament nul·la o ha canviat. Per exemple, en alguns insectes com les mosques el segon parell d’ales ha perdut la seva funció voladora i ha quedat reduït a òrgans de l’equilibri (halteris). Si vols saber més sobre l’evolució del vol en els insectes entra aquí.

A més d’estructures físiques, les característiques vestigials també poden manifestar-se en comportaments o processos bioquímics.

¿PER QUÈ SÓN PROVES DE L’EVOLUCIÓ?

La selecció natural actua sobre les espècies afavorint característiques que augmentin la seva supervivència i eliminant les que no, per exemple quan apareixen canvis en l’hàbitat. Els individus amb característiques poc favorables moriran o es reproduiran menys i aquesta característica es veurà eliminada a la llarga, mentre que les favorables es mantindran ja que els seus portadors la podran passar a la següent generació.

De vegades hi ha característiques que no són ni favorables ni desfavorables, pel que seguiran passant a les següents generacions. Però tota estructura té un cost (energètic, perill a que s’infecti, desenvolupi tumors…), de manera que la pressió selectiva segueix actuant per eliminar una cosa que no afavoreix l’èxit de l’espècie. És el cas de les estructures vestigials, que “trigarien més” a desaparèixer al llarg de l’evolució. El fet que n’hi hagi revelen que en el passat aquestes estructures sí tenien una funció important en els nostres avantpassats.

TROBA ELS TEUS ÒRGANS VESTIGIALS

LA MEMBRANA NICTITANT

Ja vam parlar d’ella a Com veuen el món els animals. Es tracta d’una membrana transparent o translúcida que serveix per protegir l’ull i humitejar-lo sense perdre visibilitat. És comú en amfibis, rèptils i aus. Entre els primats, només la posseeixen completa lèmurs i loris.

membrana nictitante, nictitating membrane
Membrana nictitant o tercera parpella d’un fredeluga militar (Vanellus miles). Foto: Toby Hudson

En humans la plica semilunaris és un vestigi de la membrana nictitant. Òbviament no la podem moure però encara té certa funció de drenatge del lacrimal i ajuda al moviment de l’ull (Dartt, 2006).

Plica semilunaris (pliegue semilunar). Foto: desconocido
Plica semilunaris (plec semilunar). Foto: desconegut

EL TUBERCLE DE DARWIN I ELS MÚSCULS DE L’ORELLA

El 10% de la població té un engrossiment a l’orella, vestigi de l’orella punxeguda comú en els primats. Aquesta estructura es diu tubercle de Darwin i no té cap funció.

Variabilidad del Tubérculo de Darwin en la punta de la oreja (0= ausente). Puede presentarse en otras zonas del pabellón auditivo: ver publicación.
Variabilitat del Tubercle de Darwin a la punta de l’orella (0 = absent).  Font.
Comparación entre la oreja de un macaco y la nuestra. Fuente
Comparació entre l’orella d’un babuí groc (Papio cynocephalus) i la nostra. Font

Els primats (i altres mamífers) tenen orelles mòbils per dirigir els pavellons auditius cap a la font de so: segurament ho hauràs observat en el teu gos o gat. Els humans (i ximpanzés) ja no tenim aquesta gran mobilitat, encara que algunes persones poden moure lleugerament els pavellons auditius a voluntat. S’ha comprovat mitjançant elèctrodes que aquests músculs s’exciten quan percebem un so que ve d’una direcció concreta (2002).

Músculs auriculars responsables del moviment del pavelló auditiu. Font

El múscul occipitofrontal també ha perdut la seva funció d’evitar que caigui el cap, encara que participa en l’expressió facial.

MÚSCUL PALMAR LLARG

El 16% de les persones caucàsiques no posseeix aquest múscul al canell, tampoc un 31% de les nigerianes ni un 4,6% de les xineses. Fins i tot pot aparèixer en un braç i no en l’altre o ser doble segons les persones.

Es creu que aquest múscul participaria activament en la locomoció arborícola dels nostres avantpassats, però actualment no té cap funció necessària, ja que no proporciona més força d’agafada. Aquest múscul és més llarg en primats completament arborícoles (lèmurs) i més curt en els més terrestres, com els goril·les (referència).

I tu, el tens o no? Fes la prova: junta els dits polze i dit petit i aixeca lleugerament la mà.

mireia querol, mireia querol rovira, palmaris longus, musculo palmar largo, tendon
Jo tinc dos al braç esquerre i un al dret. Foto: Mireia Querol Rovira

QUEIXALS DEL SENY

El 35% de les persones no posseeixen queixals del seny o tercer molar. A la resta, la seva aparició sol ser dolorosa i és necessària l’extirpació.

Yo no tengo el tercer molar. Foto: Mireia Querol Rovira
Jo no tinc el tercer molar. Foto: Mireia Querol Rovira

Els nostres ancestres hominins sí en tenien, força més grans que els nostres. Un recent estudi explica que quan una dent es desenvolupa, emet senyals que determinen la mida de les dents veïnes. La reducció de la mandíbula i la resta de dentadura al llarg de l’evolució ha provocat la reducció dels molars (i fins i tot la desaparició del tercer).

Comparativa entre la dentición de un chimpancé, Australopithecus afarensis y Homo sapiens. Fuente
Comparativa entre la dentició d’un ximpanzé, Australopithecus afarensis i Homo sapiens. Observa la reducció dels tres últims molars entre afarensis i sapiens, Font

EL CÒCCIX

Si et toques la columna vertebral fins al final, arribaràs al còccix. Es tracta de 3 a 5 vèrtebres fusionades vestigi de la cua dels nostres avantpassats primats. De fet, quan estàvem a l’úter matern, en els primers estadis de desenvolupament de l’embrió s’observa una cua amb 10-12 vèrtebres en formació.

Distintos estados en el desarrollo embrionmario humano y comparación con otras especies. Créditos en la imagen
Diferents estadis en el desenvolupament embrionari humà (1 a 8) i comparació amb altres espècies. Crèdits a la imatge

Posteriorment es reabsorbeix, però no en tots els casos: hi ha reportats 40 naixements de nadons amb cua.

Neonato nacido con cola. Una mutación ha evitado la inhibición del crecimiento de la cola durante la gestación. Fuente
Nounat nascut amb cua. Una mutació ha evitat la inhibició del creixement de la cua durant la gestació. Font

Encara que no tinguem cua, actualment aquests ossos serveixen d’ancoratge d’alguns músculs pèlvics.

mireia querol, mireia querol rovira, coxis, sacro, sacrum, tailbone, rabadilla
Situació del coxis. Foto: Mireia Querol Rovira

MUGRONS SUPERNUMERARIS (POLITÈLIA)

S’estima que fins a un 5% de la població mundial presenta més de dos mugrons. Aquests mugrons “extra”, poden presentar-se en diferents formes (complets o no) pel que de vegades es confonen amb pigues. Se situen en la línia mamilar (de l’engonal a l’aixella), exactament en la mateixa posició que la resta de mamífers amb més de dues mames (observa el teu gos, per exemple).

Línea mamilar. Foto: MedicineNet
Línia mamilar. Foto: MedicineNet

Habitualment el número de mames correspon amb la mitjana de cries que pot tenir un mamífer, de manera que els mugrons extra serien un vestigi de quan els nostres avantpassats tenien més cries per part. L’habitual són 3 mugrons, però s’ha documentat un cas de fins a 8 mugrons en una persona.

Pezón suplementario debajo del principal. Fuente
Mugró suplementari sota del principal. Font

TROBA ELS TEUS REFLEXOS I COMPORTAMENTS VESTIGIALS

EL REFLEXE DE PRENSIÓ PALMAR I PLANTAR

Alguna vegada hauràs experimentat que a l’acostar qualsevol cosa a les mans d’un nadó, automàticament ho agafa amb una força tal que seria capaç d’aguantar el seu propi pes. Desapareix cap als 3-4 mesos i és un romanent del nostre passat arborícola i de la manera d’agafar-se al pèl de la mare, igual que succeeix amb els altres primats actuals. Observa el següent vídeo de 1934 sobre un estudi de dos bessons (minut 0:34):

En els peus també hi ha el reflex d’intentar agafar alguna cosa quan es toca la planta del peu d’un nadó. Desapareix cap als 9 mesos d’edat.

Per cert, t’has fixat en l’afició i facilitat que tenen els nens i nenes per pujar a qualsevol barana o part elevada en un parc infantil?

LA PELL DE GALLINA

El fred, l’estrès o una emoció intensa (per exemple, l’escoltar certa música) provoca que el múscul piloerector ens erici el pèl donant-li a la pell l’aspecte d’una gallina sense plomes. És un reflex involuntari en què algunes hormones, com l’adrenalina (que s’allibera en les situacions esmentades), estan implicades. Quina utilitat tenia això per als nostres ancestres i té en els mamífers actuals?

  • Augmentar l’espai entre la pell i l’exterior, de manera que l’aire calent atrapat entre el pèl ajuda a mantenir la temperatura.
  • Semblar més grans per espantar possibles depredadors o competidors.

    Chimpancé con el pelo erizado durante un display antes de un conflicto. Foto: Chimpanzee Sanctuary Northwest
    Ximpanzé amb els cabells estarrufats durant un display abans d’un conflicte. Foto: Chimpanzee Sanctuary Northwest

Òbviament nosaltres hem perdut el pèl en la major part del cos, de manera que encara conservem el reflex, no ens serveix ni per escalfar-nos ni per espantar depredadors. El pèl s’ha conservat més abundantment en zones on és necessària protecció o a causa de la selecció sexual (cap, celles, pestanyes, barba, pubis…), però en general, també pot ser considerat una estructura vestigial.

Hi ha més estructures vestigials tot i que en aquest article ens hem centrat en les més observables. En futurs articles parlarem d’altres internes, com el famós apèndix o l’òrgan vomeronasal.

REFERÈNCIES

Evolution for beginners

Biological evolution is still not well understood by general public, and when we speak of it in our language abound expressions that confuse even more how mechanisms that lead to species diversity work. Through questions you may have ever asked yourself, in this article we will have a first look at the basic principles of evolution and debunk misconceptions about it.

IS EVOLUTION REAL? IT IS NOT JUST A THEORY OR AN IDEA WITHOUT EVIDENCES?

Outside the scientific field, the word “theory” is used to refer to events that have not been tested or assumptions. But a scientific theory is the explanation of a phenomenon supported by evidence resulting from the application of the scientific method.

scientific method
The scientific method. Image by Margreet de Heer.

Theories can be modified, improved or revised if new data don’t continue to support the theory, but they are always based on some data, repeatable and verifiable experiments by any researcher to be considered valid.

So few people (sic) doubts about the heliocentric theory (the Earth rotates around the Sun), or the gravitational theory of Newton, but in the popular imagination some people believe that the theory of evolution made by Charles Darwin (and Alfred Russell Wallace) is simply a hypothesis and has no evidence to support it. With new scientific advances, his theory has been improved and detailed, but more than 150 years later, nobody has been able to prove it wrong, just the contrary.

WHAT EVIDENCE WE HAVE THAT EVOLUTION IS TRUE?

We have many evidences and in this post we will not delve into them. Some of the evidence available to us are:

  • Paleontological record: the study of fossils tell us about the similarities and differences of existing species with others thousands or millions old, and to establish relationships respect each other.
  • Comparative anatomy: comparison of certain structures that are very similar between different organisms, can establish whether they have a common ancestor (homologous structures, for example, five fingers in some vertebrates) if they have developed similar adaptations (analogous structures, for example, the wings of birds and insects), or if they have lost their function (vestigial organs, such as the appendix).
Homologous organs in humans, cats, whales and bats
Homologous organs in humans, cats, whales and bats
  • Embryology: the study of embryos of related groups shows a strong resemblance in the earliest stages of development.
  • Biogeography: The study of the geographical distribution of living beings reveals that species generally inhabit the same regions as their ancestors, although there are other regions with similar climates.
  • Biochemistry and genetics: chemical similarities and differences allow to establish relationships among different species. For example, species closely related to each other have a structure of their DNA more similar than others more distant. All living beings share a portion of DNA that is part of your “instructions”, so there are also found in a fly, a plant or a bacterium, proof that all living things have a common ancestor.

IS IT TRUE THAT ORGANISMS ADAPT TO THE ENVIRONMENT AND ARE DESIGNED FOR LIVING IN THEIR HABITAT?

Both expressions, frequently used, mean that living beings have an active role to adapt to the environment or “someone” has designed them to live exactly where they are. It is a typical example of Lamarck and giraffes: as a result of stretching the neck to reach the higher leaves of the treescurrently giraffes have this neck for giving it this use. They have a necessity, they change their bodies to success. It is precisely upside down: it is the habitat that selects the fittest, nature “selects” those that are most effective to survive, and therefore reproduce. It is what is known as natural selection, one of the main mechanisms of evolution. It needs three requirements to act:

  • Phenotypic variability: there must be differences between individuals. Some giraffes necks were slightly longer than others, just as there are taller people than others, with blue or brown eyes.
  • Biological fitness: this difference has to suppose an advantage. For example, giraffes with a slightly longer neck could survive and reproduce, while the others don’t.
  • Heredity: these characters must be transmitted to the next generation, the offspring will be slightly different to that feature, while “short neck” feature transmits less and less.
natural selection
The variability in the population causes individuals with favorable characteristics to reproduce more and pass on their genes to the next generation, increasing the proportion of those genes. Image taken from Understanding evolution

Over the years these changes are accumulated until the genetic differences are so big that some populations may not mate with others: a new species has appeared.

If you thought that this is similar to artificial selection that we do with the different breeds of dogs, cows who give more milk, trees bearing more fruit and larger, congratulations, you think like Darwin as it was inspired by some of these facts. Therefore, living beings are mere spectators of the evolutionary process, depending of changes in their habitat and their genetic material.

WHY ORGANISMS ARE SO DIVERSE?

Genetic variability allows natural selection act. Changes in the genetic material (usually DNA) are caused by:

  • Mutations: changes in the genome that may be adverse or lethal for survival, indifferent or beneficial to survival and reproduction. If they have benefits, they will pass to the next generations.
  • Gene flow: is the motion of genes between populations (migration of individuals allows this exchange when mate with others in a different population).
  • Sexual reproduction: allows recombination of genetic material of different individuals, giving rise to new combinations of DNA.

Populations that have more genetic variability are more likely to survive if happen any changes in their habitat. Populations with less variability (eg, being geographically isolated) are more sensitive to any changes in their habitat, which may cause their extinction.

Evolution can be observed in beings with a very high reproduction rate, for example bacteria, since mutations accumulate more quickly. Have you ever heard that bacteria become resistant to our antibiotics or some insects to pesticides? They evolve so quickly that within a few years were selected the fittest to survive our antibiotics.

ARE WE THE MOST EVOLVED ANIMALS?

Theory of Evolution has various consequences, such as the existence of a common ancestor and that therefore, that we are animals. Even today, and even among the young ones, there is the idea that we are something different between living beings and we are in a special podium in the collective imagination. This anthropocentric thinking caused Darwin mockery and confrontations over 150 years ago.

caricatura, darwin, mono, orangutan
Caricature of Darwin as an orangutan. Public domain image first published in 1871

We use our language to be “more evolved” as a synonym for more complex, and we consider ourselves one species that has reached a high level of understanding of their environment, so many people believe that evolution has come to an end with us.

The question has a mistake of formulation: actually evolving pursues no end, it just happens, and the fact that millions of years allows the emergence of complex structures, it does not mean that simpler lifeforms are not perfectly matched in the habitat where they are. Bacteria, algae, sharks, crocodiles, etc., have remained very similar over millions of years. Evolution is a process that started acting when life first appeared and continues to act in all organisms, including us, although we have changed the way in which natural selection works  (medical and technological breakthroughs, etc.).

SO IF WE COME FROM MONKEYS, WHY DO STILL MONKEYS EXIST?

The truth is that we don’t come from monkeys, we are monkeys, or to be more rigorous, apes. We have not evolved from any existing primate. As we saw in a previous post, humans and other primates share a common ancestor and natural selection has been acting differently in each of us. That is, evolution has to be viewed as a tree, and not as a straight line, where each branch would be a species .

darwin, árbol, evolución, darwin tree, arbre evolutiu
First scheme of the evolutionary tree of Darwin in his notebook (1837). Public domain image.

Some branches stop growing (species become extinct), while others continue to diversify. The same applies to other species, in case you have asked yourself, “if amphibians come from fish, why are there still fish?”. Currently, genetic analyzes have contributed so much data that they make so difficult to redesign the classical Dariwn’s tree.

árbol filogenético, clasificación seres vivos, árbol de la vida
Classification of live organisms based on the three domains Archaea, Bacteria and Eukarya, data of Carl R. Woese (1990). Included in Eukarya there are the Protista, Fungi, Plantae and Animalia kingdoms. Image by Rita Daniela Fernández.

Evolution is a very broad topic that still generates doubts and controversies. In this article we have tried to bring to uninitiated people some basics, where we can delve into the future. Do you have any questions about evolution? Are you interested into a subject that we have not talked about? You can leave your comments below.

REFERENCES

MIREIA QUEROL ALL YOU NEED IS BIOLOGY

Evolució per a principiants

L’evolució biològica encara no és ben compresa pel públic general, i quan parlem d’ella en el nostre llenguatge abunden expressions que confonen encara més com funcionen els mecanismes que donen lloc a la diversitat d’espècies. A través de preguntes que potser t’has formulat alguna vegada, en aquest article farem un primer apropament als principis bàsics sobre evolució i desmitificarem falses idees sobre ella.

L’EVOLUCIÓ ÉS REAL? NO ÉS NOMÉS UNA TEORIA, UNA IDEA NO DEMOSTRADA DEL TOT?

Fora de l’àmbit científic, la paraula “teoria” s’usa per referir-se a fets que no han estat provats o suposicions. Però una teoria científica és l’explicació d’un fenomen recolzada per proves i evidències, resultat de l’aplicació del mètode científic.

diagrama mètode científic
Esquema del mètode científic. Imatge per Mireia Querol adaptada de Lauro Chieza

Com es desprèn del diagrama, les teories poden ser modificades, millorades o revisades si es prenen noves dades que no segueixin recolzant la teoria, però sempre es basen en unes dades i experiments repetibles i comprovables per qualsevol investigador per a ser considerats com a vàlids.

Així doncs, poca gent posa en dubte la Teoria Heliocèntrica (la Terra gira al voltant del Sol), o la Teoria Gravitatòria de Newton, però en l’imaginari popular se segueix creient que la Teoria de l’Evolució formulada per Charles Darwin (i Alfred Russell Wallace) és simplement una hipòtesi i que no evidències que la recolzin. Amb els nous avenços científics seva teoria ha estat millorada i detallada, però més de 150 anys després, ningú ha pogut demostrar que sigui incorrecta, just al contrari.

QUINES PROVES TENIM DE QUE L’EVOLUCIÓ ÉS CERTA?

Les evidències són múltiples i en aquest article no podrem aprofundir en elles. Algunes de les proves de les que disposem són:

  • Registre paleontològic: l’estudi dels fòssils ens informa sobre les semblances i diferències d’espècies de fa milers o milions d’anys respecte les actuals i permet establir parentius entre elles.
  • Anatomia comparada: la comparació de certes estructures que són molt semblants entre organismes diferents, permet establir si tenen un avantpassat comú (estructures homòlogues, per exemple, cinc dits en alguns vertebrats) si han desenvolupat adaptacions similars (estructures anàlogues, per exemple, les ales de les aus i els insectes), o si han perdut la seva funció (òrgans vestigials, per exemple l’apèndix).
anatomia comparada, órganos homólogos
Òrgans homòlegs en humans, gats, balenes i ratpenats
  • Embriologia: l’estudi d’embrions de grups emparentats mostra una gran semblança en les fases més primerenques del desenvolupament.
  • Biogeografia: l’estudi de la distribució geogràfica dels éssers vius revela que les espècies habiten en general les mateixes regions que els seus avantpassats, encara que hi hagi altres regions amb climes similars.
  • Bioquímica i genètica: les similituds i diferències químiques permeten establir relacions de parentiu entre diferents organismes. Per exemple, espècies més emparentades entre si presenten una estructura del seu ADN més semblant que altres més llunyanes. Tots els éssers vius compartim una part d’ADN, és a dir, part de les teves instruccions” també es troben en una mosca, un planta, o un bacteri, prova que tots els éssers vius tenim un avantpassat comú.

ÉS CERT QUE ELS ORGANISMES S’ADAPTEN AL MEDI I ESTAN DISSENYATS PER VIURE EN EL SEU HÀBITAT?

Les dues expressions, freqüentment utilitzades, impliquen que els éssers vius tenen un paper actiu per adaptar-se al medi o “algúels ha dissenyat perquè visquin perfectament on són. És el típic exemple de Lamarck i les seves girafes: a força d’estirar el coll per arribar a les fulles dels arbres més altes, com a resultat actualment les girafes tenen aquest coll per donar-li aquest ús. En tenir una necessitat, s’adapten a ella. És justament al revés: és el medi qui selecciona els més aptes, és a dir, la natura “selecciona” els que siguin més eficaços per sobreviure, i per tant reproduir-se. És el que es coneix com a selecció natural, un dels mecanismes principals de l’evolució. S’han de complir tres requisits perquè actuï:

  • Variabilitat fenotípica: hi ha d’haver diferències entre individus. Algunes girafes tenien el coll lleugerament més llarg que altres, igual que hi ha persones més altes, baixes, d’ulls blaus o marrons.
  • Eficàcia biològica: aquesta diferència, ha de suposar un avantatge. Per exemple, les girafes amb un coll lleugerament més llarg podien sobreviure i reproduir-se, mentre les altres no.
  • Herència: aquests caràcters s’han de transmetre a la següent generació, amb la qual cosa els fills seran lleugerament diferents per a aquesta característica, mentre que la característica “coll curtes transmet cada vegada menys.
seleccion natural
La variabilitat en la població provoca que els individus amb característiques favorables es reprodueixin més i transmetin els seus gens a la següent generació, augmentant la proporció d’aquests gens. Imatge presa de Understanding Evolution.

Amb el pas dels anys aquests canvis és van acumulant, fins que les diferències genètiques són tan grans que algunes poblacions ja no es poden reproduir amb d’altres: hauria aparegut una nova espècie.
Si heu pensat que és un procés semblant a la selecció artificial que fem amb les diferents races de gossos, vaques que donin més llet, arbres que donin més fruits i més grans, enhorabona, teniu un pensament semblant al de Darwin ja que és va inspirar en uns quants d’aquests fets. Per tant, a els éssers vius som mers espectadors del procés evolutiu, dependents dels canvis del seu hàbitat i del seu material genètic.

¿PER QUÈ ELS ÉSSERS VIUS SÓN DIFERENTS ENTRE SI?

La variabilitat genètica permet que actuï la selecció natural. Els canvis en el material genètic (habitualment ADN) són causats per:

  • Mutacions: canvis en el genoma que poden tenir conseqüències negatives o letals per a la supervivència, indiferents o beneficioses per a la supervivència i reproducció. En l’últim cas aquests gens passaran a les següents generacions.
  • Flux genètic: és el moviment de gens entre poblacions (la migració d’individus permet aquest intercanvi al reproduir-se amb altres d’una població diferent).
  • Reproducció sexual: permet la recombinació de material genètic d’individus diferents, donant lloc a noves combinacions d’ADN.

Les poblacions amb més variabilitat genètica tindrien sobre el paper més possibilitats de supervivència en cas de succeir algun canvi en el seu hàbitat. Poblacions amb menys variabilitat (per exemple, per estar aïllades geogràficament) són més sensibles a qualsevol canvi, cosa que pot provocar la seva extinció.

L’evolució pot observar-se en éssers amb una taxa de reproducció molt elevada, per exemple bacteris, ja que acumulen mutacions més ràpidament. Has sentit alguna vegada que els bacteris es tornen resistents als nostres antibiòtics o alguns insectes als pesticides? Evolucionen tan ràpidament que en pocs anys han estat seleccionats els més adaptats per sobreviure als nostres antibiòtics.

¿SOM ELS ANIMALS MÉS EVOLUCIONATS?

De la Teoria de l’Evolució es desprenen diverses conseqüències, com l’existència d’un ancestre comú i que per tant, som animals. Encara actualment, fins i tot entre els més joves, hi ha la idea que som una cosa diferent entre els éssers vius i ens situem en un pedestal especial en l’imaginari col·lectiu. Aquest pensament antropocèntric ja li va valer a Darwin burles i enfrontaments més de 150 anys enrere.

caricatura, darwin, mono, orangutan
Caricatura de Darwin com un orangutan. Imatge de domini públic publicada per primera vegada el 1871

Utilitzem en el nostre llenguatge ser “més evolucionatcom a sinònim de més complex, i al considerar-nos una espècie que ha arribat a un alt nivell de comprensió del seu entorn, molta gent creu que l’evolució ha arribat a la seva fi amb nosaltres.

La pregunta un error de formulació: en realitat l’evolució no persegueix cap fi, simplement succeeix, i el fet que el pas de milions d’anys permet l’aparició d’estructures complexes, no vol dir que formes de vida més simples no estiguin perfectament adaptades a l’hàbitat on es troben. Bacteris, algues, taurons, cocodrils, etc., s’han mantingut molt semblants al llarg de milions d’anys. L’evolució és un procés que va començar a actuar en el moment que va aparèixer la vida i segueix actuant en tots els organismes, fins i tot en nosaltres, encara que hem modificat la manera en què actua la selecció natural (avenços mèdics, tecnològics, etc.).

¿LLAVORS SI VENIM DEL MICO, PER QUÈ ENCARA HI HA MICOS?

La veritat és que no venim del mico, som micos, o per ser més rigorosos, simis. No hem evolucionat a partir de cap primat existent. Com vam veure en un article anterior, humans i la resta de primats compartim un ancestre comú i la selecció natural ha anat actuant de manera diferent en cada un de nosaltres. És a dir, l’evolució l’hem de visualitzar com un arbre, on cada branca seria una espècie, i no com una línia recta.

darwin, árbol, evolución, darwin tree, arbre evolutiu
Primer esquema de l’arbre evolutiu de Darwin en el seu quadern de notes (1837). Imatge de domini públic.

Algunes branques deixen de créixer (les espècies s’extingeixen), mentre que altres segueixen diversificant-se. El mateix s’aplica per a la resta d’espècies, per si t’havies preguntat: “si els amfibis vénen dels peixos, per què hi ha encara els peixos?”. Actualment les anàlisis genètiques han aportat tal quantitat de dades que dificulten les relacions de parentiu de l’arbre clàssic de Darwin.

árbol filogenético, clasificación seres vivos, árbol de la vida
Classificació dels éssers vius basada en els tres dominis, Archaea, Bacteria i Eukarya segons dades de Carl R. Woese (1990). Dins d’Eukarya s’inclouen els regnes Protista, Fungi, Plantae i Animalia. Imatge de Rita Daniela Fernández.

L’evolució és un tema molt extens que segueix generant dubtes i controvèrsies. En aquest article hem intentat apropar a persones no iniciades alguns conceptes bàsics, en els quals podem aprofundir en el futur. Tens alguna pregunta sobre evolució? T’interessa aprofundir en algun tema que no haguem tractat? Pots deixar-nos els teus comentaris a continuació.

REFERÈNCIES

mireia querol rovira