Arxiu d'etiquetes: eficacia biológica

Plantas y animales también pueden vivir en matrimonio

Cuando pensamos en la vida de las plantas se hace difícil imaginarla sin la interacción con los animales, puesto que estos día a día establecen diferentes relaciones simbióticas con ellas. Entre estas relaciones simbióticas encontramos la herbívora, o el caso contrario, el de las plantas carnívoras. Pero, hay muchas otras interacciones súper importantes entre plantas y animales, como la que lleva a estos organismos a ayudarse los unos a los otros y a convivir juntos. Por eso, esta vez os quiero presentar el mutualismo entre plantas y animales.

Y ¿qué es el mutualismo? Pues es la relación que se establece entre dos organismos en la que ambos se benefician de la convivencia en conjunto, es decir, los dos consiguen una recompensa cuando viven en compañía. Esta relación consigue aumentar su eficacia biológica (fitness) por lo que existe una tendencia de los dos organismos a convivir siempre juntos.

Según esta definición tanto polinización como dispersión de semillas a través de animales son casos de mutualismo. Veámoslo.

POLINIZACIÓN POR ANIMALES

Muchas plantas reciben visitas a sus flores por parte de animales que pretenden alimentarse del néctar, del polen o de otros azúcares que éstas producen y a cambio transportan polen hacia otras flores, permitiendo que este llegue al estigma de una manera muy eficaz. Así, la planta obtiene el beneficio de la fecundación con un coste de producción menor de polen que el que supondría dispersarlo por el aire (el cual llegaría con menor probabilidad al estigma de otras flores). Y los animales a cambio obtienen como recompensa el alimento. Se establece así una verdadera relación de mutualismo entre los dos organismos.

 “Video:The Beauty of Pollination” – Super Soul Sunday – Oprah Winfrey Network (www.youtube.com)

El caso extremo de mutualismo se da cuando estas especies evolucionan una dependiendo de la otra, es decir, cuando se da coevolución. Entendemos por coevolución esas adaptaciones evolutivas que permiten a los dos o más organismos establecer una relación de simbiosis estrecha, ya que las adaptaciones evolutivas de uno influyen en las adaptaciones evolutivas del otro organismo. Por ejemplo esto se da entre varías orquídeas  y sus polinizadores, como es el conocido caso de la Orquídea de Darwin. Pero hay muchas otras plantas que también han coevolucionado con sus polinizadores, como la higuera  o la yuca.

De ninguna manera esto se debe confundir con el engaño que algunas plantas producen sobre sus polinizadores, los cuales no obtienen ningún beneficio directo. Por ejemplo, algunas orquídeas también atraen a sus polinizadores a través de olores (feromonas) y de sus curiosas formas que se asemejan a las hembras del polinizador, haciendo que éste se acerque a ellas para copularlas y quede impregnado de polen que será transportado a otras flores gracias al mismo engaño.

14374841786_121feb4632_o.jpg
Orquídea abejera (Ophrys apifera) (Autor: Bernard DUPONT, flickr).

DISPERSIÓN DE SEMILLAS POR ANIMALES

La dispersión de semillas por animales se considera que ha tenido lugar gracias a un proceso coevolutivo entre los animales y los mecanismos de dispersión de las semillas en el cual tanto plantas como animales obtienen un beneficio. Lo más probable es que este proceso se iniciara en el Carbonífero (~300MA), donde ya se cree que algunas plantas como las cícadas desarrollaban unos falsos frutos carnosos que podrían ser consumidos por reptiles primitivos que actuarían de agentes dispersores de semillas. Este proceso se habría intensificado con la diversificación de las plantas con flores (Angiospermas) y de pequeños mamíferos y aves durante el Cretácico (65-12MA), hecho que permitió la diversificación de los mecanismos de dispersión y de las estructuras del fruto.

El mutualismo se puede dar de dos maneras dentro de la dispersión de semillas por animales.

El primer caso la llevan a cabo los dispersores que ingieren semillas o frutos que expulsaran posteriormente, sin ser digeridos, por defecación o regurgitación. Los frutos y semillas preparados para este caso son portadores de recompensas o señuelos, con los que a la vez atraen a sus agentes dispersantes, ya que los frutos suelen ser carnosos, dulces y a menudo tienen colores vistosos o emiten olores para atraer a los animales.

Por ejemplo, Acacia cyclops forma unas vainas que contienen semillas rodeadas por eleosomas (sustancias muy nutritivas formadas normalmente por aceites) que son mucho más grandes que la propia semilla. Esto supone un coste elevado de energía por parte de la planta, ya que no solo tiene que hacer las semillas sino que también tiene que formar esta recompensa. Pero a cambio, la cacatúa Galah (Eolophus roseicapillus) transporta a larga distancia sus semillas, ya que al alimentarse de este eleosoma ingiere las semillas que serán transportadas por su vuelo a larga distancia hasta que sean expulsadas por defecación en otros lugares.

Cacatua_Acacia.jpg
Izquierda, Cacatúa Galah (Eolophus roseicapillus) (Autor: Richard Fisher, flickr) ; Derecha, Vainas de Acacia cyclops (semillas negras, eleosoma rosa) (Autor: Sydney Oats, flickr).

Y el otro tipo de dispersión de semillas por animales que establece una relación de mutualismo es aquel donde las diásporas son recogidas por el animal en época de abundancia y las entierra para disponer de ellas como alimento cuando tenga necesidad. Pero no todas son comidas y algunas germinan.

3748563123_eeb32302cf_o.jpg
Ardilla recogiendo frutos (Autor: William Murphy, flickr)

Pero no todo acaba aquí, puesto que hay otros ejemplos bien curiosos y menos conocidos que de alguna manera han hecho que tanto animales como plantas vivan juntos en un perfecto “matrimonio”.  Veamos un par de ejemplos:

Azteca y Cecropia

Las plantas del género Cecropia viven en los bosques tropicales húmedos de Centroamérica y Sudamérica, siendo unas grandes luchadoras. Su estrategia por conseguir alzarse y captar luz evitando la competencia con otras plantas ha sido la firme relación que mantienen con las hormigas del género Azteca.

Las plantas proporcionan nidos a las hormigas, puesto que sus tallos terminales son normalmente huecos y septados (con separaciones) lo que les permite a las hormigas habitarlas por dentro, y además las plantas también producen cuerpos müllerianos, que son pequeños cuerpos alimenticios ricos en glicógeno de los cuales las hormigas se alimentan. A cambio, las hormigas protegen a Cecropia de lianas o bejucos, otorgando un gran éxito como planta pionera.

Ant Plants: CecropiaAzteca Symbiosis (www.youtube.com)

Marcgravia y murciélagos

Hace pocos años se ha descubierto que una planta de Cuba polinizada por murciélagos ha evolucionado dando pie a hojas modificadas que actúan como antena parabólica para la ecolocalización (radar) de los murciélagos. Es decir, su forma facilita que los murciélagos la localicen rápidamente lo que les permite recolectar néctar de manera más eficaz y a las plantas ser polinizadas con mayor éxito, ya que los murciélagos se desplazan rápidamente visitando cientos de flores cada noche para alimentarse.

6762814709_6dfaf49fff_o.jpg
Marcgravia (Autor: Alex Popovkin, Bahia, Brazil, Flickr)

 

En general, vemos que la vida de las plantas depende mucho de la vida de los animales, ya que estos están conectados de una forma u otra. Toda estas interacciones que hemos presentado forman parte de un conjunto aún mayor que hacen de la vida una más compleja y peculiar, en la que la vida de uno no se explica sin la vida del otro. Por este motivo, podemos decir que la vida de algunos animales y algunas plantas se asemeja a un matrimonio.

Difusió-castellà

REFERENCIAS

  • Apuntes obtenidos en diversas asignaturas durante la realización del Grado de Biología Ambiental (Universidad Autónoma de Barcelona) y el Máster de Biodiversidad (Universidad de Barcelona).
  • Bascompte, J. & Jordano, P. (2013) Mutualistic Networks (Chapter 1. Biodiversity and Plant-Animal Coevolution). Princeton University Press, pp 224.
  • Dansereau, P. (1957): Biogeography: an Ecological Perspective. The Ronald Press, New York., pp. 394.
  • Fenner M. & Thompson K. (2005). The Ecology of seeds. Cambridge: Cambridge University Press, 2005. pp. 250.
  • Font Quer, P. (1953): Diccionario de Botánica. Editorial Labor, Barcelona.
  • Izco, J., Barreno, E., Brugués, M., Costa, M., Devesa, J. A., Fernández, F., Gallardo, T., Llimona, X., Parada, C., Talavera, S. & Valdés, B. (2004) Botánica ªEdición. McGraw-Hill, pp. 906.
  • Murray D. R. (2012). Seed dispersal. Academy Press. 322 pp.
  • Tiffney B. (2004). Vertebrate dispersal of seed plants through time. Annual Review of Ecology, Evolution and Systematics. 35:1-29.
  • Willis, K.J. & McElwain, J.C. (2014) The Evolution of Plants (second edition). Oxford University Press, pp. 424.
  • National Geographic (2011). Bats Drawn to Plant via “Echo Beacon”. http://news.nationalgeographic.com/news/2011/07/110728-plants-bats-sonar-pollination-animals-environment/

Plantes i animals també poden viure en matrimoni

Quan pensem en la vida de les plantes es fa difícil imaginar-la sense la interacció amb els animals, ja que aquests dia rere dia estableixen diferents relacions simbiòtiques amb elles. Entre aquestes relacions simbiòtiques trobem la herbívora, o el cas contrari, el de les plantes carnívores. Però, hi ha moltes altres interaccions súper importants entre plantes i animals, com la que porta a aquests organismes a ajudar-se els uns als altres i a conviure junts. Per això, aquesta vegada us vull presentar el mutualisme entre plantes i animals. 

I, què és el mutualisme? Doncs és la relació que s’estableix entre dos organismes en la qual ambdós obtenen un benefici de la convivència en conjunt, és a dir, els dos aconsegueixen una recompensa quan viuen en companyia. Aquesta relació aconsegueix augmentar la seva eficàcia biològica (fitness) i per tant existeix una tendència dels dos organismes a conviure sempre junts.

Segons aquesta definició tant la pol·linització com la dispersió de llavors a través d’animals són casos de mutualisme.

POL·LINITZACIÓ PER ANIMALS

Moltes plantes reben visites a les seves flores per part d’animals que pretenen alimentar-se del nèctar, del pol·len o d’altres sucres que aquestes produeixen  i a canvi transporten pol·len cap a altres flors, permeten que aquest arribi al estigma d’una manera molt eficaç. Així la planta obté el benefici de la fecundació amb un cost de producció menor de pol·len que el que suposaria dispersar-lo per l’aire (el qual arribaria amb menor probabilitat al estigma d’altres flors). I els animals a canvi obtenen com a recompensa l’aliment. S’estableix així una veritable relació de mutualisme entre els dos organismes.

 “Video:The Beauty of Pollination” – Super Soul Sunday – Oprah Winfrey Network (www.youtube.com)

El cas més extrem de mutualisme es dona quan aquestes especies evolucionen unes depenent de les altres, és a dir, quan es dona coevolució. Entenem per coevolució aquelles adaptacions evolutives que permeten als dos o més organismes establir una relació de simbiosis estreta, ja que les adaptacions evolutives d’un influeixen en les adaptacions evolutives de l’altre organisme. Per exemple, això es dona entre varies orquídies i els seus pol·linitzadors, com és el conegut cas de l’Orquídea de Darwin. Però, hi ha moltes altres plantes que també han coevolucionat amb els seus polinitzadors, com la figuera o la mandioca o iuca.

De cap manera això s’ha de confondre amb l’engany que algunes plantes preparen per al seus pol·linitzadors, els quals no obtenen cap benefici directe. Per exemple, algunes orquídies també atrauen als seus pol·linitzadors amb olors (feromones) i les seves formes curioses que s’assemblen a les femelles dels pol·linitzadors, fent que aquests s’acostin a elles per copular-les i quedin impregnats de pol·len que serà transportant a altres flors gracies al mateix parany.

14374841786_121feb4632_o.jpg
Orquidea abellera (Ophrys apifera) (Autor: Bernard DUPONT, flickr).

DISPERSIÓ DE LLAVORS PER ANIMALS

La dispersió de llavors per animals es considera que ha tingut lloc gracies a un procés coevolutiu entre animals i els mecanismes de dispersió de les llavors en el qual tant plantes com animals obtenen un benefici. El més probable és que aquest procés s’iniciés en el Carbonífer (~300 Ma), on ja es creu que algunes plantes com les cícades desenvolupaven uns falsos fruits carnosos que podrien ser consumits per rèptils primitius que actuarien d’agents dispersadors de llavors. Aquest procés s’hauria intensificat amb la diversificació de plantes amb flors (Angiospermes) i de petits mamífers i aus durant el Cretaci (65-12 Ma), fet que va permetre la diversificació dels mecanismes de dispersió i de les estructures del fruit.

El mutualisme es pot donar de dues maneres dins de la dispersió de llavors per animals.

El primer cas el duen a terme els dispersadors que ingereixen llavors o fruits que expulsaran posteriorment, sense ser digerits, per defecacions o regurgitats. Els fruits i llavors preparats per aquest cas són portadors de recompenses o reclams, amb els quals atrauen als seus agents dispersadors, ja que els fruits acostumen a ser carnosos, dolços i normalment tenen colors vistosos o emeten olors per atraure als animals.

Per exemple, Acacia cyclops forma unes beines que contenen llavors rodejades per un eleosoma (substancia molt nutritiva formada normalment per lípids) que són molt més grans que la pròpia llavor. Això suposa un cost elevat d’energia per part de la planta, ja que no tan sols ha de produir la llavor sinó que també té que formar aquesta recompensa. Però a canvi, la cacatua Galah o de cap rosat (Eolophus roseicapillus) transporta a llarga distancia les seves llavors, ja que al alimentar-se d’aquest eleosoma ingereix les llavors que seran transportades pel seu vol a llarga distancia fins que siguin expulsades per defecació en altres llocs.

Cacatua_Acacia.jpg
Esquerra, Cacatua Galah (Eolophus roseicapillus) (Autor: Richard Fisher, flickr) ; Dreta, beines d’Acacia cyclops (llavors negres, eleosoma rosa) (Autor: Sydney Oats, flickr).

I l’altre tipus de dispersió de llavors per animals que estableix una relació de mutualisme és aquella on les diàspores són recollides per animals en èpoques d’abundància i les enterren per a disposar d’elles com aliment quan tinguin necessitat. Però no totes són menjades i algunes germinen.

3748563123_eeb32302cf_o.jpg
Esquirol recollint fruits (Autor: William Murphy, flickr)

Però no tot acaba aquí, ja que hi ha altres exemples ben curiosos i menys coneguts que d’alguna manera han fet que tant animals com plantes visquin junts en un perfecte “matrimoni”. Mirem ara un parell d’exemples:

Azteca i Cecropia

Les plantes del gènere Cecropia viuen en els boscos tropicals humits de Centre-Amèrica i Sud-Amèrica essent unes grans lluitadores. La seva estratègia per aconseguir alçar-se i captar llum evitant la competència amb d’altres plantes ha sigut la estreta relació que mantenen amb les formigues del gènere Azteca. Les plantes proporcionen a les formigues refugi, ja que les seves tiges terminals són normalment foradades i septades (amb separacions), el que permet a les formigues habitar-les per dins, i a més les plantes també produeixen cossos de Müller, que són petits cossos nutritius rics en glicogen dels quals les formigues s’alimenten. A canvi, les formigues protegeixen a Cecropia de lianes o plantes trepadores, permetent-li un gran èxit com a planta  pionera.

Ant Plants: CecropiaAzteca Symbiosis (www.youtube.com)

Marcgravia i Ratpenats

Fa pocs anys s’ha descobert que una planta de Cuba que és pol·linitzada per ratpenats ha evolucionat donant peu a fulles modificades que actuen com antenes parabòliques per a l’ecolocalització (radar) dels ratpenats. És a dir, la seva forma facilita que els ratpenats la localitzin ràpidament el que els permet recol·lectar nèctar de manera més eficient i a les plantes ser pol·linitzades amb major èxit, ja que els ratpenats es desplacen ràpidament visitant centenars de flors cada nit per alimentar-se.

6762814709_6dfaf49fff_o.jpg
Marcgravia (Autor: Alex Popovkin, Bahia, Brazil, Flickr)

En general, veiem que la vida de les plantes depèn molt de la vida dels animals, ja que aquests estan connectats d’una manera o altre. Totes aquestes interaccions que hem presentat formem part d’un conjunt encara més gran que fa de la vida una més complexa i singular, en la que la vida d’uns no s’explica sense la vida dels altres. Per aquest motiu podem dir que la vida d’alguns animals i algunes plantes s’assembla a un matrimoni.

Difusió-català

REFERÈNCIES

  • Apunts obtinguts en diferents assignatures durant la realització del Grau de Biologia Ambiental (Universitat autònoma de Barcelona) i el Màster de Biodiversitat (Universitat de Barcelona).
  • Bascompte, J. & Jordano, P. (2013) Mutualistic Networks (Chapter 1. Biodiversity and Plant-Animal Coevolution). Princeton University Press, pp 224.
  • Dansereau, P. (1957): Biogeography: an Ecological Perspective. The Ronald Press, New York., pp. 394.
  • Fenner M. & Thompson K. (2005). The Ecology of seeds. Cambridge: Cambridge University Press, 2005. pp. 250.
  • Font Quer, P. (1953): Diccionario de Botánica. Editorial Labor, Barcelona.
  • Izco, J., Barreno, E., Brugués, M., Costa, M., Devesa, J. A., Fernández, F., Gallardo, T., Llimona, X., Parada, C., Talavera, S. & Valdés, B. (2004) Botánica ªEdición. McGraw-Hill, pp. 906.
  • Murray D. R. (2012). Seed dispersal. Academy Press. 322 pp.
  • Tiffney B. (2004). Vertebrate dispersal of seed plants through time. Annual Review of Ecology, Evolution and Systematics. 35:1-29.
  • Willis, K.J. & McElwain, J.C. (2014) The Evolution of Plants (second edition). Oxford University Press, pp. 424.
  • National Geographic (2011). Bats Drawn to Plant via “Echo Beacon”. http://news.nationalgeographic.com/news/2011/07/110728-plants-bats-sonar-pollination-animals-environment/

Evolució per a principiants

L’evolució biològica encara no és ben compresa pel públic general, i quan parlem d’ella en el nostre llenguatge abunden expressions que confonen encara més com funcionen els mecanismes que donen lloc a la diversitat d’espècies. A través de preguntes que potser t’has formulat alguna vegada, en aquest article farem un primer apropament als principis bàsics sobre evolució i desmitificarem falses idees sobre ella.

L’EVOLUCIÓ ÉS REAL? NO ÉS NOMÉS UNA TEORIA, UNA IDEA NO DEMOSTRADA DEL TOT?

Fora de l’àmbit científic, la paraula “teoria” s’usa per referir-se a fets que no han estat provats o suposicions. Però una teoria científica és l’explicació d’un fenomen recolzada per proves i evidències, resultat de l’aplicació del mètode científic.

diagrama mètode científic
Esquema del mètode científic. Imatge per Mireia Querol adaptada de Lauro Chieza

Com es desprèn del diagrama, les teories poden ser modificades, millorades o revisades si es prenen noves dades que no segueixin recolzant la teoria, però sempre es basen en unes dades i experiments repetibles i comprovables per qualsevol investigador per a ser considerats com a vàlids.

Així doncs, poca gent posa en dubte la Teoria Heliocèntrica (la Terra gira al voltant del Sol), o la Teoria Gravitatòria de Newton, però en l’imaginari popular se segueix creient que la Teoria de l’Evolució formulada per Charles Darwin (i Alfred Russell Wallace) és simplement una hipòtesi i que no evidències que la recolzin. Amb els nous avenços científics seva teoria ha estat millorada i detallada, però més de 150 anys després, ningú ha pogut demostrar que sigui incorrecta, just al contrari.

QUINES PROVES TENIM DE QUE L’EVOLUCIÓ ÉS CERTA?

Les evidències són múltiples i en aquest article no podrem aprofundir en elles. Algunes de les proves de les que disposem són:

  • Registre paleontològic: l’estudi dels fòssils ens informa sobre les semblances i diferències d’espècies de fa milers o milions d’anys respecte les actuals i permet establir parentius entre elles.
  • Anatomia comparada: la comparació de certes estructures que són molt semblants entre organismes diferents, permet establir si tenen un avantpassat comú (estructures homòlogues, per exemple, cinc dits en alguns vertebrats) si han desenvolupat adaptacions similars (estructures anàlogues, per exemple, les ales de les aus i els insectes), o si han perdut la seva funció (òrgans vestigials, per exemple l’apèndix).
anatomia comparada, órganos homólogos
Òrgans homòlegs en humans, gats, balenes i ratpenats
  • Embriologia: l’estudi d’embrions de grups emparentats mostra una gran semblança en les fases més primerenques del desenvolupament.
  • Biogeografia: l’estudi de la distribució geogràfica dels éssers vius revela que les espècies habiten en general les mateixes regions que els seus avantpassats, encara que hi hagi altres regions amb climes similars.
  • Bioquímica i genètica: les similituds i diferències químiques permeten establir relacions de parentiu entre diferents organismes. Per exemple, espècies més emparentades entre si presenten una estructura del seu ADN més semblant que altres més llunyanes. Tots els éssers vius compartim una part d’ADN, és a dir, part de les teves instruccions” també es troben en una mosca, un planta, o un bacteri, prova que tots els éssers vius tenim un avantpassat comú.

ÉS CERT QUE ELS ORGANISMES S’ADAPTEN AL MEDI I ESTAN DISSENYATS PER VIURE EN EL SEU HÀBITAT?

Les dues expressions, freqüentment utilitzades, impliquen que els éssers vius tenen un paper actiu per adaptar-se al medi o “algúels ha dissenyat perquè visquin perfectament on són. És el típic exemple de Lamarck i les seves girafes: a força d’estirar el coll per arribar a les fulles dels arbres més altes, com a resultat actualment les girafes tenen aquest coll per donar-li aquest ús. En tenir una necessitat, s’adapten a ella. És justament al revés: és el medi qui selecciona els més aptes, és a dir, la natura “selecciona” els que siguin més eficaços per sobreviure, i per tant reproduir-se. És el que es coneix com a selecció natural, un dels mecanismes principals de l’evolució. S’han de complir tres requisits perquè actuï:

  • Variabilitat fenotípica: hi ha d’haver diferències entre individus. Algunes girafes tenien el coll lleugerament més llarg que altres, igual que hi ha persones més altes, baixes, d’ulls blaus o marrons.
  • Eficàcia biològica: aquesta diferència, ha de suposar un avantatge. Per exemple, les girafes amb un coll lleugerament més llarg podien sobreviure i reproduir-se, mentre les altres no.
  • Herència: aquests caràcters s’han de transmetre a la següent generació, amb la qual cosa els fills seran lleugerament diferents per a aquesta característica, mentre que la característica “coll curtes transmet cada vegada menys.
seleccion natural
La variabilitat en la població provoca que els individus amb característiques favorables es reprodueixin més i transmetin els seus gens a la següent generació, augmentant la proporció d’aquests gens. Imatge presa de Understanding Evolution.

Amb el pas dels anys aquests canvis és van acumulant, fins que les diferències genètiques són tan grans que algunes poblacions ja no es poden reproduir amb d’altres: hauria aparegut una nova espècie.
Si heu pensat que és un procés semblant a la selecció artificial que fem amb les diferents races de gossos, vaques que donin més llet, arbres que donin més fruits i més grans, enhorabona, teniu un pensament semblant al de Darwin ja que és va inspirar en uns quants d’aquests fets. Per tant, a els éssers vius som mers espectadors del procés evolutiu, dependents dels canvis del seu hàbitat i del seu material genètic.

¿PER QUÈ ELS ÉSSERS VIUS SÓN DIFERENTS ENTRE SI?

La variabilitat genètica permet que actuï la selecció natural. Els canvis en el material genètic (habitualment ADN) són causats per:

  • Mutacions: canvis en el genoma que poden tenir conseqüències negatives o letals per a la supervivència, indiferents o beneficioses per a la supervivència i reproducció. En l’últim cas aquests gens passaran a les següents generacions.
  • Flux genètic: és el moviment de gens entre poblacions (la migració d’individus permet aquest intercanvi al reproduir-se amb altres d’una població diferent).
  • Reproducció sexual: permet la recombinació de material genètic d’individus diferents, donant lloc a noves combinacions d’ADN.

Les poblacions amb més variabilitat genètica tindrien sobre el paper més possibilitats de supervivència en cas de succeir algun canvi en el seu hàbitat. Poblacions amb menys variabilitat (per exemple, per estar aïllades geogràficament) són més sensibles a qualsevol canvi, cosa que pot provocar la seva extinció.

L’evolució pot observar-se en éssers amb una taxa de reproducció molt elevada, per exemple bacteris, ja que acumulen mutacions més ràpidament. Has sentit alguna vegada que els bacteris es tornen resistents als nostres antibiòtics o alguns insectes als pesticides? Evolucionen tan ràpidament que en pocs anys han estat seleccionats els més adaptats per sobreviure als nostres antibiòtics.

¿SOM ELS ANIMALS MÉS EVOLUCIONATS?

De la Teoria de l’Evolució es desprenen diverses conseqüències, com l’existència d’un ancestre comú i que per tant, som animals. Encara actualment, fins i tot entre els més joves, hi ha la idea que som una cosa diferent entre els éssers vius i ens situem en un pedestal especial en l’imaginari col·lectiu. Aquest pensament antropocèntric ja li va valer a Darwin burles i enfrontaments més de 150 anys enrere.

caricatura, darwin, mono, orangutan
Caricatura de Darwin com un orangutan. Imatge de domini públic publicada per primera vegada el 1871

Utilitzem en el nostre llenguatge ser “més evolucionatcom a sinònim de més complex, i al considerar-nos una espècie que ha arribat a un alt nivell de comprensió del seu entorn, molta gent creu que l’evolució ha arribat a la seva fi amb nosaltres.

La pregunta un error de formulació: en realitat l’evolució no persegueix cap fi, simplement succeeix, i el fet que el pas de milions d’anys permet l’aparició d’estructures complexes, no vol dir que formes de vida més simples no estiguin perfectament adaptades a l’hàbitat on es troben. Bacteris, algues, taurons, cocodrils, etc., s’han mantingut molt semblants al llarg de milions d’anys. L’evolució és un procés que va començar a actuar en el moment que va aparèixer la vida i segueix actuant en tots els organismes, fins i tot en nosaltres, encara que hem modificat la manera en què actua la selecció natural (avenços mèdics, tecnològics, etc.).

¿LLAVORS SI VENIM DEL MICO, PER QUÈ ENCARA HI HA MICOS?

La veritat és que no venim del mico, som micos, o per ser més rigorosos, simis. No hem evolucionat a partir de cap primat existent. Com vam veure en un article anterior, humans i la resta de primats compartim un ancestre comú i la selecció natural ha anat actuant de manera diferent en cada un de nosaltres. És a dir, l’evolució l’hem de visualitzar com un arbre, on cada branca seria una espècie, i no com una línia recta.

darwin, árbol, evolución, darwin tree, arbre evolutiu
Primer esquema de l’arbre evolutiu de Darwin en el seu quadern de notes (1837). Imatge de domini públic.

Algunes branques deixen de créixer (les espècies s’extingeixen), mentre que altres segueixen diversificant-se. El mateix s’aplica per a la resta d’espècies, per si t’havies preguntat: “si els amfibis vénen dels peixos, per què hi ha encara els peixos?”. Actualment les anàlisis genètiques han aportat tal quantitat de dades que dificulten les relacions de parentiu de l’arbre clàssic de Darwin.

árbol filogenético, clasificación seres vivos, árbol de la vida
Classificació dels éssers vius basada en els tres dominis, Archaea, Bacteria i Eukarya segons dades de Carl R. Woese (1990). Dins d’Eukarya s’inclouen els regnes Protista, Fungi, Plantae i Animalia. Imatge de Rita Daniela Fernández.

L’evolució és un tema molt extens que segueix generant dubtes i controvèrsies. En aquest article hem intentat apropar a persones no iniciades alguns conceptes bàsics, en els quals podem aprofundir en el futur. Tens alguna pregunta sobre evolució? T’interessa aprofundir en algun tema que no haguem tractat? Pots deixar-nos els teus comentaris a continuació.

REFERÈNCIES

mireia querol rovira