Arxiu d'etiquetes: dragón de komodo

Reservas de la Biosfera, hacia el equilibrio entre conservación y desarrollo sostenible

Las Reservas de la Biosfera fueron creadas con el objetivo de conciliar la conservación de la biodiversidad con el uso sostenible, desarrollo económico, investigación y educación. Pero ¿es posible compatibilizar progreso y conservación?

1. EL PROGRAMA SOBRE HOMBRE Y BIOSFERA

Desde 1970, el Programa sobre el Hombre y la Biosfera (MAB) pretende establecer bases científicas para mejorar las relaciones entre las personas y el ambiente.

Las reservas de la Biosfera son zonas compuestas por ecosistemas terrestres, marinos y costeros, reconocidas por el Programa sobre el Hombre y Biosfera de la UNESCO. El objetivo de estas zonas es conciliar la conservación de la biodiversidad con su uso sostenible, el desarrollo económico, la investigación y la educación.

www_mapama-gob-es_tablascastillalamancha
Imagen: Tablas de Daimiel, Reserva de la Biosfera localizada en Ciudad Real (España). Fuente: http://www.mapama.org

Esta particular figura de protección debe cumplir algunos requisitos, como la necesidad de ser zonas extensas, de más de 40.000 hectáreas, con paisajes y hábitats representativos de una región biogeográfica. Otro de los requisitos que debe cumplir una Reserva de la Biosfera es contar con alta participación de la población, para lo que se crearon varios comités de consulta y trabajo que gestionan cómo se va a conservar el espacio. Así se consigue concienciar e implicar a la gente en la conservación del mismo.

2. ¿CÓMO FUNCIONAN?

La designación de “reserva de la biosfera” de una zona, implica su conservación, investigación científica y desarrollo sostenible. Su objetivo es demostrar que la conservación medioambiental puede compaginarse con el desarrollo sostenible, basado en los resultados de la participación de la población local y la investigación científica.

Para ello, las tierras bajo esta figura de protección se gestionan en función de sus características biológicas, topográficas, económicas y socioculturales.

Las Reservas de la Biosfera se caracterizan por tres funciones principales, que se combinan de forma específica en cada una de las reservas:

  • Función de conservación, contribuyendo a la conservación de los paisajes, ecosistemas, especies y variación genética.
  • Función de desarrollo, fomentando un desarrollo económico y humano que sean sostenibles.
  • Función de creación de redes, apoyando proyectos de demostración, educación y capacitación sobre el medio ambiente, de investigación y de observación en relación con la conservación y desarrollo sostenible a niveles locales, regionales, nacionales y globales. Se pretende que todas las zonas estén interconectadas e intercambien información.
www_elcomercio-pe_huascaran
Imagen: Reserva de la Biosfera Huascarán, en Perú. Fuente: http://www.elcomercio.pe

Según su nivel de protección, las Reservas de la Biosfera se dividen en tres zonas:

  • Zona núcleo: formada por ecosistemas no perturbados y característicos de una región concreta. Es la zona de mayor protección, en ella sólo se permiten actividades que no interfieran en la conservación del ecosistema y debe asegurar la protección de la biodiversidad a largo plazo.
  • Zona de amortiguación: es una zona intermedia en la que pueden realizarse actividades de investigación científica, educación y formación ambiental, actividades recreativas y turísticas,… y otras que no interfieran en los objetivos de la Reserva.
  • Zona de transición: en esta zona el trabajo de la Reserva es aplicado a las necesidades de la población local.

 

3. LAS RESERVAS DE LA BIOSFERA EN EL MUNDO

Actualmente 120 países forman parte de la Red Mundial de Reservas de la Biosfera, con 669 zonas declaradas bajo esta figura de protección.

mapa
Imagen: Mapa Mundial Reservas de la Biosfera. Fuente: UNESCO

Puedes consultar el listado completo, pero aquí tienes algunas Reservas de la Biosfera que por su singularidad deberías conocer:

  • México: Isla Guadalupe. Esta isla cuenta con 253,8 km de superficie y se encuentra en el océano Pacífico. Destaca por su diversidad de flora y fauna marinas, entre ellas la colonia más grande de elefantes marinos del Pacífico y el gran tiburón blanco.
www_traveler_es
Imagen: Visitantes fotografiando tiburón en las aguas marinas de la Reserva de la Biosfera de Isla Guadalupe, México. Fuente: http://www.traveler.es
  • España: Picos de Europa. La zona, declarada también Parque Nacional, se localiza en   la parte central de la Cordillera Cantábrica. Destacan el desfiladero de los Beyos y la     garganta del Cares, además de su fauna y la variedad de bosques.
  • Colombia: Cinturón Andino. Localizada en la Cadena Andina en el sur de Colombia, y formada por tres parques nacionales: Parque Nacional Cueva de los Guácharos, Parque Nacional Puracé y Parque Nacional Nevado del Huila, con gran diversidad de aves. Uno de los objetivos principales de la Reserva es la planificación y gestión de los agrosistemas de la zona de forma sostenible.
  • Venezuela: Delta del Orinoco. Destaca por su gran diversidad biológica, en ecosistemas terrestres y marinos. Muy frecuentes los manglares estuarios y costeros.
  • Perú: Huascarán. Se localiza en la cordillera tropical más alta y extensa del Planeta. Es una zona de gran biodiversidad, gracias a sus bosques en perfecto estado de conservación, y sus más de 700 glaciares que forman lagunas. Para mantener su protección se practica un turismo sostenible que a su vez beneficia a la población local.
  • Alemania: Bosque Bávaro. Es un espectacular sistema montañoso de mediana altura, y junto a otra zona de protección forman la mayor reserva forestal de Europa.
  • Estados Unidos: Parque Congaree. Formado por un bosque de terrenos fluviales, que por su altura constituye uno de los más altos doseles boscosos templados caducifolios que quedan en el mundo.
www_es_123rf_com_bosqueypantano
Imagen: Bosque Bávaro, en Alemania. Fuente: http://www.es.123rf.com
  • China: Huanglong. Es una región localizada en la parte sur de las montañas Minshan, que destaca por sus terrazas formadas por depósitos de calcita y ecosistemas forestales. Fue declarado Patrimonio de la Humanidad por la UNESCO en 1992.
  • Rusia: Laponia. Se encuentra más allá del Círculo polar ártico y presenta un clima subártico, aunque libre de permafrost (capa de hielo permanente en los niveles superficiales del suelo, que acumula carbono orgánico).
  • Indonesia: Parque Nacional de Komodo. Se encuentra en el archipiélago de Indonesia y está formado por varias islas de origen volcánico. En un principio, el Dragón de Komodo, el gran símbolo de esta reserva, fue el principal motivo de la protección de la zona, aunque esta protección fue extendiéndose hacia la protección de la flora y fauna de la región, con zonas marinas incluidas. Actualmente la deforestación por cultivos (sobretodo el aceite de palma) y el tráfico de madera, están provocando la desaparición de grandes zonas boscosas de Indonesia a gran velocidad.
www_taringa_net_dragoncercadealdeadekomodo
Imagen: Dragón de Komodo en Indonesia, dentro del Parque Nacional de Komodo. Fuente: http://www.taringa.es

 

4. REFERENCIAS

  • FAO. Programa el Hombre y la Biosfera de la UNESCO en zonas de montaña.
  • Web UNESCO
  • Web MAGRAMA

 

  • Foto portada: Parque Nacional Picos de Europa (España), también declarado Reserva de la Biosfera. Fuente: http://www.danitguia.com

Sara de la Rosa Ruiz

Anuncis

Monstruos y dragones: Lagartos venenosos

Cuando pensamos en animales venenosos la mayoría de gente piensa en los mismos animales. Arañas, escorpiones y serpientes son los primeros que nos vienen a la cabeza, aunque también hay anfibios, peces y mamíferos venenosos. Aunque las serpientes son los reptiles venenosos más conocidos, con el paso del tiempo se ha visto que no son el único grupo que presenta glándulas venenosas y que muchos otros reptiles también pueden inyectar veneno. En esta entrada daremos a conocer los saurios venenosos menos conocidos e intentaremos explicar su relación con las serpientes.

EVOLUCIÓN DEL VENENO EN REPTILES

Todo el mundo está familiarizado con las capacidades tóxicas de las serpientes. Tradicionalmente se ha creído que el veneno evolucionó independientemente en los diferentes grupos de serpientes venenosas (colúbridos, elápidos y vipéridos) y en una familia de lagartos (los helodermátidos). Aun así, esta visión ha ido cambiando con el tiempo y con el descubrimiento de otras especies de escamosos venenosos.

Venom_extractionEl veneno de muchos animales es útil tanto para el desarrollo de antídotos, como para la investigación de analgésicos y otros medicamentos. Foto de la extracción de veneno de una víbora gariba (Echis carinatus), de Kalyan Varma (Imagen bajo licencia GNU).

Actualmente se ha comprobado que hay muchas especies de saurios que presentan glándulas y órganos capaces de inyectar veneno, además de muchos otros con material genético relacionado con la producción de veneno (aunque no sean venenosos). Esto ocurre, por ejemplo, en muchas serpientes y lagartos aparentemente no venenosos que retienen material genético asociado a la síntesis de veneno, cosa que ha hecho que muchos científicos agrupen a estos reptiles en un clado común llamado Toxicofera, “portadores de toxinas”.

Este nuevo clado agrupa a diferentes grupos de escamosos que se cree tuvieron un antepasado común venenoso. Estos grupos son:

  • Ophidia: Ofidios, las serpientes.
Indian_wolf_snake_(Lycodon_aulicus)_Photograph_By_Shantanu_KuveskarSerpiente lobo de la India (Lycodon aulicus), ejemplo de ofidio. Foto de Shantanu Kuveskar.
  • Iguania: Iguanas, agamas y camaleones.
6968443212_4b3f4fbd7f_oBasilisco marrón (Basiliscus vittatus), ejemplo de iguanio. Foto de Steve Harbula.
  • Anguimorpha: Varanos, luciones y otros.
Real_Lanthanotus_borneensisVarano sordo de Borneo (Lanthanotus borneensis), ejemplo de anguimorfo. Foto de Kulbelbolka.

Aunque la mayoría de iguanios y anguimorfos actuales no presentan veneno, la teoría de los Toxicofera propone que muchas especies habrían perdido la capacidad de inyectar veneno secundariamente.

A continuación, os presentamos algunos de los saurios venenosos menos conocidos.

MONSTRUOS DEL NUEVO MUNDO

Los escamosos venenosos más conocidos son los anguimorfos de la familia Helodermatidae. Desde su descubrimiento se supo que estos lagartos eran venenosos, ya que presentan un par de glándulas productoras de venenos en la mandíbula inferior y varios pares de dientes con surcos parecidos a los de las serpientes venenosas, con los cuales inyectan el veneno.

heloderma teethCráneo de helodermátido, en el que observamos los afilados dientes con los que inyectan el veneno. Imagen de Heloderma.net.

Los helodermátidos son animales carnívoros que se alimentan de pequeños mamíferos, pájaros, lagartos, anfibios, invertebrados, huevos de diferentes animales y carroña. Teniendo en cuenta su dieta generalista y que sus presas son relativamente inofensivas, se cree que el veneno de estos reptiles apareció como un método defensivo, más que como estrategia de caza.

2415413851_3d441fea6d_oFoto de Walknboston de un monstruo de Gila (Heloderma suspectum), en la que vemos su coloración negra y amarilla con la que avisa a sus depredadores de su toxicidad (coloración aposemática).

El monstruo de Gila y el lagarto moteado mexicano (Heloderma horridum) son animales lentos y por lo tanto no son peligrosos para los seres humanos. Aun así, su popularización como mascotas exótica ha tenido como consecuencia algunos casos de mordiscos. El mordisco del monstruo de Gila provoca un dolor agudo y ardiente, edema local, debilidad, desmayos y náuseas. Aunque la herida suele sangrar bastante, esto no se debe a ningún tipo de sustancia anticoagulante, sino a los afilados dientes de los helodermátidos y al hecho de que para inyectar el veneno tienen que masticar con fuerza al agresor, provocando heridas profundas.

EL DRAGÓN BARBUDO

Los saurios del género Pogona son iguanios de la familia Agamidae. Estos reptiles originarios de Australia se conocen como dragones barbudos por las espinas que presentan en la garganta. Aunque están adaptados a ambientes áridos, la temperatura ambiental puede afectar al sexo de sus crías.

Eastern_Bearded_Dragon_(Pogona_barbata)_(8243678492)Foto de un dragón barbudo del este, en la que vemos el interior de su boca de color amarillo. ¿Nos estará intentando avisar de algo con esta coloración? Foto de Matt.

Los dragones barbudos son animales inofensivos, pero existe una especie con una arma secreta. El dragón barbudo del este (Pogona barbata) es un lagarto venenoso, mientras que el resto de reptiles venenosos solo presenta un par de glándulas venenosas, el dragón barbudo del este presenta dos pares: dos en la mandíbula superior y dos en la inferior.

nature04328-f2.2Sección transversal de la boca de un dragón barbudo del este, donde se ven las glándulas venenosas incipientes tanto de la mandíbula superior (mxivg) como de la inferior (mnivg). Imagen extraída de Fry, Vidal et al.

El veneno generado es poco potente (en seres humanos solo provoca una ligera hinchazón) y las glándulas se consideran vestigiales. Aun así, según la teoría de los Toxicofera las glándulas del dragón barbudo nos muestran la forma primitiva que habrían presentado las glándulas del primer reptil toxicófero, el cual habría presentado dos pares de glándulas venenosas en vez de un par como la mayoría de escamosos venenosos actuales.

LOS GRANDES VARANOS

Todo el mundo ha oído hablar de los varanos (anguimorfos de la familia Varanidae). Hay centenares de documentales sobre el dragón de Komodo, en los cuales se nos explica que estos animales tienen tal cantidad de bacterias en la boca, que su mordisco provoca una infección suficiente para acabar con la vida de un buey adulto. Aun así, estudios recientes han demostrado que la pobre higiene bucal de los varanos no es lo que provoca la muerte de sus víctimas.

Sans nom-35Varano gigante australiano o “perentie” (Varanus giganteus) un varánido típico, con cuello largo, patas robusta, metabolismo activo y sentidos desarrollados. Foto de Bernard Dupont.

Aunque hay tres especies frugívoras, el resto son carnívoros obligados. Siempre se ha dicho que las bacterias de la boca de los varanos son lo que provoca la muerte de sus presas, aunque no haya ningún estudio que lo corrobore. De hecho, en diversos estudios se ha visto que las bacterias de la saliva de los varanos no difieren mucho de las de la saliva de otros reptiles no carnívoros.

3215319924_2fe90e244f_oFoto donde vemos la temida saliva de los varanos, concretamente de un varano acuático (Varanus salvator). Imagen de Lip Kee.

En un estudio, se vio que varias especies de varanos presentaban glándulas venenosas en la mandíbula inferior. Estas glándulas son de las más complejas de entre todos los reptiles venenosos. En el caso del dragón de Komodo, son glándulas compuestas, con un gran compartimento posterior y cinco pequeños compartimentos anteriores. Estos compartimentos presentan conductos que llevan el veneno hasta aperturas entres los dientes.

Aunque los varánidos están estrechamente emparentados con las serpientes (comparten, por ejemplo, la lengua bífida) éstos no presentan los surcos en los dientes, característicos de los ofidios venenosos y de los helodermátidos. Esto se debe a que, en vez de inyectar el veneno directamente, los varanos utilizan sus dientes aserrados para abrir una gran herida a sus presas, a través de la cual entrará el veneno al organismo.

Varanus_priscus_skullCráneo de megalania (Varanus priscus) en el que vemos los dientes sin surcos. Este varano extinto de más de 5 metros de largo, fue el animal venenoso más grande conocido. Steven G. Johnson.

La utilidad del veneno en los varanos depredadores está respaldada por la gran cantidad que producen. En las serpientes constrictoras que no utilizan veneno, los genes que codifican para la síntesis de veneno están atrofiados por la gran cantidad de energía que se gasta en producirlo. Los varanos en cambio, secretan mucho veneno con la mínima estimulación de sus glándulas. Este veneno tiene componentes anticoagulantes que evitan que la herida se cierre, y también produce un choque cardiovascular en el animal por la disminución de la presión sanguínea.

Dragon_feedingGrupo de varanos de Komodo (Varanus komodoensis) devorando un cerdo recién cazado. Imagen extraída de Bull, Jessop et al.

Aunque aún no sabemos seguro si el antepasado común de estos animales era venenoso, ni si el veneno apareció independientemente en las diferentes familias, la relación de los diferentes miembros del clado Toxicofera ha sido respaldada por análisis filogenéticos posteriores. Lo que está claro es que el veneno es una arma muy potente en la lucha por la supervivencia y que, aunque las serpientes son los reptiles venenosos más numerosos, muchas otras especies de escamosos se han beneficiado del uso de las toxinas, tanto para defenderse como para someter a sus presas.

REFERENCIAS

Se han utilizado las siguientes fuentes para la elaboración de esta entrada:

Difusió-castellà

¿Cómo afectan la temperatura y el calentamiento global al sexo de los reptiles?

En la mayoría de animales el sexo de un individuo queda determinado en el momento de la fecundación; cuando el óvulo y el espermatozoide se fusionan queda fijado si ése animal será un macho o una hembra. Aún así, en muchos grupos de reptiles la determinación sexual viene determinada posteriormente durante la incubación, y el factor que la determina es la temperatura a la que se incuban los huevos. En los reptiles esto hace que, el ambiente juegue un papel crucial en determinar la proporción de machos y hembras que saldrán de una puesta y que por lo tanto, estos animales sean muy susceptibles a alteraciones en la temperatura causadas por ejemplo, por el calentamiento global.

DETERMINACIÓN SEXUAL: DSG VS DST

En la mayoría de especies animales la diferenciación sexual (el desarrollo de ovarios o testículos) viene determinada genéticamente (DSG). En estos casos, el sexo de un individuo viene determinado por un cromosoma, un gen o un alelo concreto que provocará la diferenciación hacia un sexo u otro. Entre los vertebrados, existen dos tipos principales de DSG, el sistema XX/XY en mamíferos (en el que XX es una hembra y XY es un macho) y el ZW/ZZ en aves y algunos peces (ZW corresponde a una hembra y ZZ a un macho).

Types_of_sex_determinationEjemplos de diferentes tipos de determinación sexual genética en vertebrados e invertebrados, por CFCF.

En el caso de los reptiles, existe una gran variedad de mecanismos de determinación sexual. Algunos presentan modelos de DSG; muchas serpientes siguen el sistema ZW/ZZ y algunos lagartos el XX/XY. Igualmente, en muchos grupos el sexo de la descendencia viene determinado principalmente por la temperatura de incubación del huevo (DST), haciendo que el ambiente juegue un papel muy importante en la proporción de machos y hembras que encontramos en una población.

Eastern_Bearded_Dragon_defenceEl dragón barbudo del Este (Pogona barbata) es un ejemplo de reptil con DSG, pero al cual también le afecta la temperatura de incubación. Foto de Trent Townsend.

Aún así, los mecanismos de determinación sexual genética y de temperatura no son excluyentes. Los reptiles con DST tienen una base genética para la diferenciación ovárica o testicular que viene regulada por la temperatura. Igualmente, se ha observado que en reptiles con DSG, como el dragón barbudo australiano (Pogona barbata), las altas temperaturas durante la incubación provocan que individuos que genéticamente son machos (cromosomas ZZ) se desarrollen funcionalmente como hembras. Esto demuestra que en reptiles, no existe una división estricta entre la DSG y la DST.

TEMPERATURA Y SEXO

El periodo de incubación durante el cual se determina el sexo de un individuo se llama periodo de incubación crítico y normalmente corresponde al segundo tercio del periodo de incubación, durante el cual la temperatura se ha de mantener constante. Este periodo de incubación crítico suele durar entre 7 y 15 días, según la especie. Después de este periodo el sexo del individuo normalmente no se puede revertir (mecanismo de todo o nada).

Audobon Zoo, New Orleans, LouisianaCría de dragón de komodo (Varanus komodoensis) eclosionando. Foto de Frank Peters.

La temperatura durante el periodo de incubación crítico altera la función de la aromatasa, hormona que convierte los andrógenos (hormonas masculinizadoras) en estrógenos (hormonas feminizadoras). A temperaturas que dan lugar a machos, la actividad de la aromatasa se inhibe, mientras que a temperaturas que dan lugar a hembras la actividad de la aromatasa se mantiene.

AromatassssssaGráficos de la actividad de la aromatasa respecto las hormonas gonadales en embriones de galápago europeo (Emys orbicularis) a 25oC (machos) y a 30oC (hembras) durante el periodo de incubación crítico, sacado de Pieau et al. 1999.

La DST la encontramos en todos los grupos de reptiles excepto en las serpientes (que siguen el sistema ZW/ZZ). En lagartos y tortugas encontramos tanto determinación sexual genético como por temperatura, mientras que en las tuataras y los cocodrilianos el sexo se determina exclusivamente por la temperatura. Actualmente, se conocen distintos modelos de determinación sexual por temperatura.

MODELO I

Este modelo es el más sencillo, en el que temperaturas de incubación más altas dan lugar a un sexo y temperaturas de incubación más bajas dan lugar al otro sexo. Temperaturas intermedias suelen dar individuos de ambos sexos y, muy raramente, individuos intersexuales. Este modelo está dividido en:

  • Modelo Ia DST: en el que los huevos incubados a temperaturas altas dan altos porcentajes de hembras y huevos a temperaturas bajas dan altos porcentajes de machos. Éste se encuentra en muchas especies de tortugas.
Emys_orbicularis_portraitFoto de galápago europeo (Emys orbicularis), especie que sigue el modelo Ia DST; a 25oC o menos de incubación sólo nacen machos, mientras que a 30oC o más sólo nacen hembras. Foto de Francesco Canu.
  • Modelo Ib DST: en el que pasa lo contrario; las altas temperaturas dan machos y las bajas temperaturas dan hembras. Éste se da en algunos lagartos con DST y los tuataras.
TuataraEl tuatara (Sphenodon punctatus) es uno de los reptiles que siguen el modelo Ib DST; la temperatura límite se encuentra entre 21-22oC, por encima de la cual nacerán machos y por debajo de la cual nacerán hembras.

MODELO II

Este modelo es un poco más complejo que el anterior. En éste, los embriones incubados a temperaturas extremas (muy altas o muy bajas) se diferenciarán hacia un sexo, mientras que los que sean incubados a temperaturas intermedias, se diferenciaran hacia el sexo contrario.

CrocnestFoto de aligátores del Mississippi (Alligator mississippiensis) de diferentes edades. Estos reptiles siguen el modelo II DST; a unos 34oC nacen machos, y a temperaturas por encima y por debajo, nacen hembras.

Este modelo se da en los cocodrilianos, en algunas tortugas y en muchos lagartos. Estudios filogenéticos recientes, indican que éste es el modelo de DST ancestral de los reptiles. Hay quien argumenta, que todos los casos de DST son del modelo II, pero que en la naturaleza nunca se llega a los dos extremos de temperatura, aunque esto aún está por demostrar.

SEXO DETERMINADO POR TEMPERATURA: VENTAJAS E INCONVENIENTES

Hoy en día aún no se entiende del todo las ventajas evolutivas de la determinación sexual por temperatura. El caso de los reptiles es muy curioso, ya que aves, mamíferos y anfibios determinan su sexo genéticamente en la mayoría de casos, mientras que en los reptiles encontramos un poco de todo.

Actualmente, se están realizando estudios para comprobar si algunas temperaturas favorecen la salud de los machos y algunas otras la de las hembras. En uno de estos estudios, se observó que las tortugas mordedoras incubadas a temperaturas intermedias (que producían tanto machos como hembras) eran más activas que las incubadas a temperaturas que daban un único sexo, haciendo que fuesen más vulnerables al ataque de depredadores que se guían visualmente. Aún así, en la actualidad no hay pruebas suficientes que indiquen hasta donde se podrían aplicar estos descubrimientos. Es posible que los reptiles con DST sean capaces de manipular el sexo de su descendencia, alterando la proporción de hormonas sexuales en base a la temperatura del lugar de nidificación.

Snapping_turtle_eggs_mdPuesta de tortuga mordedora (Chelydra serpentina), un quelonio americano de agua dulce. Foto de Moondigger.

Lo que resulta más fácil de predecir son los inconvenientes que comporta la DST. Cualquier cambio que se produzca en la temperatura de las áreas de nidificación puede afectar negativamente a la población de una especie determinada. Si se tala un bosque donde antes había sombra o se construyen edificios en una zona previamente soleada, cambiarán los microclimas de las puestas de huevos de cualquier reptil que nidifique allí.

El cambio global, o cambio climático, representa una amenaza adicional para los reptiles con DST. El aumento de la temperatura media del planeta y las fluctuaciones de temperatura de un año al otro, afectan al número de machos y hembras que nacen de algunas especies de reptiles. Este fenómeno se ha observado, por ejemplo, en las tortugas pintadas (Chrysemys picta), en las cuales se ha predicho que un aumento de 4oC en la temperatura de su hábitat provocaría la extinción de la especie, ya que sólo nacerían hembras.

baby-painted-turtle-chrysemys-pictaCría de tortuga pintada (Chrysemys picta), especie en la que temperaturas de incubación de entre 23-27oC dan machos y temperaturas por encima o por debajo dan hembras (modelo II). Foto de Cava Zachary.

REFERENCIAS

Durante la elaboración de esta entrada se han utilizado las siguientes fuentes:

Difusió-castellà