Arxiu d'etiquetes: elemental defence

Metal hyperaccumulation in plants

During million years the evolution leaded plants to develop different strategies to defence from natural enemies, giving rise to an evolutionary weaponry war in which the survival of ones and others depends into the ability to beat the other’s adaptations. It is in that scenario where the high-level accumulation of heavy metals in plants plays an important role.

INTRODUCTION

Boyd (2012) commented that plant defences can be grouped in different categories:

  • mechanic: thorns, coverage, etc.
  • chemical: different organic and inorganic components.
  • visual: crypsis and mimicry .
  • behavioural: related with phenology’s modification.
  • and associative: symbiosis with other organisms, such is the case of the genus Cecropia, which has stablished a symbiotic relationship with ants of the genus Azteca, who protects these plants – to know more: Plants and animals can also live in marriage-.
espinas-karyn-christner-flickr
Mechanic defence with thorns (Author: Karyn Christner, Flickr, CC).

It is known that chemical defence is ubiquitous, and thus, a lot of interactions among organisms can be explained for this reason. In this sense, some plants contains high levels of certain chemical elements, frequently metals or metallic components, which plays an important role in the defence, these plants are the heavy metal hyperaccumulating plants.

Heavy metal hyperaccumulating plants and their main characteristics

This plants belong to several families, thus hyperaccumulation is an independent acquisition occurring different times during the evolution. In all cases, hyperaccumulation allowed the ability to grow soils with high levels of heavy metals and to accumulate extraordinary amounts of heavy metals in aerial organs. It is known that the concentration of these chemical elements in hyperaccumulating plants can be 100 – 1000 times higher than in non-hypperaccumulating plants.

Generally, chemistry describes heavy metal as transition metals with atomic mass higher than 20 and with a relative density around 5.  But, from a biological point of view, heavy metals or metalloids are elements which can be toxic in a low concentration. Even though, hyperaccumulating plants has become tolerant, i.e., they hypperacumulate this heavy metals without presenting phytotoxic effects (damage in plant tissues due toxicity).

In this sense, there are three main characteristics typically present in all hyperaccumulating plants:

  • Increased absorption rate of heavy metals.
  • Roots that perform translocation more quickly.
  • Great ability to detoxify and accumulate heavy metals in sheets.

Thus, hyperaccumulating plants are prepared to assimilate, translocate and accumulate high-levels of heavy metals in vacuoles or cellular wall. In part, it is due to the overexpression of genes codifying for membrane transporters.

The threshold values that allow to differentiate a hyperaccumulating plant from a non-hyperaccumulating one are related to the specific phytotoxicity of each heavy metal. According to this criterion, hyperaccumulating plants are plants that when grown on natural soils accumulate in the aerial parts (in grams of dry weight):

  • > 10 mg·g-1 (1%) of Mn or Zn,
  • > 1 mg·g-1 (0,1%) of As, Co, Cr, Cu, Ni, Pb, Sb, Se or Ti
  • or > 0,1 mg·g-1 (0,01%) of Cd.
minuartia-verna-cu-candiru-flickr
Minuartia verna, copper hyperacumulating plant (Autor: Candiru, Flickr, CC).

THE ORIGIN OF HYPERACCULATING PLANTS AND THEIR IMPLICATIONS

Till the moment, several hypothesis has been proposed to explain why certain plants can hyperaccumulate heavy metals:

  • Tolerance and presence of metals in soils.
  • Resistance to drought.
  • Interference with other neighbouring plants.
  • Defence against natural enemies.

The most supported hypothesis is “Elemental defence”, which indicates that certain heavy metals could have a defensive role against natural enemies, such as herbivores and pathogens. So, in the case these organisms consume plants, they should present toxic effects, which would lead them to die or at least to reduce the intake of this plant in future. Even though heavy metals can act through their toxicity, this does not guarantee plants will not be damaged or attacked before the natural enemy is affected by them. For this reason, it is still necessary a more effective defence which allow to avoid the attack.

In contrast, according to a more modern hypothesis, the “Joint effects”, heavy metals could act along with other defensive organic components giving rise to a higher global defence. The advantages of inorganic elements, including heavy metals, are that they are not synthetized by plants, they are absorbed directly from the soil and thus a lower energetic cost is invested in defence, and also they cannot be biodegraded. Even though, some natural enemies can even avoid heavy metal effects by performing the chelation, i.e., using chelators (substances capable of binding with heavy metals to reduce their toxicity) or accumulating them in organs where their activity would be reduced. This modern hypothesis would justify the simultaneous presence of several heavy metals and defensive organic components in the same plant, with the aim to get a higher defence able to affect distinct natural enemies, which would be expected to do not be able to tolerate different element toxicity.

SONY DSC
Thlaspi caerulescens, zinc hyperaccumulating plant (Autor: Randi Hausken, Flickr, CC).

On the other hand, it has been shown that certain herbivores have the ability to avoid the intake of plants with high levels of heavy metals, doing what is called “taste for metals“. Although this is known to occur, the exact mechanism of this alert and avoidance process is still uncertain.

solanum-nigrum-cd-john-tann-flickr
Solanum nigrum, cadmium hyperaccumulating plant (Autor: John Tann, Flickr, CC).

Additionaly, even tough heavy metal concentration in plant are really high, some herbivores manage to surpass this defense by being tolerant, i.e., their diet allows them to intake high dosis of metals and, thus, consume the plant. This could lead to think some herbivores could become specialist in the intake of hyperaccumulating plants, and, thus, this type of defence would be reduced to organisms with varied diets, which are called generalists. It has been demonstrated to not be true, as generalists herbivores sometimes present a higher preference and tolerance for hyperaccumulating plants than specialist organisms.

For all these reasons, it can be said that evolution is still playing an important role in this wonderful weaponry war.

Difusió-anglès

 REFERENCES

  • Boyd, R., Davis, M.A., Wall, M.A. & Balkwill K. (2002). Nickel defends the South African hyperaccumulator Senecio coronatus (Asteraceae) against Helix aspersa (Mollusca: Pulmonidae). Chemoecology 12, p. 91–97.
  • Boyd, R. (2007). The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant soil 293, p. 153-176.
  • Boyd, R. (2012). Elemental Defenses of Plants by Metals. Nature Education Knowledge 3 (10), p. 57.
  • Laskowski, R. & Hopkin, S.P. (1996). Effect of Zn, Cu, Pb and Cd on Fitness in Snails (Helix aspersa). Ecotoxicology and environmentak safety 34, p. 59-69.
  • Marschner, P. (2012). Mineral Nutrition of Higher Plants (3). Chennai: Academic Press.
  • Noret, N., Meerts, P., Tolrà, R., Poschenrieder, C., Barceló, J. & Escarre, J. (2005). Palatability of Thlaspi caerulescens for snails: influence of zinc and glucosinolates. New Phytologist 165, p. 763-772.
  • Prasad, A.K.V.S.K. & Saradhi P.P. (1994).Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 39, p. 45-47.
  • Rascio, N. & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?. Plant Science 180 (2),p. 169-181.
  • Shiojiri, K., Takabayashi, J., Yano, S. & Takafuji, A. (2000) Herbivore-species-specific interactions between crucifer plants and parasitic wasps (Hymenoptera: Braconidae) that are mediated by infochemicals present in areas damaged by herbivores. Applied Entomology and Zoology 35, p. 519–524.
  • Solanki, R. & Dhankhar, R. (2011). Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66 (2), p. 195-204.
  • Verbruggen, N., Hermans, C. & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181 (4), p. 759–776.
  • Wenzel, W.W. & Jockwer F. (1999). Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environmental pollution 104, p. 145-155.
Anuncis

Plantas hiperacumuladoras de metales pesados

Durante millones de años la evolución ha llevado a las plantas a desarrollar diferentes estrategias para defenderse de los enemigos naturales, dando pie a una lucha de armamento evolutiva en la cual la supervivencia de unos y otros depende de la habilidad de hacer frente a las adaptaciones de los otros. Y es en este escenario donde la acumulación de metales pesados en altos niveles en planta juega un papel muy importante.

 INTRODUCCIÓN

Según Boyd (2012), la defensa de las plantas puede considerarse bajo distintos puntos de vista:

  • mecánica: espinas, coberturas, etc.
  • química: diferentes compuestos inorgánicos y orgánicos.
  • visual: cripsis y mimetismo.
  • comportamiento: relacionado con modificaciones en la fenología.
  • y asociativa: simbiosis con otros organismos, como es el caso del género Cecropia que establece simbiosis con las hormigas del género Azteca, las cuales protegen a estas plantas – para saber más: Plantas y animales también pueden vivir en matrimonio– .
espinas-karyn-christner-flickr
Defensa mecánica con espinas (Autor: Karyn Christner, Flickr, CC).

 

Se ha visto que la defensa química es ubicua, y por lo tanto, muchas interacciones entre organismos se explican bajo este punto de vista. Además, algunas plantas contienen grandes cantidades de ciertos elementos químicos, frecuentemente metales o componentes metálicos, que juegan un papel de defensa relevante, son las llamadas plantas hiperacumuladoras.

Plantas hiperacumuladoras  y sus características principales

Estas plantas pertenecen a diferentes familias, por lo tanto la hiperacumulación es una adquisición independiente que ha surgido varias veces durante la evolución, pero que en todos los casos genera la habilidad de crecer en suelos metalíferos y acumular extraordinarias cantidades  de metales pesados en órganos aéreos, a diferencia de los niveles encontrados en la mayoría de especies. Se sabe que las concentraciones de estos elementos químicos pueden ser entre 100 – 1000 veces mayores que las presentes en especies no hiperacumuladoras.

Generalmente, la química describe los metales pesados como aquellos metales de transición con una masa atómica superior a 20 y una densidad relativa cercana a 5. Pero, des del punto de vista biológico, los metales pesados son aquellos metales o metaloides que pueden ser tóxicos en bajas concentraciones. Aun así, las plantas hiperacumuladoras consiguen ser tolerantes, es decir, hiperacumulan estos metales pesados sin sufrir efectos fitotóxicos (toxicidad expresada en la planta).

En este sentido, hay tres características principales que describen las plantas hiperacumuladoras:

  • Fuerte aumento de la tasa de absorción de metales pesados.
  • Raíces que realizan la translocación más rápidamente.
  • Gran habilidad por detoxificar y acumular metales pesados en hojas.

Por lo tanto, las plantas hiperacumuladoras están bien preparadas para la asimilación, translocación a hojas y acumulación de grandes cantidades de metales pesados en vacuolas o en paredes celulares. En parte, esto es debido a una sobreexpresión constitutiva de genes que codifican para transportadores de membrana

Los valores límite que permiten diferenciar una planta hiperacumuladora de una que no lo es, están relacionados con la fitotoxicidad específica de cada metal pesado. Según este criterio, las plantas hiperacumuladoras son plantas que cuando crecen en suelos naturales acumulan en las partes aéreas (en gramos de peso seco):

  • > 10 mg·g-1 (1%) de Mn o Zn,
  • > 1 mg·g-1 (0,1%) de As, Co, Cr, Cu, Ni, Pb, Sb, Se o Ti
  • Ó > 0,1 mg·g-1 (0,01%) de Cd.
minuartia-verna-cu-candiru-flickr
Minuartia verna, hiperacumuladora de cobre (Autor: Candiru, Flickr, CC).

LA APARICIÓN DE PLANTAS HIPERACUMULADORAS Y SUS IMPLICACIONES

Hasta el momento se ha planteado diferentes hipótesis para explicar porque ciertas plantas han llegado a ser hiperacumuladoras de metales pesados:

  • Tolerancia y disposición de metales.
  • Resistencia a la sequía.
  • Interferencia con otras plantas vecinas
  • Defensa contra los enemigos naturales.

La hipótesis que recibe más soporte  es la denominada “Elemental defence” (defensa por elementos), que indica que ciertos metales pesados podrían tener un rol defensivo en la planta contra los enemigos a naturales, tales como los herbívoros y los patógenos. Estos organismos al consumir la planta presentarían efectos tóxicos, lo cual los llevaría a la muerte o bien a reducir el consumo de esta planta en un futuro. Aun así, aunque los metales pesados pueden actuar a través de su toxicidad, esto no garantiza que la planta no sea dañada o atacada antes que el enemigo natural sea afectado por estos. Por ellos sigue siendo necesario una defensa más efectiva que permita evitar el ataque.

Por otro lado, de acuerdo con una hipótesis más moderna, “Joint effects” (efectos conjuntos), los metales pesados podrían actuar juntamente con otros compuestos orgánicos de defensa dando lugar a una mayor defensa global. Las ventajas de los elementos inorgánicos, donde se incluyen los metales pesados, es que no son sintetizados por la planta, se absorben del suelo directamente y por lo tanto no hay tanto consumo energético invertido en la defensa, y además no pueden ser biodegradados. Aun así, algunos enemigos naturales pueden llegar a quelar los metales pesados gracias a quelatos (sustancias que se unen a estos metales pesados para reducir su toxicidad) o acumularlos en órganos donde se reduciría su actividad. Esta nueva hipótesis justificaría la presencia simultánea de distintos metales pesados y compuestos orgánicos de defensa en la misma planta, con la finalidad de conseguir una defensa mayor que afecte a más enemigos naturales, los cuales se esperaría no fuesen capaces de tolerar los distintos elementos tóxicos.

SONY DSC
Thlaspi caerulescens, hiperacumuladora de zinc (Autor: Randi Hausken, Flickr, CC).

Por otro lado, se ha visto que ciertos herbívoros tienen habilidades para evitar el consumo de plantas con altos niveles de metales pesados, realizando lo que se denomina “taste for metals” (“degustación de metales”). Aunque se sabe que esto sucede, no es del todo conocido el mecanismo exacto de todo este proceso de alerta y evitación.

solanum-nigrum-cd-john-tann-flickr
Solanum nigrum, hiperacumuladora de cadmio (Autor: John Tann, Flickr, CC).

Además, aunque las concentraciones de metales pesados que asumen estas plantas son elevadas, algunos  herbívoros logran sobrepasar esta defensa siendo tolerantes, es decir, su dieta les permite ingerir elevadas dosis de metales y por tanto alimentarse de la planta. Esto lleva a pensar que ciertos herbívoros podrían convertirse en especialistas en el consumo de estas plantas, y que, por tanto, este tipo de defensa quedaría reducido a organismos con dietas variadas, los denominados generalistas. Esto ha resultado no ser del todo cierto, ya que algunas veces los herbívoros generalistas presentan una preferencia y tolerancia superior por las plantas hiperacumuladoras que los organismos especialistas.

Por todos estos motivos se puede decir que la evolución continua jugando un papel importante en esta lucha de armamento.

Difusió-castellà

 REFERENCIAS

  • Boyd, R., Davis, M.A., Wall, M.A. & Balkwill K. (2002). Nickel defends the South African hyperaccumulator Senecio coronatus (Asteraceae) against Helix aspersa (Mollusca: Pulmonidae). Chemoecology 12, p. 91–97.
  • Boyd, R. (2007). The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant soil 293, p. 153-176.
  • Boyd, R. (2012). Elemental Defenses of Plants by Metals. Nature Education Knowledge 3 (10), p. 57.
  • Laskowski, R. & Hopkin, S.P. (1996). Effect of Zn, Cu, Pb and Cd on Fitness in Snails (Helix aspersa). Ecotoxicology and environmentak safety 34, p. 59-69.
  • Marschner, P. (2012). Mineral Nutrition of Higher Plants (3). Chennai: Academic Press.
  • Noret, N., Meerts, P., Tolrà, R., Poschenrieder, C., Barceló, J. & Escarre, J. (2005). Palatability of Thlaspi caerulescens for snails: influence of zinc and glucosinolates. New Phytologist 165, p. 763-772.
  • Prasad, A.K.V.S.K. & Saradhi P.P. (1994).Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 39, p. 45-47.
  • Rascio, N. & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?. Plant Science 180 (2),p. 169-181.
  • Shiojiri, K., Takabayashi, J., Yano, S. & Takafuji, A. (2000) Herbivore-species-specific interactions between crucifer plants and parasitic wasps (Hymenoptera: Braconidae) that are mediated by infochemicals present in areas damaged by herbivores. Applied Entomology and Zoology 35, p. 519–524.
  • Solanki, R. & Dhankhar, R. (2011). Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66 (2), p. 195-204.
  • Verbruggen, N., Hermans, C. & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181 (4), p. 759–776.
  • Wenzel, W.W. & Jockwer F. (1999). Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environmental pollution 104, p. 145-155.

Plantes hiperacumuladores de metalls pesants

Durant milions d’anys l’evolució ha portat a les plantes a desenvolupar diferents estratègies per defensar-se contra els enemics naturals, donant lloc a una lluita d’armament evolutiva en la qual la supervivència d’uns i altres depèn de l’habilitat per fer front a les adaptacions dels altres. I és en aquest escenari on la acumulació de metalls pesants a alts nivells en les plantes juga un paper molt important.

 INTRODUCCIÓ

Segons Boyd (2012), la defensa de les plantes pot tractar-se sota diferents punts de vista:

  • mecànica: espines, cobertures rígides, etc.
  • química: diferents compostos inorgànics i orgànics.
  • visual: cripsis i mimetisme.
  • comportament: relacionat amb modificacions en la fenologia.
  • i associativa: simbiosis amb altres organismes, com és el cas del gènere Cecropia que estableix simbiosi amb les formigues del gènere Azteca, les qual protegeixen aquestes plantes – per saber-ne més: Plantes i animals també poden viure en matrimoni – .
espinas-karyn-christner-flickr
Defensa mecànica amb espines (Autor: Karyn Christner, Flickr, CC).

S’ha vist que la defensa química és ubiqua, i, per tant, moltes interaccions entre organismes s’explicarien sota aquest punt de vista. A més a més, algunes plantes contenen grans quantitats de certs elements químics, freqüentment metalls o components metàl·lics, que juguen un paper defensiu important, són les anomenades plantes hiperacumuladores.

Plantes hiperacumuladores i les seves característiques principals

Aquestes plantes pertanyen a diferents famílies, per tant la hiperacumulació és una adquisicuió independentment que ha sorgit distintes vegades durant l’evolució, però que en tots els casos genera l’habilitat per créixer en sòls metal·lífers i acumular altes quantitats extraordinàries de metalls pesants en els òrgans aeris, a diferència dels nivells trobats en la majoria d’espècies. Se sap que les concentracions d’aquests elements químics pot ser entre 100 – 1000 vegades majors que les presents en espècies no hiperacumuladores.

Generalment la química defineix els metalls pesants com aquells metalls de transició amb una massa atòmica superior a 20 i una densitat relativa al voltant de 5.  Però, sota un punt de vista biològic, els metalls pesants són aquells metalls o metal·loides que poden ser tòxics en baixes concentracions. Tot i així, les plantes hiperacumuladores aconsegueixen ser tolerants, hiperacumulen aquests metalls pesants sense patir efectes fitotòxics (toxicitat expressada en la planta).

En aquest sentit, hi ha tres característiques principals que defineixen les plantes hiperacumuladores:

  • Fort augment de la taxa d’absorció de metalls pesants.
  • Arrels que duen a terme la translocació més ràpidament.
  • Gran habilitat per detoxificar i segrestar metalls pesants a les fulles.

Per tant, les plantes hiperacumuladores estan ben preparades per a l’assimilació, translocació a fulles i segrest de grans quantitats de metalls pesants en vacuoles o parets cel·lulars. En part, això és degut a una sobrexpressió constitutiva dels gens que codifiquen per a transportadors en membrana.

Els valors llindars que permeten distingir una planta hiperacumuladora d’una altra que no ho és estan relacionats amb la fitotoxicitat especifica de cada metall pesant. Segons aquest criteri, les plantes hiperacumuladores són plantes que quan creixen en sòls naturals acumulen en les parts aèries (en grams de pes sec):

  • > 10 mg·g-1 (1%) de Mn o Zn,
  • > 1 mg·g-1 (0,1%) de As, Co, Cr, Cu, Ni, Pb, Sb, Se o Ti
  • ó > 0,1 mg·g-1 (0,01%) de Cd.
minuartia-verna-cu-candiru-flickr
Minuartia verna, hiperacumuladora de coure (Autor: Candiru, Flickr, CC).

L’APARICIÓ DE PLANTES HIPERACUMULADORES I LES SEVES IMPLICACIONS

Fins al moment s’ha plantejat diferents hipòtesis per explicar per què certes plantes han esdevingut hiperacumuladores de metalls pesants:

  • Tolerància i disposició de metalls.
  • Resistència a la sequera.
  • Interferència amb les plantes veïnes.
  • Defensa contra els enemics naturals.

La hipòtesis que rep més suport és l’anomenada “Elemental defence” (defensa per elements), que indica que certs metalls pesants poden tenir un rol defensiu en la planta contra els enemics naturals, com els herbívors i els patògens. Aquests organismes al consumir la planta presentarien efectes tòxics, els quals els portarien a la mort o a la reducció del consum d’aquesta planta en un futur. Tot i això, encara que els metalls pesants poden actuar a través de la seva toxicitat, això no garanteix que la planta no sigui danyada o atacada abans que l’enemic natural sigui afectat per aquests. En aquest sentit segueix essent necessari una defensa més efectiva que permeti evitar l’atac.

D’altra banda, d’acord amb una hipòtesi més moderna, “Joint effects” (efectes conjunts), els metalls pesants poden actuar juntament amb els compostos orgànics de defensa donant lloc a una major defensa global. Els avantatges dels elements inorgànics, incloent aquí als metalls pesants, és que no són sintetitzats per la planta, s’absorbeixen del sòl directament i per tant no hi ha tanta despesa energètica invertida en la defensa, i a més no poden ser biodegradats. Tot i així, alguns enemics especialistes poden quelar els metalls pesants, gracies als quelat (substàncies que s’uneixen a aquests metalls pesants per a reduir la seva toxicitat) o segrestar-los dins d’òrgans d’acumulació on es reduiria la seva activitat. Aquesta nova hipòtesi justificaria la presència simultània de diferents metalls pesants i compostos orgànics de defensa en la mateixa planta, amb la finalitat d’aconseguir una defensa major que afecti a més enemics naturals, els quals s’esperaria que no fossin capaços de tolerar els diferents elements tòxics.

Thlaspi caerulescens - Zn - Randi Hausken, Flickr.jpg
Thlaspi caerulescens, hiperacumuladora de zinc (Autor: Randi Hausken, Flickr, CC).

D’altra banda, s’ha vist que certs herbívors tenen habilitats per evitar alimentar-se de plantes amb alts nivells de metalls pesants fent el que s’anomena “taste for metals” (“tasta dels metalls”). Tot i saber que això succeeix, encara no es coneix el mecanisme exacte de tot aquest procés d’alerta i evitament.

Solanum nigrum - Cd- John Tann, Flickr.jpg
Solanum nigrum, hiperacumuladora de cadmi (Autor: John Tann, Flickr, CC).

A més a més, tot i les elevades concentracions de metalls pesants que assumeixen aquestes plantes, alguns herbívors aconsegueixen sobrepassar aquesta defensa essent tolerants, és a dir, la seva dieta permet ingerir altes dosis de metalls i per tant alimentar-se de la planta. Això porta a pensar que certs herbívors podrien esdevenir especialistes en alimentar-se d’aquestes plantes, i que, per tant, aquest tipus de defensa quedaria reduït als organismes amb dietes variades, els anomenats generalistes. Tot i així, s’ha vist que algunes vegades els herbívors generalistes presenten una preferència i tolerància superior per les plantes hiperacumuladores que no pas els especialistes.

Per tots aquests motius es pot dir que l’evolució continua jugant un paper molt important en aquesta lluita d’armaments.

Difusió-català

REFERÈNCIES

  • Boyd, R., Davis, M.A., Wall, M.A. & Balkwill K. (2002). Nickel defends the South African hyperaccumulator Senecio coronatus (Asteraceae) against Helix aspersa (Mollusca: Pulmonidae). Chemoecology 12, p. 91–97.
  • Boyd, R. (2007). The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant soil 293, p. 153-176.
  • Boyd, R. (2012). Elemental Defenses of Plants by Metals. Nature Education Knowledge 3 (10), p. 57.
  • Laskowski, R. & Hopkin, S.P. (1996). Effect of Zn, Cu, Pb and Cd on Fitness in Snails (Helix aspersa). Ecotoxicology and environmentak safety 34, p. 59-69.
  • Marschner, P. (2012). Mineral Nutrition of Higher Plants (3). Chennai: Academic Press.
  • Noret, N., Meerts, P., Tolrà, R., Poschenrieder, C., Barceló, J. & Escarre, J. (2005). Palatability of Thlaspi caerulescens for snails: influence of zinc and glucosinolates. New Phytologist 165, p. 763-772.
  • Prasad, A.K.V.S.K. & Saradhi P.P. (1994).Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 39, p. 45-47.
  • Rascio, N. & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?. Plant Science 180 (2),p. 169-181.
  • Shiojiri, K., Takabayashi, J., Yano, S. & Takafuji, A. (2000) Herbivore-species-specific interactions between crucifer plants and parasitic wasps (Hymenoptera: Braconidae) that are mediated by infochemicals present in areas damaged by herbivores. Applied Entomology and Zoology 35, p. 519–524.
  • Solanki, R. & Dhankhar, R. (2011). Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66 (2), p. 195-204.
  • Verbruggen, N., Hermans, C. & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181 (4), p. 759–776.
  • Wenzel, W.W. & Jockwer F. (1999). Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environmental pollution 104, p. 145-155.