Arxiu d'etiquetes: diàpsid

Tuatara: reintroduction of a living fossil

There’s a reptile in New Zealand whose lineage arose in the time of the dinosaurs. Even if its external appearance is similar to that of a lizard, the tuatara (whose name means “spiny back” in the Maori language) is an animal with many unique characteristics that classify it in an order different from the other reptiles. In this entry we’ll explain the main characteristics of this relic from the past, as interesting as endangered.

ORIGIN AND EVOLUTION

The tuataras are unusual reptiles whose lineage goes back to 240 million years ago, at the middle Triassic. Tuataras are lepidosaurs, yet they form a different lineage from the squamates, and that’s why they are found in their own order, the rhynchocephalians (order Rhynchocephalia). Lots of species flourished during the Mesozoic, even if almost all of them were replaced by squamates. At the end of the Mesozoic only one family survived, the Sphenodontidae.

homoeosaurus-min
Homoeosaurus fossil, an extinct relative of the tuataras. Photo by Haplochromis.

Of all the existing sphenodontids, only tuataras have survived to the present day. Traditionally it was considered that tuataras included two species: the common tuatara (Sphenodon punctatus) and the Brother’s Island tuatara (Sphenodon guntheri), although recent analyses have popularized the idea that the tuatara is only one species, S. punctatus.

TUATARA ANATOMY

As we have already stated, tuataras look externally like a lizard, having a certain resemblance to iguanas. Male tuataras are larger than females, measuring up to 61 cm in length and one kilogramme of weight, while females only measure 45 cm and weigh half a kilo. Tuataras present a spiny crest on their backs which give them their common name. This crest is bigger in males, and can be erected as display.

30-ish_male_tuatara-min
Photo by KeresH of a young male tuatara.

What really distinguishes the tuataras is their internal anatomy. All the other reptiles have modified greatly their skull structure, but tuataras have maintained the original diapsid configuration without most changes. While crocodiles and turtles have developed a sturdy skull, tuataras conserve wide temporal openings, and while squamates have developed flexible skulls and jaws, tuataras keep a rigid cranium. Also, unlike most reptiles, tuataras present no external ears.

tuatara_skull-2-min
Modified image from the drawing by Nobu Tamura of the tuatara skull. In it we can see the main characteristics that distinguish it: 1. Beak-shaped premaxilla, 2. Acrodont teeth, fused to the jaws, 3. Diapsid-like wide temporal openings and 4. Parietal or pineal opening.

The name Rhynchocephalia means “beak head” and it refers to the beak-like structure of their premaxilla. Tuataras are also one of the few reptiles with acrodont teeth, which are fused to the maxilla and the jaw, and are not renewed. Also, they present a unique saw-like jaw movement, moving it forwards and backwards.

Video by YouOriginal, of some captive tuataras feeding. In this video we can appreciate the singular jaw movement.

Finally, one of the more incredible anatomic characteristics of tuataras is that they conserve their parietal or pineal eye. This is a structure reminiscent from the first tetrapods, which connects with the pineal gland and which is involved in the thermoregulation and circadian rhythms. Even if some other animals also keep it, the tuataras present a real third eye, with complete lens, cornea and retina, even if it gets covered with scales as they age.

HABITAT AND BIOLOGY

Tuataras live in some thirty islets in the Cook Strait, between the two main islands of New Zealand. Also, the previously considered species S. guntheri is found on Brother’s Island, in the northwest of South Island. All populations live in coastal forests or scrublands, with loose soils easy to dig. Also, in most of their distribution area there are colonies of sea birds, whose nests are also used by tuataras.

nz_southern_island_forest-min
Photo by Satoru Kikuchi of a typical humid forest of New Zealand.

Compared with most reptiles, tuataras live in relatively cold habitats, with annual temperatures oscillating between 5 to 28°C. Tuataras are mainly nocturnal, usually coming out of their burrows at night, even if sometimes they can be found basking in the sun during the day (especially in winter).

Tuataras have few natural predators. Apart from some introduced animals, only gulls and some birds of prey represent a danger for these reptiles. In contrast, their diet is fairly varied. Being sit-and-wait predators, tuataras feed mainly on invertebrates like beetles, crickets and spiders, even if they are able to predate on lizards, eggs and bird chicks, and even younger tuataras. As their acrodont teeth don’t renew, these get worn down in time, so older individuals usually feed on softer prey like snails and worms.

Tuataras mate between January and March (summer), when the territorial males compete for the females, which will lay around 18-19 eggs between October and December (spring). The sex of the offspring depends on the incubation temperature (males at higher temperatures and females at lower ones). The eggs will hatch after 11-16 months (one of the longest incubation periods of all reptiles), from which young tuataras will be born, who will avoid the cannibalistic adults being active mainly during the day.

Unique video of the birth of a tuatara at the Victoria University of Wellington. The translucent mark on the little tuatara’s head corresponds to the parietal eye.

As we can see based on their long incubation period, tuataras develop slowly. These reptiles do not reach sexual maturity until the age of 12, and they keep growing. Also, tuataras are extremely long-lived animals, living up to more than 60 years in the wild. In captivity they can live more than 100 years.

CONSERVATION AND THREATS

Before the arrival of man, the tuataras were present in both main islands of New Zealand and many more islets. When the first European settlers arrived, tuataras were already only found in about 32 little islands. It’s believed that the extinction of tuataras from the main islands was due to habitat destruction and to the introduction of foreign mammals like rats. Other threats include the low genetic diversity caused by isolation of the different populations and climate change, which can affect the sex of the offspring.

north_island_map_tuatara-min
Current distribution map of the tuataras. The squares correspond to the old species Sphenodon guntheri, now considered a population of S. punctatus.

When the first human settlers arrived in the isles, it is thought that 80% of New Zealand was covered in forests. When the first Polynesian tribes came around the year 1250, they caused the deforestation of more than half the archipelago. Centuries later, with the arrival of Europeans, deforestation intensified even more, up to the current situation, with only 23% of the original forest still preserved.

pacific_rat-min
Photo by Cliff of a Pacific rat (Rattus exulans), one of the main threats for the tuataras.

The introduction of foreign mammals has been one of the main factors of the recent decline of tuataras, especially the introduction of the Pacific rat (Rattus exulans). This rodent has affected the populations of both tuataras and many of New Zealand’s endemic bird species. In studies on coexisting populations of tuataras and rats, it has been observed that rats, apart from preying on eggs and hatchlings, also compete with adult tuataras for resources. With an extremely slow life cycle, tuataras can’t recover from this impact.

8321043716_a91acb9691_o-min
Photo by Br3nda of a reintroduced and tagged tuatara.

Yet, tuataras are currently classified as “least concern” in the IUCN red list. This is thanks to the great efforts of conservation groups that have contributed to the recovery of this species. One of the main tasks has been the eradication of the Pacific rat from the main island where tuataras live. In order to do that, a titanic effort was made in many islets where entire populations of tuataras were captured to participate in captive breeding programs, while the rats were eliminated from these islands. After their main threat was eradicated, all the captured individuals and their captive-born offspring were released in their natural habitat so they could live without such a fierce competitor.

Video by Carla Braun-Elwert, about the breeding success of an old tuatara couple.

Currently, the wild tuatara population is estimated to be between 60.000 and 100.000 individuals. It can be said that this living fossil, which was on the brink of extinction after millions of years of existence, received a second opportunity to keep inhabiting the incredible islands of New Zealand. We hope that in the future, we can keep enjoying the existence of these reptiles, the only survivors of a practically extinct lineage, for many more centuries.

REFERENCES

The following sources have been consulted during the elaboration of this entry:

difusio-angles

Tuatara: reintroducció d’un fòssil vivent

A Nova Zelanda existeix un rèptil el llinatge del qual va sorgir a l’època dels dinosaures. Encara que externament s’assembla a un llangardaix, el tuatara (el nom vol dir “esquena espinosa” en llengua maorí) és una animal amb moltes característiques úniques que fan que se’l classifiqui en un ordre propi separat de la resta de rèptils. En aquesta entrada us explicarem les principals característiques d’aquesta relíquia del passat tant interessant com amenaçada.

ORIGEN I EVOLUCIÓ

Els tuatares són rèptils inusuals el llinatge dels quals es remonta a fa 240 milions d’anys, a meitats del període Triàssic. Els tuatares són lepidosaures, tot i que formen un llinatge diferent al dels escamosos, pel que es troben en un ordre propi, els rincocèfals (ordre Rhynchocephalia). Moltes espècies es van diversificar durant el Mesozoic, tot i que pràcticament totes foren reemplaçades pels escamosos. A finals del Mesozoic només quedava una família, els Sphenodontidae.

homoeosaurus-min
Fòssil de Homoeosaurus, un parent extingit dels tuatares. Foto de Haplochromis.

De tots els esfenodòntids que van existir, només els tuatares han sobreviscut fins a l’actualitat. Tradicionalment es considerava que els tuatares incloïen dues espècies: el tuatara comú (Sphenodon punctatus) i el tuatara de la illa Brothers (Sphenodon guntheri), encara que anàlisis recents han popularitzat la idea de que el tuatara és una única espècie, S. punctatus.

ANATOMIA DEL TUATARA

Com ja hem comentat, els tuatares s’assemblen externament a un llangardaix, tenint certa semblança amb les iguanes. Els mascles de tuatara són més grans que les femelles, arribant als 61 cm de longitud i el quilo de pes, mentres que aquestes només arriben als 45 cm i el mig quilo. Els tuatares presenten una filera d’espines al dors que els confereix el seu nom comú. Aquestes és més gran en els mascles, i es pot eriçar per a exhibir-se.

30-ish_male_tuatara-min
Foto feta per KeresH d’un mascle jove de tuatara.

El que realment distingeix als tuatares és la seva anatomia interna. La resta de rèptils han modificat molt l’estructura del seu crani, però els tuatares han conservat la estructura diàpsida original sense molts canvis. Mentres que cocodrils i tortugues han desenvolupat cranis massissos, els tuatares conserven àmplies obertures temporals, i encara que els escamosos han desenvolupat cranis i mandíbules molt flexibles, els tuatares mantenen un crani rígid. A més, a diferència de la majoria de rèptils, els tuatares no presenten oïdes externes.

tuatara_skull-2-min
Imatge modificada del dibuix de Nobu Tamura sobre el crani del tuatara. En aquest hi veiem les principals característiques que el distingeixen: 1. Premaxil·lar en forma de bec, 2. Dents acrodonts fusionats a les mandíbules, 3. Àmplies obertures temporals típicament diàpsides i 4. Obertura parietal o pineal.

El nom Rhynchocephalia vol dir “cap de bec” i fa referència a l’estructura de bec del premaxil·lar. Els tuatares també són dels pocs rèptils amb dents acrodonts, els quals es troben fusionats al maxilar i la mandíbula y no es renoven. A més, presenten un moviment mandibular únic tipus serra, movent la mandíbula endavant i enrera.

Vídeo de YouOriginal, d'uns tuatares en captivitat alimentant-se. En aquest vídeo podem apreciar el moviment singular de la mandíbula.

Finalment, una de les característiques anatòmiques més increïbles dels tuatares és que aquests conserven el ull parietal o pineal. Aquesta, és una estructura reminiscent dels primers tetràpodes, conectada amb la glàndula pineal i que està involucrada en la regulació de la temperatura i els ritmes circadians. Encara que alguns altres animals també el conserven, els tuatares presenten un autèntic tercer ull, amb una retina i cristal·lí complets, encara que aquest es va cobrint d’escates amb l’edat.

HÀBITAT I BIOLOGIA

Els tuatares viuen en uns trenta illots a l’estret de Cook, entre les dues illes principals de Nova Zelanda. A més, l’antiga espècie S. guntheri es troba a l’illa de Brothers, a la part nord-oriental de illa Sur. Totes les poblacions viuen en zones boscoses o de matollar costaneres, amb terres tous on poden excavar. A més, a gran part de la seva àrea de distribució existeixen colònies d’aus marines, els nius de les quals són aprofitats pels tuatares.

nz_southern_island_forest-min
Foto de Satoru Kikuchi d’un típic bosc neozelandès.

Comparats amb la majoria de rèptils, els tuatares viuen en hàbitats relativament freds, amb temperatures anuals que oscil·len entre els 5 i els 28°C. Els tuatares són principalment nocturns, sortint dels seus caus normalment de nit, tot i que a vegades se’ls pot trobar prenent el sol a ple dia (especialment a l’hivern).

Els tuatares tenen pocs depredadors naturals. A part d’alguns animals introduïts, només les gavines i algunes aus de presa presenten un perill per aquests rèptils. La seva dieta, en canvi, és bastant variada. Sent depredadors que esperen a que les seves preses passin per davant seu, els tuatares s’alimenten principalment d’invertebrats com escarabats, grills i aranyes, tot i que poden arribar a depredar petits llangardaixos, ous i pollets d’aus, i fins i tot tuatares més petits. Com que les seves dents acrodontes no es renoven, aquestes es van desgastant al cap del temps, pel qual els exemplars més vells solen alimentar-se de preses més toves com cargols i cucs.

Els tuatares es reprodueixen entre gener i març (estiu), moment en el que els territorials mascles competeixen per les femelles, les quals pondràn uns 18-19 ous entre l’octubre i el desembre (primavera). El sexe de les cries dependrà de la temperatura d’incubació (mascles a temperatures més altes, femelles a més baixes). Els ous eclosionaran al cap de 11-16 mesos (un dels temps d’incubació més llargs de tots els rèptils), dels quals sortiran petits tuatares que evitaran als adults caníbals sent principalment diürns.

Vídeo únic del naixement d’un tuatara a la Victoria University de Wellington. La marca translúcida del cap del petit tuatara correspòn a l'ull parietal.

Com ja hem vist pel seu llarg període d’incubació, els tuatares es desenvolupen lentament. Aquests rèptils no arribaran a la maduresa sexual fins passats els 12 anys, tot i que segueixen creixent a partir de llavors. A més, els tuatares són animals molt longeus, arribant a viure més de 60 anys en estat salvatge. En captivitat poden arribar a superar els 100 anys d’edat.

CONSERVACIÓ I AMENACES

Abans de l’arribada de l’home, els tuatares estaven presents a les dues illes principals de Nova Zelanda i en molts més illots. Quan els colons europeus van arribar, els tuatares ja només es trobaven a unes 32 petites illes. Es creu que la desaparició dels tuatares de les illes principals es deu principalment a la destrucció de l’hàbitat i a la introducció de mamífers foranis com les rates. Altres amenaces són la baixa diversitat genètica per l’aïllament de les diferents poblacions i el canvi climàtic, que pot afectar al sexe de la descendència.

north_island_map_tuatara-min
Mapa de la distribució actual dels tuatares. Els quadrats corresponen a l’antiga espècie Sphenodon guntheri, ara considerada una població de S. punctatus.

Quan l’ésser humà arribà a les illes, es creu que el 80% de Nova Zelanda estava coberta de boscos. Amb l’arribada de les primeres tribus polinèsies cap a l’any 1250, començà la deforestació de més de la meitat de l’arxipèlag. Segle després, amb l’arribada dels europeus, aquesta deforestació s’intensificà encara més, fins a la situació actual, que només es conserva el 23% del bosc original.

pacific_rat-min
Foto de Cliff d’una rata del Pacífic (Rattus exulans), una de les principals amenaces pels tuatares.

La introducció de mamífers foranis ha sigut un dels principals factors de declivi dels tuatares a l’actualitat, en especial la introducció de la rata del Pacífic (Rattus exulans). Aquest rosegador ha afectat a les poblacions, no només de tuatares, sinó també les de moltes espècies d’aus endèmiques de Nova Zelanda. En estudis de convivència entre les rates i els tuatares, s’ha observat que les rates, a més de depredar els ous i juvenils, també competeixen amb els tuatares adults pels recursos. Amb un cicle vital tant lent, els tuatares no poden recuperar-se d’aquest impacte.

8321043716_a91acb9691_o-min
Foto de Br3nda d’un tuatara reintroduït i marcat.

Tot i així, actualment els tuatares estàn classificat com sota “preocupació menor” a la llista roja de la IUCN. Això és gràcies als grans esforços de grups conservacionistes que han contribuït a la recuperació d’aquesta espècie. Una de les principals tasques ha estat la eliminació de la rata del Pacífic de les principals illes on habiten els tuatares. Per a això, es realitzà un esforç titànic en moltes illes en les que es van capturar poblacions senceres de tuatares per a la reproducció en captivitat, mentres s’eliminava a les rates d’aquests illots. Un cop eliminada la seva principal amenaça, tots els individus capturats i els seus descendents nascuts en captivitat van ser tornats als seus hàbitats naturals per a que poguéssin viure sense aquest ferotge competidor.

Vídeo de Carla Braun-Elwert, sobre l'èxit reproductor d’una vella parella de tuatares.

Actualment, la població salvatge de tuatares s’estima entre els 60.000 i els 100.000 individus. Es pot dir que aquest fòssil vivent, que va estar a punt de desaparèixer després de milions d’anys d’existència, va rebre una segona oportunitat per a seguir habitant les increïbles illes neozelandeses. Esperem que en el futur, poguem seguir disfrutant de l’existència d’aquest rèptils, únics supervivents d’un llinatge pràcticament extingit, per molts segles més.

REFERÈNCIES

S’han consultat les següents fonts durant l’elaboració d’aquesta entrada:

difusio-catala

Rèptils i mamífers: mateix origen, diferents històries

Els mamífers van evolucionar dels rèptils? Doncs la veritat és que no. Rèptils i mamífers tenen històries evolutives independents que es van separar poc després de l’aparició de l’anomenat ou amniota, que permetia que les cries d’aquests animals nasquéssin fora de l’aigua. Anteriorment vam parlar sobre l’origen dels vertebrats, i sobre com aquests van sortir del mar per a caminar per terra per primer cop. En aquesta entrada explicarem com els avantpassats de rèptils i mamífers, els AMNIOTES, van independitzar-se del medi aquàtic i van convertir-se en el grup dominant d’animals terrestres.

L’OU AMNIOTA

La característica que uneix a rèptils i mamífers en un sol grup és l’ou amniota. Mentre que els ous dels amfibis són relativament petits i només presenten una capa interna, els ous dels amniotes són força més grans i presenten vàries membranes protegint l’embrió i mantenint-lo en un medi aquós. La capa més externa és la closca de l’ou, que apart d’oferir protección física a l’embrió, evita la pèrdua d’aigua i la seva porositat permet l’intercanvi de gasos. Sota la closca hi trobem les següents membranes:

512px-Crocodile_Egg_Diagram.svgEsquema de l’ou d’un cocodril: 1. closca de l’ou 2. sac vitel·lí 3. vitel (nutrients) 4. vasos sanguinis 5. amni 6. cori 7. aire 8. alantoide 9. albúmina (clara de l’ou) 10. sac amniòtic 11. embrió 12. líquid amniòtic. Imatge de Amelia P.
  • Cori: És la primera membrana interna que trobem, proporciona protecció i, juntament amb l’amni, formen el sac amniòtic. A més, al estar en contacte amb la closca, participa en l’intercanvi de gasos, portant oxígen de l’exterior a l’embrió i diòxid de carboni de l’embrió a l’exterior.
  • Amni: Membrana que envolta l’embrió i forma la part interna del sac amniòtic. Aquesta proporciona un ambient aquós a l’embrió, i el connecta amb el sac vitel·lí (estructura que proporciona aliment i que també es troba en peixos i amfibis).
  • Alantoide: La tercera capa, serveix com a magatzem de residus nitrogenats, i juntament amb el cori ajuda en l’intercanvi de gasos.
512px-Amphibian_Egg_Diagram.svgEsquema de l’ou d’un amfibi: 1. càpsula gelatinosa 2. membrana vitel·lina 3. fluid perivitel·lí 4. vitel 5. embrió. Imatge de Separe3g.

Aquest seguit de membranes fan que els amniotes no hagin de tornar a l’aigua per a pondre els ous. A més, a diferència dels amfibis, els amniotes no passen per la fase larvària amb brànquies, sinó que neixen directament com a adults en miniatura, amb pulmons i potes (els que en tenen). Tot això va fer que els primers amniotes s’independitzéssin completament del medi aquàtic.

ORIGEN DELS AMNIOTES

Les primers amniotes van evolucionar fa uns 312 milions d’anys a partir de tetràpodes reptiliomorfs. A finals del Carbonífer van desaparèixer molts dels boscos tropicals on vivien els amfibis primitius, deixant lloc a un clima més fred i àrid. Això va acabar amb molts dels grans amfibis de l’época, deixant espai per a que els amniotes ocupéssin els nous hàbitats.

Solenodonsaurus1DBReconstrucció de Solenodonsaurus janenschi, un dels candidats a ser el primer amniota, que visqué fa 320-305 milions d’anys a l’actual República Txeca. Recontrucció de Dmitry Bogdanov.

CARACTERÍSTIQUES

Aquests primers amniotes presentaven un seguit  de característiques que els diferenciaven dels seus avantpassats semiaquàtics:

  • Urpes còrnies (els amfibis no tenen urpes) i pell queratinitzada que redueix la pèrdua d’aigua.
  • Intestí gruixut més gran i major densitat de túbuls renals, per augmentar la reabsorció d’aigua.
  • Glàndules llacrimals especialitzades i una tercera membrana a l’ull (membrana nictitant) que mantenen la humitat ocular.
  • Pulmons més grans.
  • Pèrdua de la línia lateral (òrgan sensorial present en peixos i amfibis).

L’esquelet i la musculatura també van evolucionar oferint una major movilitat i agilitat en un hàbitat terrestre. Els primers amniotes presentaven les costelles tancades per davant mitjançant l’esternó, fent que els seus òrgans interns estiguéssin més ben subjectats, i un seguit de receptors musculars els conferien una major agilitat i coordinació durant la locomoció.

CRANIS AMNIOTES

Tradicionalment, es classificaven els diferents amniotes en base a l’estructura del seu crani. La característica que es mirava era la presència de obertures temporals (fenestres), segons les quals teníem tres grups:

  • Anàpsids (“sense arcs”): No presenten cap obertura temporal (tortugues).
Skull_anapsida_1Esquema d’un crani anàpsid, de Preto(m).
  • Sinàpsids (“arcs fusionats”): Presenten una sola obertura temporal inferior (mamífers).
Skull_synapsida_1Esquema d’un crani sinàpsid, de Preto(m).
  • Diàpsids (“dos arcs”): Presenten dues obertures temporals (rèptils, incloent les aus).
Skull_diapsida_1Esquema d’un crani diàpsid, de Preto(m).

Abans es creia que els primers amniotes presentaven un crani anàpsid (sense obertures, com les tortugues) i que posteriorment es van separar els sinàpsids i els diàpsids (les obertures temporals formaven uns “arcs” que proporcionaren nous punts d’anclatge per la musculatura mandibular). Tanmateix, s’ha vist que aquesta classificació en tres grups no és vàlida.

Tot i que encara es creu que els primers amniotes eren anàpsids, actualment es pensa que aquests, molt poc després de la seva aparició, es van separar en dos llinatges diferents: els sinàpsids (clade Synapsida) i els sauròpsids (clade Sauropsida).

SYNAPSIDA

Aquest llinatge inclou als mamífers i als seus avantpassats amniotes. Tot i que els primers sinàpsids com Archaeothyris externament s’assemblessin a una sargantana, estaven més emparentats amb els mamífers i compartien amb aquests l’obertura temporal única per on passaven els músculs mandibulars.

Archaeothyris.svgDibuix del crani de Archaeothyris, el que es creu que va ser un dels primers sinàpsids que visqué fa uns 306 milions d’anys a Nova Escòcia. Dibuix de Gretarsson.

Als avantpassats dels mamífers abans se’ls coneixia com a “rèptils mamiferoides”, ja que es creia que els mamífers havien evolucionat de rèptils primitius. Actualment és acceptat que els sinàpsids formen un llinatge independent dels rèptils, i que comparteixen un seguit de tendències evolutives que porten fins als mamífers moderns: l’aparició de diferents tipus de dents, la mandíbula formada per un únic os, la posició més vertical de les potes respecte el cos, etc…

Dimetrodon_grandisReconstrucció de Dimetrodon grandis, un dels sinàpsids més coneguts, de fa uns 280 milions d’anys. Reconstrucció de Dmitry Bogdanov.

Tot i que la majoria de mamífers actuals no pon ous i pareix a les cries vives, tots els grups durant el desenvolupament embrionari mantenen les tres membranes característiques dels amniotes (amni, cori i alantoide).

SAUROPSIDA

Els sauròpsids inclouen als rèptils actuals i als seus avantpassats i parents amniotes. Actualment en molts treballs científics s’utilitza la paraula “sauròpsid” en lloc de “rèptil” quan es discuteix de filogènia, ja que dins de sauròpsid s’inclou també a les aus. Els primers sauròpsids probablement eren anàpsids, i poc després de la seva aparició es van separar en dos grups: els Parareptilia que conservaven el crani anàpsid, i els Eureptilia que inclouen als diàpsids (els rèptils i aus actuals).

Traditional_ReptiliaArbre evolutiu dels vertebrats actuals, on es marca de color verd als grups antigament considerats rèptils. Com es veu, la concepció tradicional de “rèptil” inclou als avantpassats dels mamífers i exclou a les aus. Imatge de Petter Bøckman.

Els diàpsids actualment són el grup de vertebrats terrestres més diversificat. Aquests es van multiplicar en moltíssimes espècies a finals del Pèrmic (fa uns 254 milions d’anys), just abans del Mesozoic (l’Era dels Rèptils). Aquests es poden dividir en dos grans grups: els Lepidosaures i els Arcosaures, ambdós amb representants actuals.

LEPIDOSAURIA: PETITS I NOMBROSOS

Els lepidosaures (literalment “rèptils amb escates”) van aparèixer a principis del Triàssic (fa uns 247 milions d’anys) i, tot i que la majoria no van assolir grans mides, actualment són el grup de rèptils no aviaris més nombrós. Aquests es caracteritzen per presentar una escletxa cloacal transversal, per presentar escates sobreposades i mudar la pell sencera o a trossos i per altres caràcters esquelètics.

Rat_Snake_moulted_skinMuda sencera de la pell d’una serp rata. Foto de Mylittlefinger.

Els lepidosaures actuals pertanyen a dos ordres diferents:

  • Ordre Rhynchocephalia: Inclouen a les dues espècies de tuatares actuals. Es consideren fòssils vivents perquè presenten cranis i característiques semblants a les dels diàpsids mesozoics i actualmente es troben en greu perill d’extinció.
Sphenodon_punctatus_(5)Foto d’una tuatara (Sphenodon punctatus), de Tim Vickers.
  • Ordre Squamata: Els escamosos actuals inclouen iguanes, camaleons, dragons, sargantanes, serps i altres llangardaixos sense potes. Amb més de 9000 espècies actuales els escamosos són un grup molt nombrós, amb un gran ventall d’adaptacions i estratègies de supervivencia.
Sin títuloFotos d’alguns escamosos d’esquerra a dreta i de dalt a baix: Iguana verda (Iguana iguana, de Cary Bass), cobra reial (Ophiophaga Hannah, de Michael Allen Smith), llangardaix cuc de dues potes (Bipes biporus, de Marlin Harms) i camaleó de l’Índia (Chamaeleo zeylanicus, de Shantanu Kuveskar).

ARCHOSAURIA: ANTICS REIS

Els arcosaures (literalment “rèptils dominants”) van ser el grup d’animals terrestres dominants durant el Mesozoic. Aquests van conquistar tots els habitats possibles fins a l’extinció de la majoria de grups a finals del Cretàcic. Alguns dels grups que es van extingir són els pseudosuquis (parents dels cocodrils actuals, ordre Crocodylia), els pterosaures (grans rèptils voladors) i els dinosaures (excepte els ocells actuals, clade Aves).

Massospondylus_Skull_Steveoc_86Dibuix del crani del dinosaure Massospondylus en el que es veuen les diferents obertures que caracteritzen als arcosaures diàpsids. Imatge de Steveoc 86.

Com podeu veure, els dos grups d’arcosaures actuals no podrien ser més diferents. Tanmateix, els cocodrils i les aus comparteixen un avantpassat comú, i estan més emparentats entre ells que amb la resta de rèptils.

Yellow-billed_stork_kazingaFoto de dues espècies d’arcosaures actuals; un cocodril del Nil (Crocodylus niloticus) i un tàntal africà (Mycteria ibis). Foto de Tom Tarrant.

I LES TORTUGUES?

Les tortugues (ordre Testudines) sempre han estat un grup difícil de classificar. Les tortugues són els únics amniotes actuals que presenten un crani anàpsid, sense cap obertura post-ocular. Per això antigament, se les havia classificat com a descendents d’amniotes primitius (clade Anapsida, actualment en desús) o com a sauròpsids anàpsids primitius (dins del clade Parareptilia).

KONICA MINOLTA DIGITAL CAMERAEsquelet de la tortuga extingida Meiolania platyceps que visqué a Nova Caledònia fins fa 3000 anys. En aquesta foto s’aprecia el crani compacte i sense obertures temporals. Foto de Fanny Schertzer.

Estudis moleculars recents, han desvelat que les tortugues són realment diàpsids que van perdre les obertures temporals secundàriament. El que encara divideix a la comunitat científica és si els testudinis están més emparentats amb els Lepidosauromorfs (lepidosaures i els seus avantpassats) o amb els Arcosauromorfs (arcosaures i els seus avantpassats).

Leopard_tortoiseExemplar de tortuga lleopard (Stigmochelys pardalis) de Tanzània. Foto de Charles J. Sharp.

Com heu pogut veure, l’evolució dels amniotes és un tema molt complex. Esperem que amb aquesta entrada hagi quedat clar que:

  1. Els mamífers (sinàpsids) provenen d’un llinatge evolutiu diferent al dels rèptils (sauròpsids).
  2. Els sauròpsids inclouen als “rèptils” tradicionals (lepidosaures, arcosaures i tortugues) i a les aus (dins dels arcosaures).
  3. Encara queda molt per investigar sobre la posición de les tortugues (testudinis) dins l’arbre evolutiu dels sauròpsids.
Figure_29_04_03Esquema modificat sobre les relacions evolutives entre els diferents grups d’amniotes.

REFERÈNCIES

Per a l’elaboració d’aquesta entrada s’han utilitzat les següents fonts:

Difusió-català

Reptiles and mammals: same origin, different stories

Did mammals evolve from reptiles? The truth is they didn’t. Reptiles and mammals both have independent evolutionary histories that separated soon after the apparition of the so-called amniotic egg, which allowed the babies of these animals to be born outside of water. Previously, we talked about the origin of vertebrates and about how they managed to get out of the sea to start walking on land for the first time. In this entry we’ll explain how the ancestors of reptiles and mammals, the AMNIOTES, became independent of the aquatic medium and became the dominant land animals.

THE AMNIOTIC EGG

The characteristic that unites reptiles and mammals in the same group is the amniotic egg. While amphibian eggs are relatively small and only have one inner membrane, the eggs of amniotes are much bigger and present various membranes protecting the embryo and keeping it in an aqueous medium. The outer layer is the eggshell which, apart from offering physical protection to the embryo, prevents water loss and its porosity allows gas interchange. Beneath the eggshell we can find the next membranes:

512px-Crocodile_Egg_Diagram.svgDiagram of a crocodile egg: 1. eggshell 2. yolk sac 3. yolk (nutrients) 4. vessels 5. amnion 6. chorion 7. air 8. alantois 9. albumin (white of the egg) 10. amniotic sac 11. embryo 12. amniotic fluid. Image by Amelia P.
  • Chorion: The first inner membrane, which offers protection and, together with the amnion, forms the amniotic sac. Also, being in contact with the eggshell, it participates in gas interchange, bringing oxygen from the outside to the embryo and carbon dioxide from the embryo to the outside.
  • Amnion: Membrane that surrounds the embryo and constitutes a part of the amniotic sac. It offers an aqueous medium for the embryo and connects it with the yolk sac (a structure that brings food and that is also found in fish and amphibians).
  • Allantois: The third layer, it is used as a storage for nitrogen waste products, and together with the chorion, helps in gas interchange.
512px-Amphibian_Egg_Diagram.svgDiagram of an amphibian egg: 1. jelly capsule 2. vitelline membrane 3. perivitelline fluid 4. yolk 5. embryo. Image by Separe3g.

All these different kinds of membranes eliminate the need amphibians had of laying their eggs in water. Also, unlike amphibians, amniotes don’t go through a gilled larval stage, but are instead born as miniature adults, with lungs and legs (at least those that have them). All these made the first amniotes completely independent of the aquatic medium.

AMNIOTE ORIGINS

The first amniotes evolved around 312 million years ago from reptiliomorph tetrapods. At the end of the Carboniferous period lots of tropical forests where the great primitive amphibians lived disappeared, leaving a colder and drier climate. This ended with many of the big amphibians of that time, allowing the amniotes to occupy new habitats.

Solenodonsaurus1DBReconstruction of Solenodonsaurus janenschi, one of the candidates in being the first amniote, which lived around 320-305 million years ago in what is now the Czech Republic. Reconstruction by Dmitry Bogdanov.

CHARACTERISTICS

These early amniotes had a series of characteristics that set them apart from their semiaquatic ancestors:

  • Horny claws (amphibians don’t have claws) and keratinized skin that prevents water loss.
  • Bigger large intestine and higher density of renal tubules to increase water reabsorption.
  • Specialized lacrimal glands and a third membrane in the eye (nictitating membrane) which keep the eye wet.
  • Larger lungs.
  • Loss of the lateral line (sensory organ present in fish and amphibians).

The skeleton and musculature also evolved offering better mobility and agility on a terrestrial medium. The first amniotes presented ribs that encircled their body converging at the sternum, making their inner organs more secure, and a series of muscular receptors offered them better agility and coordination during locomotion.

AMNIOTE SKULLS

Traditionally, the different amniotes were classified based on the structure of their cranium. The characteristic used to classify them was the presence of temporal openings (fenestrae), by which we have three groups:

  • Anapsids (“no arches”): No temporal openings (turtles).
Skull_anapsida_1Diagram of an anapsid skull, by Preto(m).
  • Synapsids (“fused arches”): With only one temporal opening (mammals).
Skull_synapsida_1Diagram of a synapsid skull, by Preto(m).
  • Diapsids (“two arches”): With two temporal openings (reptiles, including birds).
Skull_diapsida_1Diagram of a diapsid skull, by Preto(m).

Previously it was believed that the first amniotes presented an anapsid skull (without openings, like turtles) and that subsequently they separated into synapsids and diapsids (the temporal openings formed “arches” that offered new anchor points for the jaw’s musculature). Yet, it has been discovered that this three-group classification is not valid.

Even though we still believe that the first amniotes were anapsid, it is currently known that these, soon after their apparition, separated into two different lineages: the synapsids (clade Synapsida) and the sauropsids (clade Sauropsida).

SYNAPSIDA

This lineage includes mammals and their amniote ancestors. Even though the first synapsids like Archaeothyris looked externally like lizards, they were more closely related to mammals, as they shared one temporal fenestrae where the jaw muscles passed through.

Archaeothyris.svgDrawing of the skull of Archaeothyris, which is thougth to be one of the first synapsids that lived around 306 million years ago in Nova Scotia. Drawing by Gretarsson.

The ancestors of mammals were previously known as “mammal-like reptiles”, as it was thought that mammals had evolved from primitive reptiles. Currently it’s accepted that synapsids form a different lineage independent of reptiles, and that they share a series of evolutionary trends that makes them closer to modern mammals: the apparition of different kinds of teeth, a mandible made of one single bone, the vertical posture of their limbs, etc…

Dimetrodon_grandisReconstruction of Dimetrodon grandis, one of the better known synapsids, from about 280 million years ago. Reconstruction by Dmitry Bogdanov.

Even though most modern mammals don’t lay eggs and give birth to live offspring, all groups maintain the amniote’s three characteristic membranes (amnion, chorion and allantois) during embryonic development.

SAUROPSIDA

Sauropsids include current reptiles and their amniote ancestors. Currently, in many scientific papers the word “sauropsid” is used instead of “reptile” when discussing phylogenies, as the sauropsids also includes birds. The first sauropsids were probably anapsids, and soon after their appearance they separated into two groups: the Parareptilia which conserved anapsid skull, and the Eureptilia which include the diapsids (current reptiles and birds).

Traditional_ReptiliaEvolutionary tree of current vertebrates, in which green color marks the groups previously included inside reptiles. As you can see, the traditional conception of "reptile" includes the ancestors of mammals and excludes birds. Image by Petter Bøckman.

Diapsids are currently the most diversified group of land vertebrates. They diversified greatly in the late Permian period (about 254 million years ago), just before the Mesozoic (the Age of Reptiles). These can be divided into two main groups: the Lepidsaurs and the Archosaurs, both with representatives in our days.

LEPIDOSAURIA: SMALL AND PLENTIFUL

Lepidosaurs (literally “reptiles with scales”) appeared in the early Triassic (around 247 million years ago) and, even if most of them didn’t grow to big sizes, they are currently the largest group of non-avian reptiles. These are characterized by presenting a transversal cloacal slit, by having overlapping scales and shedding their skin whole or in patches and by other skeletal characters.

Rat_Snake_moulted_skinShed skin of a rat snake. Photo by Mylittlefinger.

The current lepidosaurs belong to one of two different orders:

  • Order Rhynchocephalia: That includes the two species of tuatara. Currently endangered, they are considered living fossils because they present skulls and characteristics similar to the Mesozoic diapsids.
Sphenodon_punctatus_(5)Photo of a tuatara (Sphenodon punctatus), by Tim Vickers.
  • Order Squamata: Current squamates include iguanas, chameleons, geckoes, skinks, snakes and other legless lizards. With more than 9000 living species, squamates are a large group with a wide array of adaptations and survival strategies.
Sin títuloPhotos of some squamates, from left to right and from top to bottom: Green iguana (Iguana iguana, by Cary Bass), king cobra (Ophiophaga Hannah, by Michael Allen Smith), Mexican mole lizard (Bipes biporus, by Marlin Harms) and Indian chameleon (Chamaeleo zeylanicus, by Shantanu Kuveskar).

ARCHOSAURIA: ANCIENT KINGS

Archosaurs (literally “ruling reptiles”) were the dominant group of land animals during the Mesozoic. These conquered all possible habitats until the extinction of most groups at the end of the Cretaceous period. Some of the extinct groups were the pseudosuchians (relatives of modern crocodiles, order Crocodylia), the pterosaurs (large flying reptiles) and the dinosaurs (excepting birds, clade Aves).

Massospondylus_Skull_Steveoc_86Drawing of the skull of the dinosaur Massospondylus in which we can see the different characteristic openings of diapsid archosaurs. Image by Steveoc 86.

As you see, both groups of modern archosaurs couldn’t be more different. Yet, crocodiles and birds share a common ancestor, and they are both more closely related with each other than with the rest of reptiles.

Yellow-billed_stork_kazingaPhoto of two species of modern arcosaurs: a Nile crocodile (Crocodylus niloticus) and a yellow-billed stork (Mycteria ibis). Photo by Tom Tarrant.

AND WHAT ABOUT TURTLES?

Turtles (order Testudines) have always been a group difficult to classify. Turtles are the only living amniotes with an anapsid skull, without any post-ocular opening. That’s why previously they had been classified as descendants of primitive amniotes (clade Anapsida, currently disused) or as primitive anapsid sauropsids (inside the Parareptilia clade)

KONICA MINOLTA DIGITAL CAMERASkeleton of the extinct tortoise Meiolania platyceps which lived in New Caledonia until 3000 years ago. In this photo it can be seen the compact cranium without openings. Photo by Fanny Schertzer.

Recent molecular studies have revealed that turtles are actually diapsids that lost their temporal openings secondarily. What still divides the scientific community is if testudines are more closely related to Lepidosauromorphs (lepidosaurs and their ancestors) or to Archosauromorphs (archosaurs and their ancestors).

Leopard_tortoiseIndividual leopard tortoise (Stigmochelys pardalis) from Tanzania. Photo by Charles J. Sharp.

As you have seen, the evolution of amniotes is an extremely complex matter. We hope that with this entry some concepts have been clarified:

  1. Mammals (synapsids) come from an evolutionary lineage different from that of reptiles (sauropsids).
  2. Sauropsids include traditional reptiles (lepidosaurs, archosaurs and turtes) and birds (inside archosaurs).
  3. There’s still so much to investigate about the placement of turtles (testudines) in the evolutionary tree of sauropsids.
Figure_29_04_03Modified diagram about the evolutionary relationships of the different amniote groups.

REFERENCES

During the elaboration of this entry the following sources have been consulted:

Difusió-anglès