Arxiu d'etiquetes: diet

From traditional medicine to personalized medicine

From prehistory, where medicine started began with plants, minerals and parts of animals; until today, medicine has evolved very quickly. Much of the “fault” of his fact is due to genetics, which allows us to talk about personalized medicine. In the following article we discuss this.


To talk about medicine, we have first to know diseases. We cannot think that all diseases are genetic, but there are diseases related to anatomical changes, fruit of our evolution.

Chimpanzees are the closest animal to us, humans, with which we share 99% of our genome. Despite this, humans have very particular phenotypic characteristics as the brain most develop, both in size and expansion of the cerebral cortex; hairless sweaty skin, bipedal posture and prolonged dependence on offspring, allowing the transmission of knowledge for longer; among other.

Possibly, the bipedal position was key to the early development of the divergence between the chimpanzee lineage and that of humans; and is also the reason for the appearance of some diseases related to anatomical factors. Among them are hernias, haemorrhoids, varices, disorders of the spine, such as herniated intervertebral discs; osteoarthritis in the knee joint, uterine prolapse and difficulties in childbirth.

The fact that the pelvis was remodelled (Figure 1) and narrower resulted in obstetric problems millions of years later, when the brain expanded. Consequently, the skull as well. The heads of the foetuses were longer and larger, making birth difficult. This explains why the deliveries of humans are longer and longer compared to those of chimpanzees and other animals.

Figure 1. Comparison between human pelvis and chimpanzee pelvis in bipedal position (Source: Libros maravillosos – La especie elegida (capítulo 5))

The evolution towards modern life has behaved many changes in every way. In comparison to our hunter-gatherer ancestors (Figure 2), our diet has changed a lot and has nothing to do with what other primates eat. For the latter, the fruit represents most of the intake, but for us it is red meat. In addition, we are the only animals that continue to feed us milk after the lactation period.

cazadores y recolectores
Figure 2. Picture of hunter-gatherer humans (Source: Río Verde en la historia

If we add to the sedentary lifestyle and the limited physical activity of modern humans, it can help explain the seriousness and frequency of some modern human diseases.

Lifestyle can also affect us. For example, myopia, which rate is higher in western individuals who read a lot or do activities of near vision, compared to individuals of Aboriginal’s towns.

Another clear example is the alteration in the female reproductive stage. Currently, women have children more and more later. This is also linked to a decrease in the duration of breastfeeding. These changes, which can be considered socially positive, have negative effects on the health of the reproductive organs. It has been shown that the combination of early menarche, limited or no breastfeeding and later menopause are the main risk factors for breast and ovarian cancer.

Humans increasingly live more years and we want the best quality of life. It is easy for more longevity to appear more diseases, by the deterioration of the organism and its cells.


The history of medicine is the history of the struggle of men against disease and since the beginning of this century, is also the history of human effort to maintain health.

We have acquired the scientific knowledge of medicine based on observation and experience, but it has not always been so. Our ancestors experienced sickness and the fear of death before a rational picture could be made of them, and the medicine of that time was immersed in a system of beliefs, myths and rites.

However, in the last years it has been born personalized genomics, which tells you your risk factors. This opens a door to personalized medicine, which adjusts treatments to patients depending on their genome (Figure 3). It uses information from a person’s genes and proteins to prevent, diagnose and treat a disease, all thanks to the sequencing of the human genome.

Figure 3. Personalized medicine that treats people individually, according to their genome (Source: Indiana Institute of Personalized Medicine)

Molecular methods that make precision medicine possible include tests of gene variation, proteins, and new treatments targeting molecular mechanisms. With the results of these tests and treatments can determine the state of the disease, predict the future state of the disease, the response to the drug and treatment or even the role of the food we eat at certain times, which results of great help to the doctors to individualize the treatment of each patient.

To do this, we have within our reach the nutrigenetics and the nutrigenomics, that like the pharmacogenetics and the pharmacogenomics, they help the advance of a medicine is more and more directed. Therefore, these disciplines are today one of the pillars of personalized medicine since it involves treating each patient individually and tailor-made.

The evolution towards precision medicine is personalized, preventive, predictive and participatory. There is increasing access to information and the patient is more proactive, getting ahead of problems, preventing them or being prepared to deal with them efficiently.


  • Varki, A. Nothing in medicine makes sense, except in the light of evolution. J Mol Med (2012) 90:481–494
  • Nesse, R. and Williams, C. Evolution and the origins of disease. Sci Am. (1998) 279(5):86-93
  • Mackenbach, J. The origins of human disease: a short story on “where diseases come from”. J Epidemiol Community Health. (2006) 60(1): 81–86
  • Main picture: Todos Somos Uno


Nutritional genomics: À la carte menu

When Hipprocrates said “let food be your medicine and medicine be your food” he knew that food influences our health. And it tells us that nutritional genomics, which I will discuss in this article; a new science appeared in the post genomic era as a result of the sequencing of human genome (all DNA sequences that characterize an individual) and the technological advances that allow the analysis of large amounts of complex information.   


The aim of nutritional genomics is to study the interactions of genes with elements of the human diet, altering cellular metabolism and generating changes in the metabolic profiles that may be associated with susceptibility and risk of developing diseases.

This study wants to improve the health and to prevent diseases based on changes in nutrition. It is very important not understand nutritional genomics how that specific food or nutrients cause a particular answer to certain genes.

When we talk about diet we have to distinguish between what are nutrients and what are food. Nutrients are compounds that form part of our body, while foods are what we eat. Food can take many nutrients or only one (such as salt).


Within nutritional genomics we find nutrigenomics and nutrigenetics, but although their names we may seem to mean the same is not the case (Figure 1).

Nutrigenomics is the study of how foods affect our genes, and nutrigenetics is the study of how individual genetic differences can affect the way we respond to nutrients in the foods we eat.

Figure 1. Schematic representation of the difference between nutrigenomics and nutrigenetics (Source: Mireia Ramos, All You Need is Biology)


Nutrients can affect metabolic pathways and homeostasis (balance) of our body. If this balance is disturbed chronic diseases or cancer may appear, but it can also happen that a disease, which we have it, be more or less severe. It means that impaired balance can give the appearance, progression or severity of diseases.

The aim of nutrigenomics is that homeostasis is not broken and to discover the optimal diet within a range of nutritional alternatives.

Thus, it avoids alterations in genome, in epigenome and/or in expression of genes.


Free radicals are subproducts that oxidise lipids, proteins or DNA. These can be generated in mitochondria, organelles that we have inside cells and produce energy; but we can also incorporate from external agents (tobacco, alcohol, food, chemicals, radiation).

In adequate amounts they provide us benefits, but too much free radicals are toxic (they can cause death of our cells).

Antioxidants neutralize free radicals. But where can we get these antioxidants? There are foods that contain them, as Table 1 shows.

Table 1. Example of antioxidants and some foods where we can find them (Source: ZonaDiet)

The way we cook food or cooking is important for avoid to generate free radicals. In barbecues, when we put the meat on high heat, fats and meat juices fall causing fire flames. This produces more flame and it generates PAHs (a type of free radicals). These adhere to the surface of the meat and when we eat it can damage our DNA.


Epigenome is the global epigenetic information of an organism, ie, changes in gene expression that are inheritable, but they are not due to a change in DNA sequence.

Epigenetic changes may depend on diet, aging or drugs. These changes would not have to exist lead to diseases as cancer, autoimmune diseases, diabetes…

For example, with hypomethylation, in general, cytosines would have to be methylated are not. What does it mean? Hypomethylation silenced genes and then, they cannot be expressed. Therefore, we need methylated DNA. A way of methylate DNA is eating food rich in folic acid.


There are agents (UV rays) that activate pathways that affect gene expression. Occurring a cascade that activates genes related to cell proliferation, no differentiation of cells and that cells survive when they should die. All this will lead us cancer.

It has been found that there are foods which, by its components, can counteract activation of these pathways, preventing signal transduction is given. For example curcumin (curry), EGCG (green tea) or resveratrol (red wine).



Cooking also made us human

Cooking is a distinctive and unique feature of our species. After the success of Eating meat made us human, we continue delving into the nutrition of our ancestors as one of many factors that led us to Homo sapiens. We will analyze the contributions of our readers in the previous post on the importance of carbohydrates and the use of fire.


In the previous post we learned that one factor that contributed to the fast growth of the brain was the increased intake of meat by H. habilis, that allowed them to save energy in digestion (Aiello, L. Wheeler, P, 1995). Another factor that allowed saving energy to dedicate to brain growth, since Lucywas bipedalism (Adrienne L. Zihlman and Debra R. Bolter, 2015).

One of the things that gave us evolutionary success is our ability to take advantage of almost any food, allowing our expansion around the globe. Current diets are varied and traditionally linked to the availability of the geographical area or time of year, which changed with the development of agriculture and livestock. Human groups studied in historical period without agriculture or livestock, hunt, fish and gather very different foods, but no groups exclusively carnivorous or exclusively vegetarian have been found (except Eskimos, who have traditionally fed on hunting and fishing because of the characteristics of their environment, frozen during almost all the year).

Hazdas going hunting The hazdas are a small African tribe of hunter-gatherers 1500 Photo:.. Andreas Lederer
Hazda people returning from hunting. The Hadza are a small African tribe of about 1500 hunter-gatherers. Photo: Andreas Lederer

The first tools, possibly used by Australopithecus but obvious since H. habilis, allowed our ancestors to get food that otherwise would have been impossible to get: drilling and tearing flesh, breaking the hard shells of nuts, and later crushing and grinding grain. Thus, the basis of our current supplies are hard cereal grains (e.g. rice, wheat) and the dried seeds of legumes (e.g. lentils), because our needing of protein intake is low, although meat is consumed in excess in the First World countries.

But before the advent of agriculture, our ancestors ate what they found: Neanderthals in hostile areas had to base the diet with meat and supplement it with vegetables when they were available, while in milder climate zones, like the Mediterranean , make use of aquatic resources as molluscs, turtles and fish. Furthermore, by its robust body and increased muscle they needed more protein intake.

Neanderthals collecting mussels in Gibraltar, one of the last settlements of this species. Photo: DK Discover


As we have seen, seeds are very nutritious because they are rich in carbohydrates (especially starch), but low in protein; in addition, legumes must be cooked to be assimilated. No other animal, except us and our ancestors, prepare food or cooks. Cooking is an unique human trait which opened an infinite number of possibilities in our nutrition.


The first traces of use of fire date back 1.6 million years ago in Africa, although the first reliable evidence is a hearth 0.79 million years old. The responsible: Homo erectus, but those who used fire continuously, especially for cooking, were a later species: Neanderthals.

 Homo erectus, AMNH, American Museun natural history, querol mireia, mireia querol rovira
Homo erectus, American Museum of Natural History. Photo: Mireia Querol Rovira

The advantages of controlling fire were numerous and very important, but in this post we will delve into the first one:

  • Cooking and food storage
  • Better hunting and scavenging: fire allowed them to obtain prey hunted by large carnivores or direct theirs to natural traps .
  • Protection from predators
  • Heat: increased survival when temperatures fell.
  • Light: they could extend its tasks when night had fallen, favouring social skills and later, the development of language. In addition, changing the circadian rhythm (24h internal clock) could have extended the reproductive period .
  • Access to new territories: burning areas of dense vegetation to take dead animals and make use of new areas and encouraging migration to cooler places.
  • Improved tools: wood tools made with fire are more durable.
  • Better hygiene: burning waste avoided infections.
  • Medicine: after H. erectus, the fire has been used as disinfectant and instrument sterilizer and for the preparation of remedies based on medicinal plants, as inhalation of vapors or preparing of  infusions.
    Homo erectus, Daynes, CosmoCaixa, mireia querol mireia querol rovira
    Homo erectus surprised by the strength of his spear warmed with fire. Figure by Elisabeth Daynès, CosmoCaixa. Photo: Mireia Querol Rovira


    • Variety in the diet: certain foodstuff is indigestible raw or difficult to chew (especially for individuals with dental problems). Stewed food is softer and easier to digest, allowing H. erectus expand their diet respect their ancestors, accessing food of higher nutritional value (Richard Wrangham, 2009). Cooking improves the palatability and increases the assimilable carbohydrate availability in tubers, vegetables… and therefore it gives them more energy value. According to Wrangham and other experts, raw foodism can be harmful to health, because our body is adapted to this “pre-digestion” in the stoves, which allows us to be the primate with the shorter digestive system in relation to the body.
    • Reduction of the teeth: tusks and teeth could have been reduced due to consumption of cooked food. A tooth that has to bite a boiled potato instead of a raw one can be 82% smaller. Less space were needed for chewing muscles and teeth in the skull, so the mouth and face became smaller. This free space can be dedicated to accommodate an increasingly large brain. H. erectus had a brain 42% larger than H. habilis.
    • Less energy consumption: energy and time dedicated to chew and digest cooked food is less, so the number of final calories obtained increases. This energy can be devoted to brain development rather than digesting food.

      comida neandertal, dieta neandertal, neanderthal, dietPossible Neanderthal diet. Photo: Kent Lacin LLC/The Food Passionates/Corbis.
    • Fewer diseases: raw food, especially meat, may contain potentially pathogenic or deadly bacteria and parasites. But from certain temperatures, many of these bacteria die, so eating cooked rather than raw, our ancestors increased their survival significantly.
    • Less poisoning: some plants, fungi and tubers are toxic if are consumed raw, like some edible mushrooms, sweet potato or potatoes with green areas.
    • Food preservation: by smoking meat, it could be kept in good condition for longer and take advantage of it in times of scarcity. In addition, cooked food lasts longer than raw food.


In short, cooking was another factor involved in the brain development and cognitive abilities of our ancestors, allowed energy savings to digest and chew food, decreased masticatory apparatus, allowed the young become earlier independent from their breast-feeding mothers (who could mate more often), improved immune system… Even improved social skills: left more free time so they could dedicate it to other tasks, such as cooperation to keep the fire, planning the collection or capture of food, distribution of food in the group acoording to range and health of individuals… intelligence enhanced cooking techniques, which in turn enhanced the intelligence, in an infinite wheel that still exists today.



Eating meat made us human

Currently some of the world’s population can choose their diet: omnivorous, vegetarian, vegan, raw foodism, carnivorous, paleodiet… but what ate our ancestors?  Which diet is more suited to the one of our ancestors? Without going into polemics, we will discuss one of the crucial facts of the evolution from Australopitechus to Homo: the meat intake.


One of the reasons given to follow a strict vegetarian or vegan diet is that as “we are apes”, they feed on fruits and plants, and moreover, a more “natural” diet  is achieved. Currently and traditionally the base of the world diet are the seeds of cereals (rice, wheat, corn, etc.) and legumes (beans, lentils…), which often require processing (flour, for example) and have nothing to do with their wild ancestors. Since agriculture and livestock was invented and we have selected the best varieties for human consumption, the label “natural” loses all meaning. Although transgenic food is now on everyone’s lips, we have been using the genetic modification for thousands of years.

In the top row, wild ancestors of lettuce, carrot and corn. Below, domestic varieties. Source

That we are apes and the natural thing is to eat vegetables, is also not entirely true. As primates have evolved in trees, hominids have a strict diet or mainly folivorous -leaves- and frugivorous -fruit- (gorillas, orangutans), while gibbons also complete their diet with invertebrates. Our closest relatives however (bonobos, chimpanzees) are omnivorous as they eat vegetables, fruits, invertebrates and even small mammals and other primates (althought in less proportion than vegetables).

Chimpanzee eating meat. Populations of chimpanzees have been described  hunting with spears made by themselves. Photo Cristina M.Gomes, Max Planck Institute.

No wonder then that our direct distant ancestors as Australopithecus Lucy, ate leaves, fruits, roots and tubers as the basis of their diet. Some species, in addition to vegetables, also fed on invertebrates and small vertebrates, similar to modern chimpanzees.


Fruits have more sugars, although they are not very abundant in comparison with leaves and stems. But leaves have less nutritional value because they contain many fibers we can not absorb, such as cellulose. Legumes contain more protein than grains, but some essential amino acids and vitamins (such as B12) are absent or in a few proportion in vegetables and easily assimilable iron (hemo iron) is found only in food with animal origin.

In short, vegetables are harder to digest compared to animals, so mammalian herbivores have longer digestive systems, or compartmented stomachs, chew over long periods of time and some are ruminants, while carnivores have digestive systems with lower absorption surface and require little chewing of food.

Digestive systems of non-ruminant herbivores, ruminants, insectivores and carnivores. Unknown author



2.6 million years ago, climate change made our planet cooler and drier. In Africa the savanna dominated much of the territory, so hominids had to deal with hard leaves, leaves covered with wax, hard or thorny stems, roots… these difficult to digest resources were utilised by Paranthropus, with large teeth and powerful musculature in the jaw to crush, although they had a similar brain to Australopithecus. They became extinct a million years ago.

Paranthropus boisei. Reconstruction by John Gurche, photo by Chip Clark.

But another group of hominins found a kind of resources that offered them more energy in smaller quantities, and were easier to chew: meat. Homo habilis was the first to eat meat at higher rates than the rest of relatives and also meats with more fat. It was an opportunist: they ate almost anything edible, instead, Paranthropus were specialists, so if their food was scarce, they had more possibilities to die.


While Australopithecus and Paranthropus had a cranial capacity of 400-500 cm 3, Homo habilis had up to 700 cm 3. This increased brain size allowed them greater versatility and ability to improvise to find food.

One thing that clearly differentiates us from other primates and animals is the large size of our brain. As you have noticed, H. habilis and is classified within our genus,  Homo, due to that great leap of brain size, among other things.

Skull comparison between Australopithecus, Homo habilis and Paranthropus. Credit: Peter S. Ungar et al, 2011.

But a large brain also has drawbacks: 25% of our body’s energy is consumed by the brain at rest, H. habilis brain consumed 15% and Australopithecus only 10%. In addition to quantity, this energy also has to have quality: some fatty acids for proper brain function only are found in some nuts, but especially in animal fat, easier to achieve if vegetables were scarce.

homo habilis, cosmocaixa, daynes, museu de la ciencia de barcelona
Homo habilis reconstruction by Elisabeth Daynès, Cosmocaixa (Barcelona). Photo by Mireia Querol


The only way to dedicate more energy to brain function is to reduce the size of other high energy consumer organs (Aiello, L. Wheeler, P, 1995). Heart, kidney, liver, they are major consumers of energy, but vital, so the solution is to reduce the gut and that’s only possible with the change of an almost exclusively vegetarian diet (Australopithecus) to another of easier assimilation with more protein and animal fat (H. habilis).

Comparison between high energy consumer organs between humans and other primates. Image by J. Rodriguez


A large brain also gave another advantage to H. habilis. Despite his appereance (small, no large fangs or claws) they could make use of a great variety of meat (first as scavengers and later as hunters) due to the use of tools. Australopithecus probably used some sort of simple tools, mostly wooden made, but we know for sure that early manufacture of stone tools (archaeological industry) belong to H. habilis. This allowed them to take advantage of the inside of the bone marrow of large prey killed by carnivores when all the flesh had been eaten by other animals. Currently only hyenas and bearded vultures can access this resource without tools. Besides, by not requiring such large teeth and jaws, the skull can accommodate a larger brain.

habilis, carronyer, carroñero, habilis, herramientas ,eines
H. habilis scavenging a rhino. Source; DK FindOut


In short, the increase of the brain of Homo was possible by changing diet, which allowed a shorter digestive tract and smaller masticatory apparatus. In turn, to achieve these more energy foods more intelligence is required, resulting in more complex behaviors such as the use of manufactured tools (Oldowan lithic technology, Mode 1).

Our digestive system is the result of millions of years of evolution as opportunistic omnivores. Some current strict diets (vegetarian or almost carnivorous) are in contradiction with this biological heritage and the abuse and access to all kinds of food carry us all kinds of allergies and food problems. The secret remains following a balanced and varied diet.