Arxiu d'etiquetes: deep-sea biodiversity

What lies beyond the death of a whale?

Have you ever wondered what happens after the death of a whale? When a whale’s life ends, its body turn into a new ecosystem for many life forms. Do you want to learn more about whale falls? Which are the stages of a whale fall? Do you want to discover some incredible new species? 

INTRODUCTION

Whales are amazing animals and they play a significant role in the marine ecosystems, as well as other cetacean species. Take the humpback whale for instance. This species feeds using a unique system called the net bubble method, in which seabirds can take advantage of it due to the fact that whales drive prey to the surface. Another key role they play is the transport of nutrients. Finally, another example is the one that we are going to explain in this post: the whale falls.

WHAT IS A WHALE FALL?

Whale corpses are known to serve as a host for animals that live in the bottom of the oceans. When the whale carcasses fall to the bottom of the sea, concretely in the bathyal or abyssal zone (at depths of 2,000 m or more), they are called whale falls. These animals take benefit from the dead whales since they serve as a source of food for them.

Whale fall (Picture: Ocean Networks).
Whale falls are ecosystems by themselves (Picture: Ocean Networks).

It is believed that whale falls may have provided a stepping stone for deep-sea species to colonise the sea floor. In addition, the more research, the more new species described and the more potential commercial applications.

STAGES OF COLONIZATION

A dead whale creates by itself a new and rich ecosystem because produces intense organic enrichment in a very small area. After this, successive stages of colonization take place. Species found in these areas are similar to those in hydrothermal vents. According to researchers, whale falls pass through three stages:

  1. Mobile scavengers stage
  2. The enrichment-opportunist stage
  3. Sulfophilic stage
Decomposition of a whale carcass in Monterey Canyon over 7 years (Picture: MBARI).
Decomposition of a whale carcass in Monterey Canyon over a 7-year period (Picture: MBARI).

It is thought that tens of thousands of organisms from about 400 animals species depend on a single whale fall. Astonishingly, scientists estimate that one whale corpse provides with the nutritional equivalent of 2,000-years worth of normal biological detritus sinking to the seafloor.

1. MOBILE SCAVENGERS STAGE

The first stage is dominated by mobile scavenger species. In this stage, the dead whale is covered by a dense aggregaton of hagfishes, small numbers of lithodid crabs, rattail fish, large sleeper sharks and millions of amphipods.

These animals are responsible of the disappearance of the soft tissue. They can eat 40-60 kg per day. In a 5-ton carcass, it lasted for 4 months, while in 35-tone carcasses for 9 months to 2 years.

Grey whale decomposition, 2 month after deposition (Picture: Hermanus Online).
Grey whale decomposition, 2 and 18 month after deposition (Picture: Hermanus Online).

2. THE ENRICHMENT-OPPORTUNIST STAGE

During the second stage, the animal’s skeleton is surrounded by dense aggregations of polychaete worms, cumaceans (crustaceans) and molluscs such as snails. There have been described some whale fall specialist species, previously unknown. These animals feed on the rest of the body, including the sediment surrounding because it is full of decomposing tissue.

Se (Picture: Hermanus Online).
During the enrichment-opportunist stage, the skeleton is surrounded by many species of animals (Picture: Hermanus Online).

3. SULFOPHILIC STAGE

This is by far the longest stage in whale falls: it might last from 10 to 50 years, or more. The so-called sulfophilic stage owes its name to the sulfide produced by bones due to the action of chemosynthetic bacteria, who use sulfate to break down the lipids inside the bones and produce sulfide. The sulfide allow the presence of dense bacterial mats, mussels and tube worms, among others. It have been found more than 30,000 organisms in a single skeleton.

Sulfide stage (Picture: Hermanus Online).
Sulfophilic stage (Picture: Hermanus Online).

NEW SPECIES DISCOVERED

As it has been mentioned above, new species have been described in whale falls. In this section, we are going to present only some of them.

The anemone Anthosactis pearsea is a small, white and cube-shaped species. Its importance lies on the fact that it is the first anemone found on a whale fall.

df (Picture: MBARI).
Anthosactis pearseae (white animals) (Picture: MBARI).

Species included in the genus Osedax have also been discovered. Their common name, bone-eating zombie worms, reflects exactly their task: to eat bones. These animals have neither eyes nor mouth, but they present reddish plumes that act as gills and some kind of green roots, where symbiotic bacteria break down proteins and lipids inside the bone, which supply nutrients for the worms. The macroscopic form of the animals is always a female, who contains dozens of microscopic males inside its body

Osedax frankpressi (Picture: Greg Rouse).
A female Osedax frankpressi (Picture: Greg Rouse).

Another strikingly awesome worm is the bristleworm, Ophryotrocha craigsmithi. In spite of lacking any particular adaptation, it is thought that they are exclusive at whale falls or similar ecosystems.

Ophryotrocha craigsmithi (Picture: Live Science)
Bristleworm, Ophryotrocha craigsmithi (Picture: Live Science)

A final example to take into consideration is the gastropod Rubyspira, whale-fall specialists molluscs which are 3-4 cm in length.

Rubyspira snails on whale bones (Picture: MBARI). Lat= 36.61337280 Lon= -122.43557739 Depth= 2895.4 m Temp= 1.683 C Sal= 34.618 PSU Oxy= 2.31 ml/l Xmiss= 84.1% Source= digitalImages/Tiburon/2006/tibr991/DSCN8049.JPG Epoch seconds= 1148489479 Beta timecode= 07:21:57:03
Rubyspira snails on whale bones (Picture: MBARI).

I encourage you to watch these videos about whale falls. In the first one, you can see a diving on the Rosebud whale fall carried out by the team of E/V Nautilus, searching for the life it supports. In the second one, you can see a feast in the deep in a whale fall in Monterey Canyon, recorded by the Monterey Bay Aquarium Research Institute (MBARI).

REFERENCES

Difusió-anglès

Anuncis

Voyage to the bottom of the deep sea (II): Biodiversity in the deep sea

This week we are continuing our voyage to the bottom of the deep sea. While last week we focused on the adaptations that fishes have suffered, this week we are focussing on the biodiversity. In concrete, we are explaining crustaceans, squids, cnidarians (corals, jellyfishes and anemones), fishes and worms. 

INTRODUCTION

In 1840, the scientist Edward Forbes concluded that there wasn’t life under 550 meters depth. Nowadays, it is known that this is not true because recently it has been found a fish at 8,100 meters. It has been determined that the relative abundance of animals depends on depth. In fact, in general terms, the abundance decreases with depth, but this don’t exclude that there are a lot of species.

 

BIODIVERSITY

CRUSTACEANS

Amphipods are by far the most abundant crustaceans in the deep sea. They are small animals with the body compressed laterally and without a carapace, which feeds on carrion and live inside cavities made by themselves in the sea floor. These small animals are transparent, except for them eyes, which are red due to a pigment in the retina.

amphipode-abysseDeep sea amphipod. They are characterized by the presence of a transparent body with red eyes. (Picture from http://www.astronoo.com/es/articulos/bioluminiscencia.html)

Other deep sea crustaceans are stone crabs, with a carapace of 7.5 cm length and legs of about 15 cm; the armoured shrimp, one of the species that lives at 6,000 meters and has a length of 7 to 10 cm; and more.

DEEP SQUIDS

In spite of the general thinking that deep sea squids are all large, like the giant squid, which can achieve a length of 18 meters; the truth is that this is an exemption because there are some spices of just 4 cm. They hunt with the suckers in the tentacles and driving the prey to the mouth. Most of these squids are bioluminescent and can regulate the colour, the intensity and the angular distribution of the light.

The Humboldt or jumbo squid (Dosidicus gigas) lives in the western coasts of Central and South Amercia and can achieve a length of 4 meters, which feeds on fishes and practise cannibalism.

Dosidicus_gigasHumboldt or jumbo squid (Dosidicus gigas). They have bad reputation because they attack divers.

CNIDARIANS: CORALS, JELLYFISHES AND SEA ANEMONES

Differences between shallower cnidarians and deep ones are due to differences in the food distribution. In the deep sea, anemones and corals don’t have directly phytoplankton and zooplankton, and they depend on the nutrient rain from the shallower waters of the ocean. On the other hand, jellyfishes have a slow metabolism to survive in hard conditions. It supposes slower growth, but a longer life.

To give an example, this crown jellyfish inhabits between 200 and 2000 meters depth and can measure until 15 cm. It feeds on small crustaceans and organic matter. Its red colour let them be camouflaged in the environment. In addition, they are bioluminescent animals.

Atolla wyvillei[3]Crown jellyfish. Its red colour let them be camouflaged in the environment.

Deep-sea jellyfishes are voracious predators, but also can be a prey for some fishes. They produce light discharges to attract small animals. To dissuade predators, they expel a brilliant particles stream.

An habitual feature of deep-sea jellyfishes, but also present in other groups, is gigantism. It means they are bigger than their equivalents in the shallow ocean. The possible explanation to this could be that bigger animals are more efficient than smaller to get food when the environmental conditions are almost constant during long periods of time.

FISHES

Gonostomatidae fishes are the most abundant vertebrates in the Earth and live in the mesopelagic zone. Together with the lantern fishes, they represent a 90% of the captures in the pelagic trawling fishery. Deep-sea fishes usually have a length between 2,5 – 10 cm and a thin and soft body, but there are exceptions.

There are some examples here:

  • Anglerfish: These fishes inhabit in the deepest parts of the oceans and present the optimal colouration to absorb the few light that arrive and, in this way, to be camouflaged. They present a light in the end of the antenna, which let them to capture preys.
Anglerfish
Anglerfish
  • Spiny lantern fish: Because of its silvery body, this fish is not much vulnerable since its contour can’t be seen clearly. In addition, spiny lantern fish presents a bag in the eye with bioluminescent bacteria.
Pez linterna espinoso
Spiny lantern fish
  • Pelican eel: This animal can measure 2 meters long. Its enormous mouth are connected directly to the stomach.
Pelican eel
Pelican eel
  • Tripodfish: Tripodfish has long prolongations in its pelvic and caudal fins, which let them put on the sea floor, while it is waiting for its prey.
Tripodfish
Tripodfish
  • Black swallower: This small fish has the ability to dilate a lot its stomach and, in this way, it can swallow preys bigger than itself.
Black swallower
Black swallower

 

MARINE WORMS

Deep-sea worms can be from microscopic to measure 2 meters long and are one of the most abundant and different invertebrates. They can be of different groups: polychaetes, tubular worms, sipunculids and equiurids. They live partly or totally buried in the sediments.

Tubular worms usually live in big groups near to thermal springs and present red bright gills as a consequence of a high level in hemoglobin to absorb oxygen. In addition, they can retain sulfurs, which will be used for symbiotic bacteria.

Riftia_fish_EPR_Kristof_Lutz-pTubular worms. They use the sulphur produce in the thermal springs thanks to symbiotic bacteria.

 This post is under a Creative Commons licence:
Llicència Creative Commons Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.