Arxiu d'etiquetes: E.coli

Insulin: a point in favour for transgenics

Despite the arguments and positions against transgenics, it is undeniable that insulin is a great transgenic success. It is essential in some types of diabetes; and since it was discovered, the life expectancy of diabetics has increased more than 45 years. Therefore, let’s know in detail.

REMINDER OF GENETIC ENGINEERING

Genetic engineering allows to clone, that is, to multiply DNA fragments and produce the proteins for which these genes encode in organisms different from the one of origin. That is, if in an organism there is an alteration or mutation of a gene that prevents the genetic code from translating it into proteins, with the techniques of recombinant DNA a gene is obtained without the mutation in another organism. Thus, it is possible to obtain proteins of interest in organisms different from the original from which the gene was extracted, improve crops and animals, produce drugs and obtain proteins that use different industries in their manufacturing processes. In other words, through genetic engineering, the famous transgenics are obtained.

They offer many possibilities in the industrial use of microorganisms with applications ranging from the recombinant production of therapeutic drugs and vaccines to food and agricultural products. But, in addition, they have a promising role in medicine and in the cure of diseases.

And is that the result of obtaining a recombinant DNA, from it, will be made a new protein, called recombinant protein. An example of this is the case of insulin.

WHAT IS INSULIN?

Insulin is a hormone produced in the pancreas and with an important role in the metabolic process. Insulin comes from the Latin insulae, which means island. Its name is due to the fact that inside the pancreas, insulin is produced in the islets of Langerhans. The pancreas is related to the general functioning of the organism. It is located in the abdomen and is surrounded by organs such as the liver, spleen, stomach, small intestine and gallbladder.

Thanks to it we use the energy of the food that enters our body. And this happens because it allows glucose to enter our body. This is how it provides us with the necessary energy for the activities we must perform, from breathing to running (Video 1).

Video 1. Insulin, Glucose and You (Source: YouTube)

HOW DOES INSULIN WORK?

Insulin helps glucose enter the cells, like a key that opens the lock on the cell doors so that glucose, which is blood sugar, enters and is used as energy (Figure 1). If glucose cannot enter because there is no key to open the door, as with people with diabetes, blood glucose builds up. An accumulation of sugar in the blood can cause long-term complications. That’s why it’s important for diabetics to inject insulin.

7-768x768
Figure 1. Picture of the funcioning of insulin in cells (Source: Encuentra tu balance)

WHY DO WE USE TRANSGENIC INSULIN?

First, the insulin obtained from animals such as dogs, pigs or cows was used. But although, above all, pork insulin was very similar to human insulin, it was not identical and contained some impurities. This fact caused rejection and, in some cases, allergies. In addition, to be obtained from the pancreas of pigs, for each pancreas only insulin was obtained for the treatment of 3 days (at more than the cost of care of the animal). The result was low performance and high costs.

But with recombinant DNA insulins, more is obtained at a lower cost. For this reason, currently, the original insulin is obtained from a human of genetic engineering, despite the fact that animal insulins are still a perfectly acceptable alternative.

Through genetic engineering, insulin has been produced from the E. coli bacterium. It was in 1978 when the sequence of the insulin was obtained and introduced inside the bacteria so that it produced insulin. This is how E. coli has gone from being a common bacterium to a factory producing insulin. Insulin is extracted from the bacteria, purified and marketed as a medicine.

The advantages of “human” insulin, obtained by genetic engineering, are the easy maintenance of bacteria, a greater quantity of production and with lower costs. More or more, the compatibility of this insulin is 100%, however there may be reactions due to other components.

On an industrial scale, the production of recombinant proteins encompasses different stages. These stages are fermentation, in which the bacteria are cultivated in nutritious culture media; the extraction to recover all the proteins inside, the purification, which separates the recombinant protein from the other bacterial proteins; and finally the formulation, where the recombinant protein is modified to achieve a stable and sterile form that can be administered therapeutically.

Each of the previous phases implies a very careful handling of the materials and a strict quality control to optimize the extraction, purity, activity and stability of the drug. This process can be simple or more complex depending on the product and the type of cell used. Although the complexity of the process would increase the final cost of the product, the value will not exceed the expense of isolating the compound from its original source to reach medicinal quantities, which is what we have shown with insulin. That is, producing human insulin has a lower cost than obtaining insulin from pigs.

Genetic engineering allows numerous potentially therapeutic proteins to be made in large quantities. Currently, there are more than 30 proteins approved for clinical use, in addition to hundreds of therapeutic protein genes that have been expressed at the laboratory level and that studies continue to demonstrate their clinical adequacy.

REFERENCES

  • Ramos, M. et al. El código genético, el secreto de la vida (2017) RBA Libros
  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Naukas
  • Vix
  • Main picture: UniversList

MireiaRamos-angles2

La insulina: punto a favor para los transgénicos

A pesar de los argumentos y posiciones en contra de los transgénicos, es innegable que la insulina es un gran éxito transgénico. Es imprescindible en algunos tipos de diabetes; y desde que se descubrió la esperanza de vida de las personas diabéticas ha aumentado más de 45 años. Por ello, conozcámosla en detalle.

RECORDATORIO DE LA INGENIERÍA GENÉTICA

La ingeniería genética permite clonar, es decir, multiplicar fragmentos de ADN y producir las proteínas para las cuales estos genes codifican en organismos diferentes al de origen. Es decir, si en un organismo hay una alteración o mutación de un gen que impide que el código genético lo traduzca a proteínas, con las técnicas del ADN recombinante se obtiene un gen sin la mutación en otro organismo. Así, es posible obtener proteínas de interés en organismos diferentes del original del cual se extrajo el gen, mejorar cultivos y animales, producir fármacos y obtener proteínas que utilizan diferentes industrias en sus procesos de elaboración. En otros términos, mediante la ingeniería genética se obtienen los famosos transgénicos.

Ofrecen muchas posibilidades en el uso industrial de los microorganismos con aplicaciones que van desde la producción recombinante de fármacos terapéuticos y vacunas hasta productos alimentarios y agrícolas. Pero, además, tienen un papel prometedor en la medicina y en la cura de enfermedades.

Y es que la consecuencia de obtener un ADN recombinante, a partir de éste, se fabricará una nueva proteína, denominada proteína recombinante. Ejemplo de esto es el caso de la insulina.

¿QUÉ ES LA INSULINA?

La insulina es una hormona producida en el páncreas y con un papel importante en el proceso metabólico. Insulina proviene del latín insulae, que significa isla. Su nombre se debe a que dentro del páncreas, la insulina se produce en las isletas de Langerhans. El páncreas está relacionado con el funcionamiento general del organismo. Se sitúa en el abdomen y está rodeado por órganos como el hígado, el bazo, el estómago, el intestino delgado y la vesícula.

Gracias a ella utilizamos la energía de los alimentos que entran a nuestro cuerpo. Y esto ocurre porque permite que la glucosa ingrese en nuestro organismo. Es así como nos proporciona la energía necesaria para las actividades que debemos realizar, desde respirar hasta correr (Video 1).

Video 1. La insulina, la glucosa y tú (video en inglés con subtítulos en castellano) (Fuente: YouTube)

¿CÓMO FUNCIONA LA INSULINA?

La insulina ayuda a la glucosa a entrar a las células, como una llave que abre la cerradura de las puertas de la célula para que la glucosa, que es el azúcar en sangre, entre y sea utilizada como energía (Figura 1). Si la glucosa no puede entrar porque no hay la llave que abra la puerta, como pasa con las personas que sufren diabetes, se acumula la glucosa en la sangre. Una acumulación de azúcar en sangre puede causar complicaciones a largo plazo. Por eso es importante que las personas diabéticas se inyecten insulina.

7-768x768
Figura 1. Esquema del funcionamiento de la insulina en las células (Fuente: Encuentra tu balance)

¿POR QUÉ INSULINA TRANSGÉNICA?

Primeramente, se utilizaba la insulina obtenida de animales como perros, cerdos o vacas. Pero aunque, sobre todo, la insulina de cerdo era muy similar a la humana, no era idéntica y contenía algunas impurezas. Este hecho provocaba rechazo y, en algunos casos, alergias. Además, al ser obtenida del páncreas de los cerdos, por cada páncreas sólo se conseguía insulina para el tratamiento de 3 días (a más del coste del cuidado del animal). El resultado era de bajo rendimiento y altos costes.

Pero con las insulinas de ADN recombinante se obtiene mayor cantidad a un menor coste. Por este motivo, actualmente, se obtiene la insulina original de un humano de la ingeniería genética, pese a que las insulinas animales siguen siendo una alternativa perfectamente aceptable.

Mediante la ingeniería genética se ha conseguido producir insulina a partir de la bacteria E. coli. Fue en 1978 cuando se consiguió obtener la secuencia de la insulina e introducirla en el interior de la bacteria para que ésta produjera la insulina. Es así como E. coli ha pasado de ser una bacteria corriente a una fábrica de producción de insulina. La insulina se extrae de la bacteria, se purifica y se comercializa como medicamento.

Las ventajas de la insulina “humana”, obtenida por ingeniería genética son el fácil mantenimiento de las bacterias, una mayor cantidad de producción y con menores costes. Además, la compatibilidad de esta insulina es del 100%, no obstante puede haber reacciones debido a otros componentes.

A escala industrial, la producción de proteínas recombinantes engloba diferentes etapas. Estas etapas son la fermentación, en que las bacterias son cultivadas en medios de cultivo nutritivo; la extracción para recuperar todas las proteínas de su interior, la purificación, que separa la proteína recombinante de las otras proteínas bacterianas; y finalmente la formulación, donde la proteína recombinante es modificada para conseguir una forma estable y estéril que puede administrarse terapéuticamente.

Cada una de las anteriores fases implica un manejo muy cuidadoso de los materiales y un estricto control de calidad para optimizar la extracción, la pureza, la actividad y la estabilidad del fármaco. Este proceso puede ser simple o más complejo dependiendo del producto y del tipo de célula utilizada. Aunque la complejidad del proceso aumentaría el costo final del producto, el valor no llegará a sobrepasar el gasto de aislar el compuesto desde su fuente original para llegar a cantidades medicinales, que es lo que hemos demostrado con la insulina. Es decir, que producir insulina humana tiene un coste menor que obtener la insulina de cerdos.

La ingeniería genética permite que numerosas proteínas potencialmente terapéuticas puedan elaborarse en grandes cantidades. Actualmente, existen más de 30 proteínas aprobadas para su uso clínico, además de cientos de genes de proteínas terapéuticas que se han expresado a nivel de laboratorio y que se siguen haciendo estudios para demostrar su adecuación clínica.

REFERENCIAS

  • Ramos, M. et al. El código genético, el secreto de la vida (2017) RBA Libros
  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Naukas
  • Vix
  • Foto portada: UniversList

MireiaRamos-castella2

La insulina: punt a favor pels transgènics

Tot i els arguments i les posicions en contra dels transgènics, és innegable que la insulina és un gran èxit transgènic. És imprescindible en alguns tipus de diabetis; i des de que s’ha descobert, l’esperança de vida de les persones diabètiques ha augmentat més de 45 anys. Per això, és necessari que la coneguem en detall.

RECORDATORI DE L’ENGINYERIA GENÈTICA

L’enginyeria genètica permet clonar, és a dir, multiplicar fragments d’ADN i produir les proteïnes per les quals aquests gens codifiquen en organismes diferents als de l’origen. És a dir, si en un organisme hi ha una alteració o mutació d’un gen que impedeix que el codi genètic ho tradueixi a proteïnes, amb les tècniques de l’ADN recombinant s’obté un gen sense la mutació en un altre organisme. Així, és possible obtenir proteïnes d’interès en organismes diferents de l’original del qual s’extreu el gen, millorar cultius i animals, produir fàrmacs i obtenir proteïnes que utilitzen diferents indústries en els seus processos d’elaboració. En altres termes, amb l’enginyeria genètica s’obtenen els famosos transgènics.

Ofereixen moltes possibilitats en l’ús industrial dels microorganismes amb aplicacions que van des de la producció recombinant de fàrmacs terapèutics i vacunes fins a productes alimentaris i agrícoles. Però, a més, tenen un paper prometedor en la medicina i en la cura de malalties.

I és que la conseqüència d’obtenir un ADN recombinant, a partir d’aquest, és fabricar una nova proteïna, denominada proteïna recombinant. Exemple d’això és el cas de la insulina.

QUÈ ÉS LA INSULINA?

La insulina és una hormona produïda en el pàncrees i amb un paper important en el procés metabòlic. Insulina prové del llatí insulae, que significa illa. El seu nom es deu a que dins el pàncrees, la insulina es produeix en les illes de Langerhans. El pàncrees està relacionat amb el funcionament general de l’organisme. Es situa a l’abdomen i està rodejat per òrgans com el fetge, la melsa, l’estómac, l’intestí prim i la vesícula.

Gràcies a ella utilitzem l’energia dels aliments que entren al nostre cos. I això passa perquè permet que la glucosa ingressi en el nostre organisme. És així com ens proporciona l’energia necessària per les activitats que hem de realitzar, des de respirar fins a córrer (Vídeo 1).

Vídeo 1. La insulina, la glucosa i tu (vídeo en anglès amb subtítols en castellà) (Font: YouTube)

COM FUNCIONA LA INSULINA?

La insulina ajuda a la glucosa a entrar a les cèl·lules, com una clau que obre el pany de les portes de la cèl·lula perquè la glucosa, que és el sucre en sang, entri i sigui utilitzada com a energia (Figura 1). Si la glucosa no pot entrar perquè no hi ha la clau que obri la porta, com els passa a les persones que pateixen diabetis, s’acumula la glucosa en la sang. Una acumulació de sucre a la sang pot causar complicacions a llarg termini. Per això és important que les persones diabètiques s’injecten insulina.

7-768x768
Figura 1. Esquema del funcionament de la insulina en les cèl·lules (Font: Encuentra tu balance)

¿PER QUÈ INSULINA TRANSGÈNICA?

Primerament, s’utilitzava la insulina obtinguda d’animals com gossos, porcs o vaques. Però tot i que la insulina de porc era molt similar a la humana, no era idèntica i contenia algunes impureses. Aquest fet provocava rebuig i, en alguns casos, al·lèrgies. A més, al ser obtinguda del pàncrees dels porcs, per cada pàncrees només s’aconseguia insulina pel tractament de 3 dies (a més dels cost del manteniment de l’animal). El resultat era de baix rendiment i alts costos.

Però amb les insulines de l’ADN recombinant s’obté una major quantitat a un menor preu. Per aquest motiu, actualment, s’obté la insulina original d’humà de la enginyeria genètica, tot i que les insulines animals segueixen sent una alternativa perfectament acceptable.

Mitjançant l’enginyeria genètica s’ha aconseguit produir insulina a partir de la bactèria E. coli. Va ser al 1978 quan es va aconseguir obtenir la seqüència de la insulina i introduir-la a l’interior de la bactèria perquè aquesta produís insulina. És així com E. coli ha passat de ser una bactèria corrent a una fàbrica de producció d’insulina. La insulina s’extreu de la bactèria, es purifica i es comercialitza com a medicament.

Els avantatges de la insulina “humana”, obtinguda per enginyeria genètica, són el fàcil manteniment de les bactèries, una major quantitat de producció i amb menors costos. A més a més, la comptabilitat d’aquesta insulina és del 100%, no obstant poden haver reaccions degut a altres components.

A escala industrial, la producció de proteïnes recombinants engloba diferents etapes. Aquestes etapes són la fermentació, en què les bactèries són cultivades en medis de cultius nutritius; l’extracció per recuperar totes les proteïnes del seu interior, la purificació, que separa la proteïna recombinant de les altres proteïnes bacterianes; i finalment la formulació, on la proteïna recombinant és modificada per aconseguir una forma estable i estèril que pot administrar-se terapèuticament.

Cada una de les anteriors fases implica una manipulació molt curosa dels materials i un estricte control de qualitat per optimitzar l’extracció, la puresa, l’activitat i l’estabilitat del fàrmac. Aquest procés pot ser simple o més complex depenent del producte i del tipus de cèl·lula utilitzada. Tot i que la complexitat del procés augmentaria el cost final del producte, el valor no arribarà a sobrepassar el cost d’aïllar el compost des de la seva font original per arribar a quantitats medicinals, que és el que s’ha demostrat amb la insulina. És a dir, que produir insulina humana té un menor cost que obtenir la insulina de porcs.

L’enginyeria genètica permet que nombroses proteïnes potencialment terapèutiques puguin elaborar-se en grans quantitats. Actualment, existeixen més de 30 proteïnes aprovades pel seu ús clínic, a més de centenars de gens de proteïnes terapèutiques que s’han expressat a nivell de laboratori i que es segueixen fent estudis per demostrar la seva adequació clínica.

REFERÈNCIES

  • Ramos, M. et al. El código genético, el secreto de la vida (2017) RBA Libros
  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Naukas
  • Vix
  • Foto portada: UniversList

MireiaRamos-catala2

 

Basic Microbiology (I): invisible world

The 7 September 1674 Anton van Leeuwenhoek said having watched a few tiny animals in a drop of water. What you referred to the concept of tiny animals? In many of our articles we refer to these organisms. Read on to start your journey into the fascinating world of the invisible. 

A MICROSCOPIC WORLD

“They are imperceptible to the naked eye and abounded in such a way that the water seemed to be alive.” From a simple sample of water, Anton Leeuwenhoek concluded that there were tiny living organisms that were impossible to observe with the naked eye. With the help of a rudimentary microscope, he described the first microorganisms.

o_Leeuwenhoek
A world microscopic drawings of Leeuwenhoek over what he described as tiny animals. (Photo: Miguel Vicente, Madrimasd).

The concept of microorganism refers to a heterogeneous group of organisms that can only be displayed with the help of microscopes, since they have sizes lower than the limits of vision of humans (approximately 0.1 mm). They may be prokaryotic (bacteria), eukaryotic (Protozoa, algae, fungi…) and even entities acellular, as it would be the case of the virus. These organisms are measured by submultiples of the metro, more specifically in micrometers (μm, thousandth of a millimeter) and nanometers (nm, millionth of a millimeter).

mc3baltiplos-delmetro
The submultiples of the metro table (photo: Science Park).

This small size has its advantages: a high surface to volume ratio. This factor has an important biological effect. For example, the smaller cells tend to grow and multiply more quickly due to a rapid exchange of nutrients. Be reduced in size on the other hand, favors a more rapid evolution already that to multiply more quickly significantly increases the frequency of mutations (remember that mutations are the raw material of evolution). In addition, microorganisms more quickly adapt to the environment.

Let’s look at the different sizes that can be found in this large group of microorganisms. In the image below we can see a simple comparison between the various organisms and cells.

tamaño
Different microorganisms and cells size scale. (Photo: Isabel Etayo).

BACTERIA

This group of prokaryotes is characterized by a size that includes more than 700 μm and 0.2 μm. It should be noted that this group presents varied morphologies and therefore some are measured by diameter (spherical bacteria or coconuts) or by thickness and height (elongated bacteria or bacilli). A prokaryote’s average size is between 0.5 μm and 4 μm. The bacterium Escherichia coli is usually of approximately of 2 μm x 1 μm. In a small space, as the diameter of the point that there is at the end of this sentence would fit some 500 E. coli.

universidad_granada
Size comparative diagram of different bacteria. (Photo: University of Granada).

The largest known bacterium is Thiomargarita namibiensis. This prokaryote was found in Namibia in 1999. Its size is 750 μm in diameter (0.75 mm), so they are almost visible to the naked eye. These microorganisms usually present as large as some nutrient storage mechanism, in this case sulfur. Another great example is that of Epulopiscium fishelsoni with a size of 600 μm. On the right side of the picture below we can see the comparison of the latter with  E. coli.

t-nami
A. Picture of Thiomargarita namibiensis, of about 750 micrometers. B. comparison between Epulopiscium fishelsoni and E. coli. (Photos: Science Policy)

Having a microscopic size isn’t all advantages, it is obvious that there should be a lower limit. Sizes less than 0.15 μm in a bacterium would be almost impossible. Mycoplasma pneumoniae is the smallest bacterium, with a diameter of 0.2 μm. This is a bacterium without a cell wall which can be purchased in many different ways. Following the example of the final point, at 1 mm diameter would fit 5000 bacteria size of Mycoplasma pneumoniae.

VIRUSES

In general, viruses have sizes much smaller than bacteria. They usually have sizes ranging from 20 to 300 nm. So the virus can be up to one hundred times smaller than a bacterium like E. coli. 

fig1
Comparison of sizes of different virus and E. coli. (Photo: diversidad microbiana)

The largest known virus is the Mimivirus. This presents 600 nm in diameter (larger than Mycoplasma pneumoniae). In the image below, you can see the comparison between the size of these giant virus and Rickettsia conorii (bacteria that causes human Boutonneuse Fever).

mimi-conorii
Comparison between Mimivirus and Rickettsia conorii. (Photo: byte Size Biology)

The Polio virus is one of the smallest viruses that are known, with a size of 20 nm (0.02 μm). If we could observe how many polio virus would fit on the point of the end of the sentence, would find some 50000 polio viral particles.

MICROSCOPIC EUKARYOTES

In Protozoa, the size remains varied. The average size is usually 250 μm in length. Even so, small protozoa as bacteria can be found (between 2 and 3 μm, like for example the Leishmania or Babesia) or large protozoa visible to the naked eye (from 16 mm in the case of Porospora gigantea). In the case of Leishmania can be seen as almost a hundred of bodies (thin arrow) can live inside a macrophage of a 30 μm (coarse black arrow).

preview
Leishmania inside a macrophage (black arrow). The bar represents about 20 micrometers. (Photo: Thatawan Pothirat).

Microscopic fungi, such as yeasts, include sizes 6-20 μm. The best-known yeast is Saccharomyces cerevisiae with a size of oscillates between the 6 and 12 μm depending on its stage of ripeness. In the image below we can see an example very clear.

_2a858f0f_1360aa12e70__8000_00000000
Size of the cells of Saccharomyces cerevisiae. (Photo: Easy notes).

·

“No view has reached my eye more pleasurable than this of so many living creatures within a small drop of water”. Anton Leeuwenhoek, in 1974, discovered an incredible invisible world.

REFERENCES

  • Brock, Biología de los microorganismos. Editorial Pearson.
  • Ignacio López-Goñi. Virus y Pandemias. Editorial Naukas.
  • Cover Photo: Escuela y Ciencia.

Maribel-anglès

Microbiología básica (I): el mundo invisible

El 7 de Septiembre de 1674, Anton van Leeuwenhoek afirmó haber observado unos minúsculos animálculos en una gota de agua. ¿A qué se refería con el concepto de animálculos? En muchos de nuestros artículos hacemos referencia a estos organismos. Sigue leyendo e inicia tu viaje en el fascinante mundo invisible. 

UN MUNDO MICROSCÓPICO

“Los animálculos son animales imperceptibles a simple vista y abundaban de tal manera que el agua parecía estar viva”. De una simple muestra de agua, Anton Leeuwenhoek concluyó que en el mundo había organismos vivos diminutos imposibles de observar a simple vista. Con la ayuda de un rudimentario pero eficiente microscopio, describió los primeros microorganismos (con permiso de Robert Hooke, el primero en describir estructuras microscópicas de ciertos hongos).

o_Leeuwenhoek
Dibujos de Leeuwenhoek sobre lo que definió como animálculos. (Foto: Miguel Vicente, Madrimasd).

El concepto de microorganismo hace referencia a un grupo heterogéneo de organismos que sólo se pueden visualizar con la ayuda de microscopios, ya que presentan tamaños inferiores a los límites de visión de los humanos (aproximadamente 0,1 mm). Pueden ser procariotas (bacterias), eucariotas (protozoos, algas, hongos…) e incluso entidades biológicas acelulares, como seria el caso de los virus. Estos organismos se miden mediante submúltiplos del metro, más concretamente en micrómetros (μm, milésima parte de un milímetro)  y nanómetros (nm, millonésima de milímetro).

mc3baltiplos-delmetro
Tabla de los submúltiplos del metro (Foto: Parque Ciencia).

Este tamaño tan pequeño tiene sus ventajas: una relación superficie/volumen elevada. Este factor tiene un importante efecto biológico. Por ejemplo, las células más pequeñas tienden a crecer y multiplicarse más rápido debido a un rápido intercambio de nutrientes. Por otro lado, ser de tamaño reducido favorece una evolución más rápida, es decir, al multiplicarse más rápido la frecuencia de las mutaciones aumenta significativamente ( recuerde que las mutaciones son la materia prima de la evolución). Además, los microorganismos se adaptan más rápidamente a las condiciones ambientales del medio.

Analicemos pues, los diferentes tamaños que podemos encontrar en este gran grupo de los microorganismos. En la imagen inferior podemos observar una comparativa sencilla entre los diferentes microorganismos y células.

tamaño
Escala de tamaño de diferentes microorganismos y células. (Foto: Isabel Etayo).

BACTERIAS

Este grupo de procariotas se caracteriza por presentar un tamaño que comprende entre los 0,2 μm y más de 700 μm. Hay que destacar que este grupo presenta morfologías muy variadas y, por tanto, algunos se miden por el  diámetro (bacterias esféricas o cocos) o por el grosor y la altura (bacterias alargadas o bacilos). El tamaño de un procariota de tipo medio es entre 0,5 μm y 4 μm. La bacteria Escherichia coli, modelo de estudio, suele ser de aproximadamente 2 μm x 1 μm. En un espacio pequeño, como el diámetro del punto que hay al final de esta frase cabrían unas 500 E.coli.

universidad_granada
Esquema comparativo del tamaño diferentes bacterias. (Foto: Universidad de Granada).

La bacteria más grande conocida hasta el momento es Thiomargarita namibiensis. Esta procariota fue encontrada en Namibia en 1999. Su tamaño es de 750 μm de diámetro (0,75 mm), de modo que son casi visibles a simple vista. Generalmente estos microorganismos presentan un tamaño tan grande como mecanismo de almacenamiento de algún nutriente, en este caso azufre. Otro gran ejemplo es el de Epulopiscium fishelsoni con un tamaño de 600 μm. En la parte derecha de la imagen inferior podemos observar la comparativa de este último con E.coli.

t-nami
A. Imagen de Thiomargarita namibiensis, de unos 750 micrómetros. B. Comparación entre Epulopiscium fishelsoni y E.coli. (Fotos: Science Policy)

Podría deducirse que tener un tamaño microscópico es todo ventajas, pero es obvio que debe existir un límite inferior. Tamaños inferiores a 0.15 μm serían casi imposibles en una bacteria. Mycoplasma pneumoniae es la bacteria más pequeña, con un diámetro de 0,2μm. Esta es una bacteria sin pared celular que puede adquirir muchas formas diferentes. Siguiendo el ejemplo del punto final, en su diámetro de 1 mm cabrían 5000 bacterias de tamaño de  Mycoplasma pneumoniae.

VIRUS

En general, los virus presentan tamaños mucho menores que las bacterias. Suelen tener tamaños comprendidos entre los 20 y los 300 nm. Por tanto los virus pueden ser hasta cien veces más pequeños que una bacteria de tipo medio.

fig1
Comparación de los tamaños de diferentes virus y E.coli. (Foto: Diversidad microbiana)

El virus más grande conocido es Mimivirus. Este presenta un diámetro de 600 nm, es decir, 0,6 μm (más grande que  Mycoplasma pneumoniae). En la imagen inferior, podemos observar la comparación entre el tamaño de estos virus gigantes y  Rickettsia conorii (bacteria que provoca la fiebre botonosa mediterránea en humanos).

mimi-conorii
Comparación entre el tamaño de Mimivirus y Rickettsia conorii. (Foto: Bytes Size Biology)

El virus de la Polio es uno de los virus más pequeños que se conocen, con un tamaño de 20 nm (osea, 0.02 μm). Si pudieramos observar cuantos virus de la polio cabrían en el punto del final de la frase, encontraríamos unas 50.000 partículas víricas de polio.

EUCARIOTAS MICROSCÓPICOS

En los protozoos, el tamaño sigue siendo muy variado. El tamaño medio suele ser de 250 μm de longitud. Aún así, podemos encontrar protozoos pequeños como bacterias (entre 2 y 3 μm, como por ejemplo la Leishmania o Babesia) o grandes protozoos visibles a simple vista (de 16 mm en el caso de Porospora gigantea). En el caso de Leishmania podemos observar como cerca de un centenar de organismos (flecha fina) pueden vivir en el interior de un macrófago de unos 30 μm (flecha negra gruesa).

preview
Amastigotas de Leishmania en el interior de un macrófago (flecha negra). La barra representa unos 20 micrómetros. (Foto: Thatawan Pothirat).

En el caso de los hongos micróscopicos, como las levaduras, comprenden tamaños entre 6 y 20 μm. La levadura más conocida es Saccharomyces cerevisiae con un tamaño de oscila entre los 6 y 12 μm dependiendo de su fase de maduración. En la imagen inferior podemos ver un ejemplo muy claro.

_2a858f0f_1360aa12e70__8000_00000000
Tamaño de las células de Saccharomyces cerevisiae. (Foto: Easy notes).

·

“Ninguna vista ha alcanzado mi ojo más placentera que esta de tantas criaturas vivas dentro de una pequeña gota de agua”. Anton Leeuwenhoek, en 1974, descubrió un increíble y fascinante mundo invisible. 

REFERENCIAS

  • Brock, Biología de los microorganismos. Editorial Pearson.
  • Ignacio López-Goñi. Virus y Pandemias. Editorial Naukas.
  • Foto de portada: Escuela y ciencia.

Maribel-castellà

Microbiologia Bàsica (I): un món invisible

Anton van Leeuwenhoek va afirmar, el 7 de Setembre de 1674, haver observat uns animálculs en una petita gota d’aigua. A què es referia amb aquest concepte? En molts dels nostres articles n’hi farem referència. Així que, no ho dubtis, segueix llegint i descobreix aquest fascinant món invisible. 

EL MÓN MICROSCÒPIC

“Aquests animálculs són imperceptibles a simple vista i abunden de manera que l’aigua pareix estar viva”. Aquestes paraules foren les emprades per Anton van Leeuwenhoek per descriure el món microscòpic que acabava de descobrir. Amb un rudimentari microscopi va descriure els primers microorganismes procariotes. Cal destacar que Robert Hooke ja havia descrit algunes hifes microscòpiques.

o_Leeuwenhoek
Dibuixos de Leeuwenhoek sobre els seus animálculs. (Imatge: Miguel Vicente, Madrimasd).

El terme microorganisme fa referència a un grup d’organismes molt heterogeni que tenen en comú una mida tan petita que no es poden veure a simple vista (només amb instruments adients com els microscopis). Aquests poden ser procariotes (bacteris), eucariotes (protozous, algues, fongs…) i estructures biològiques acel·lulars com els virus. Aquests organismes es mesuren mitjançant submúltiples del metre, concretament el micròmetre (mil·lèssima part d’un mil·límetre) o el nanòmetre (milionèssima part d’un mil·límetre).

mc3baltiplos-delmetro
Taula dels submúltiples del metre (Imatge: Parque Ciencia).

Aquesta mida microscòpica té els seus avantatges gràcies a  l’elevada relació superfície/volum. Aquest factor té un important efecte en la biologia d’aquests organismes. Per exemple, les cèl·lules més petites tenen una major capacitat de divisió i creixen més ràpidament. Per altra banda, aquesta mida afavoreix a l’evolució més ràpida dels organismes, ja que la seva freqüència de mutació és més gran. També tenen una major capacitat d’adaptació al medi, ja que presenten un intercanvi de nutrients més ràpid que altres cèl·lules més grans.

En aquest article, analitzem les diferents mides dels organismes que podem trobar en aquest grup tan gran. A la imatge que es troba a continuació, trobem una comparativa senzilla i molt interessant.

tamaño
Escala de tamany de diferents microorganismes i cèl·lules. (Foto: Isabel Etayo).

BACTERIS

Aquest grup es caracteritza per presentar mides compreses entre els 0,2 i més de 700 μm. Cal recordar que els bacteris presenten morfologies molt variades i per tant, alguns es mesuren en funció del diàmetre i d’altres en funció de la longitud. La mida d’un procariota estàndard es d’entre 0,5 i 4 μm. Escherichia coli, model d’estudi, presenta una longitud de 2 μm, així doncs, en un espai tan petit com el punt  final d’aquesta oració, hi trobaríem unes 500 E.coli.

universidad_granada
Esquema comparatiu de la mida de diferents bacteris. (Imatge: Universidad de Granada).

El bacteri més gran conegut fins al moment és Thiomargarita namibiensis. Va ser descoberta l’any 1999 a Namíbia i presenta un diàmetre de 750 μm, fet que la fa visible a simple vista (ja que el límit de visió humana és de 0,1 mm). Generalment aquests microorganismes tenen mides tan grans com a mecanisme per l’acumulació de nutrients, en aquest cas sofre. Un altre exemple molt interessant és Epilopiscium fishelsoni amb una mida de 600 μm de longitud. A la part dreta de la imatge següent, podem veure la comparació entre una E.coli i Epulopiscium.

t-nami
A. Imatge de Thiomargarita namibiensis, aproximadament uns 750 micrómetres. B. Comparació entre Epulopiscium fishelsoni i E.coli. (Fotos: Science Policy)

Podríem creure que tenir una mida microscòpica només pot tenir avantatges, però òbviament ha d’existir un límit de mida (en el cas dels bacteris es tracta de 0,15 μm). Un dels bacteris més petits és Mycoplasma pneumoniae amb un diàmetre de 0,2μm. Si seguim amb l’exemple del pun final, en el seu diàmetre d’1 mm podríem trobar 5000 bacteris de la mida de Mycoplasma pneumoniae.

VIRUS

En general, aquestes formes acel·lulars presenten mides molt més petites que els bacteris i es mesuren en nanòmetres. Solen tenir una mida entre els 20 i 300 nm. Per tant, els virus són gairebé 100 vegades més petits que E.coli, per exemple.

fig1
Comparació de les mides de diferents virus i E.coli. (Imatge: Diversidad microbiana)

El virus més gran que es coneix pertany a la família dels Mimivirus. Aquests presenten de mitjana un diàmetre de 600 nm, és a dir, 0,6 μm (són més grans que els bacteris més petites). A la imatge inferior, podem observar una comparativa entre la grandària d’un Mimivirus i Rickettsia conorii (bacteri que provoca la febre botonosa del mediterrani als humans).

mimi-conorii
Comparació entre Mimivirus i Rickettsia conorii. (Imatge: Bytes Size Biology)

Alguns virus, com el de la Polio, tenen una mida molt petita (uns 20 nm). Si poguéssim observar la quantitat de partícules víriques (0,02 micròmetres)  hi ha al punt final (1 mm de diàmetre), trobaríem unes 50000 partÍcules.

EUCARIOTES MICROSCÒPICS

En els organismes microscòpics eucariòtics la mida és molt variable. La mitjana de dimensió dels protozous, per exemple, és de 250  μm. Tot i això, podem trobar protozous molt petits  (entre 2 i 3  μm, com Leishmania o Babesia) o grans i en certs casos, visibles a simple vista (com per exemple, Porospora gigantea). Les formes més petites de Leishmania poden viure en centenars dins un macròfag de 30 μm de diàmetre (Imatge inferior).

preview
Amastigotas de Leishmania a l’interior d’un macròfag (fletxa negra). La barra representa uns 20 micròmetres. (Imatge: Thatawan Pothirat).

En el cas dels fongs microscòpics, com els llevats, les mides oscil·len entre 6 i 20  μm. El llevat més conegut, Saccharomyces cerevisiae, presenta un diàmetre d’entre 6 i 12  μm en funció del seu estat de maduració.

_2a858f0f_1360aa12e70__8000_00000000
Mida de las cèl·lules de Saccharomyces cerevisiae. (Imatge: Easy notes).

 

·

“Cap vista més plaent han conegut els meus ulls, que aquesta de tantes criatures vives dins una petita gota d’aigua”. Anton van Leeuwenhoek va descobrir l’any 1674 un increïble i fascinant món invisible.

REFERÈNCIES

  • Brock, Biología de los microorganismos. Editorial Pearson.
  • Ignacio López-Goñi. Virus y Pandemias. Editorial Naukas.
  • Imatge de portada: Escuela y ciencia.

Maribel-català