Arxiu d'etiquetes: elytra

Some insects and other arthropods you should not confuse

Untrustworthy and sensational news about insects and arthropods are constantly shared through social networks, spreading tergiversated data and confusing amateur users. As a result, this usually leads to misidentifications and unnecessary alarmism toward harmless organisms.

Here we bring you a brief list of some insects and other arthropods that are usually confused and how to tell them apart. Don’t get tricked!

Spiders VS ‘Anything resembling them’

Spiders (Order Araneae) probably are some of the most feared arthropods among users for two main reasons: they are venomous and there are a lot of other arachnids that resemble them. So, it is quite understandable some people have serious doubts when finding an organism with eight long legs and a grim face.

However, most of these spider-like organisms are harmless and  unable to weave webs:

Harvestmen: unlike other arachnids, harvestmen or daddy longlegs (Order Opiliones) don’t have their body divided into two parts (prosoma and opisthosoma) by a thin waist, so they remind off a ‘ball with legs’. Also, they only have a pair of central eyes very close to each other. They neither have venom glands nor silk glands, so they can’t bite nor weave webs. They live in moist places, caves and near to streams and harvests. They are usually confused with spiders of the Pholcidae family because of their long legs.

Pholcus phalangioides (Pholcidae) (Picture by Olaf Leillinger, CC 2.5)

Harvestman (Picture by Dalavich, CC 3.0)

Solifugae: also known as camel spiders, Solifugae is an order of tropical arachnids characterized for having a segmented body and a pair of conspicuously large chelicerae forwardly projected. However, and despite their menacing appearance, they aren’t venomous (even though they bite can be very painful) nor weave webs. They inhabit desert and arid places, some of them are nocturnal and the diurnal ones move quickly looking for shadows to escape from sunlight.

Camel spider (Picture by Swen Langel, CC 2.0).

Amblypygi: also known as whip spiders or tailless whip scorpions, Amblypygi is an order of tropical arachnids that are neither spiders nor scorpions. Despite their menacing appearance, as it happens with camel spiders, whip scorpions don’t have venom glands. They have a pair of big thorny pedipalps ended in a pincer for grabbing preys, while the first pair of legs, which are filiform and segmented, act as sensory organs (not for walk). They don’t weave webs and have nocturnal habits.

Amblypygi (Picture by José Eugenio Gómez Rodríguez on Flickr, CC 2.0)

Pill bugs VS Pill millipedes

When playing in a park or in some natural place as a kid, you some time probably found a small animal, full of legs that rolled up when being touched.

These organisms are commonly known as woodlice. Woodlice belong to the suborder Oniscidea, a group of terrestrial crustaceans within the order Isopoda. They have a tough, calcarean and segmented exoskeleton, and inhabit moist places.

Armadillidium vulgare, Oniscidea (Picture by Franco Folini, CC 2.5)

Woodlice of the family Armadillidae, also known as pill bugs, are usually confused with pill millipedes (Subphylum Myriapoda, Class Diplopoda, Superorder Oniscomorpha), both groups with a similar external appearance and able to roll up into an almost perfect sphere as a defensive mechanism (convergent evolution).

Glomeris marginata, Oniscomorpha (Picture by Stemonitis, CC 2.5).

To tell them apart, you have to count the total number of legs per segment: if it has only a pair of legs per segment (one at each side of the segment), it is a pill bug; if it has two pairs, it is a pill millipede.

Bees and wasps VS Hoverflies

We talked widely about the main differences between bees and wasps (Order Hymenoptera) in this postThis time, we introduce you the hoverflies or syrphid flies (Order Diptera, Suborder Brachycera, Family Syrphidae), which resemble a lot to bees and wasps.

Resemblance of hoverflies to bees, wasps and bumblebees is a clear example of Batesian mimicry, which we explained widely in this post about animal mimicry. Moreover, hoverflies mimicry goes even further, since some of them also imitate the flight and the hum of these hymenopterans.

Hoverfly (Public domain picture, CC0).

Honey bee (Picture by Andy Murray on Flickr, CC 2.0)

To tell them apart, you have to pay attention to their eyes, antennae and wings: since they are flies, hoverflies have a pair of big compound eyes that occupy almost all their head, very short antennae with eight or less segments and a single pair of wings (the second pair has evolved into small equilibrium organs, the halteres), while wasps, bees and bumblebees have smaller compound eyes that occupy only the sides of the head, longer antennae with ten or more segments and two pairs of functional wings. Moreover, female hoverflies don’t have the abdomen ended in a stinger, so they are completely harmless.

Ladybugs VS Pyrrhocoris apterus

If you look for ladybugs pictures on Internet, you’d probably find a picture of this insect:

Public domain picture (CC0)

This is Pyrrhocoris apterus, a very common insect in the Palearctic area (from Europe to China) and recorded to the USA, Central America and India. You can find it on common mallows (Malva sylvestris), from which they eat seeds and sap, and they usually congregate in big groups because of their gregarious behavior.

Ladybugs are coleopterans (Order Coleoptera) with a more or less globular shape; they are carnivorous (with a diet based mainly on the intake of aphids) and can fly. Their first pair of wings are hard (elytra) and form a kind of shield that encloses the second pair of membranous wings.

Ladybug Coccinella septempunctata (Public domain picture, CC0)

On the other hand, Pyrrhocoris apterus is a bug (Order Heteroptera) with a depressed body, phytophagous habits and, unlike ladybugs and other bugs, it is unable to fly. Moreover, it doesn’t have a hardened shield.

Mantises VS Mantidflies

Mantises (Order Dyctioptera), which were widely addressed in this post, are very alike to this insect:

Mantispa styriaca (Picture by Gilles San Martin on Flickr, CC 2.0)

This insect belongs to the family Mantispidae (Order Neuroptera), also known as mantidflies or mantispids. This group is very well represented in tropical and subtropical countries, and just a few species are known from Europe. They have a pair of raptorial legs like those of Mantodea which they use for grabbing their preys.

Neuropterans, like mantidflies, green lacewings and antlions, have two pairs of similar sized wings with a very complex and branched venation. In Mantodea, the first pair of wings are smaller and harder than the second one, which are membranous and functional for flying; also, this second pair doesn’t have such a complex venation like that of neuropterans.

Mantodea (Picture by Shiva shankar, CC 2.0)

Mantidflies of the genera Climaciella and Entanoneura have a body coloration like that of some wasps, but they are totally harmless.

Climaciella brunnea (Picture by Judy Gallagher on Flickr, CC 2.0)

Mosquitoes VS Crane flies

Have you ever seen a giant mosquito and dreaded its bite? Well, you can stop being afraid of it.

These giant ‘mosquitoes’ (Order Diptera), which are commonly known as crane flies or daddy longlegs (Family Tipulidae), are totally inoffensive (and somewhat clumsy). They are distributed all over the world and inhabit moist places, like meadows and streams. Adults feed on nectar or don’t feed; in any case, they don’t suck blood!

Females have the abdomen ended in a kind of stinger; however, it is only their sharp ovipositor (not a stinger like those of bees or wasps).

Female crane fly (Picture by Irene Lobato Vila)

Dragonflies VS Damselflies

Both groups belong to the Order Odonata and have very similar appearance and behavior, being very common near sitting waters and lakes.

Two thirds of the Odonata are dragonflies (suborder Anisoptera), while the other third are damselflies (suborder Zygoptera). An easy way to tell them apart is by paying attention to their wings at rest: in dragonflies, wings are held flat and away from the body, while in damselflies they are held folded, along or above the abdomen.

On the other hand, eyes of dragonflies are large and touch in the vertex of the head, of which they occupy most of its surface, while those of dragonflies are smaller and are usually located on the sides of the head.

Dragonfly (Public domain image, CC0)

Damselfly (Picture by Xosema, CC 4.0)

.         .         .

If you know about any other insect or arthropod that can be confused, let us know it by leaving a comment!

References

Flying made insects more diverse

The appearance of insect wings represented an adaptive improvement in the evolutionary history of these organisms, since they allowed them to spread and diversify across all kind of habitats. It is precisely for these events that wings are very diverse organs which have undergone a lot of changes.

In the following article, I will talk about the appearance of wings as elements that have ensured the diversification of insects, and also about the evolution of these organs and about their subsequent changes.

Introduction

Insects form the most diverse and successful group among the current fauna, and they’re also the unique invertebrates capable to fly. Even though they almost haven’t change since their appearance during the Devonian era (395-345Ma), the appearance of wings and of the ability to fly (alongside with other events that took place at the same time) allowed them to diversify rapidly.

Línea-geológica
Timeline of geological eras. Hexapoda and also insects appeared during the Devonian era (Picture from buglady.org).

Nowadays, there are almost 1 million of species of insects identified, and it’s known that there are lots of them waiting to be identified.

When winged insects appeared?

As you probably know, not all insects worldwide have wings: there are apterous insects (that is, insects without wings), which form the Apterygota group, and winged insects or Pterygota (is interesting to say that some organisms of this group have lost their wings later).

The most ancient winged insect is probably Delitzchala bitterfeldensis, an organism from the Palaeodictyoptera group dated from early Carboniferous in Germany (50Ma after the appearance of insects during the Devonian era, more or less).

Approximated representation of a Palaeodictyoptera. In contrast with current insects, these ones had three pair of wings instead of only one or two (the first one was probably a couple of little lobes located near the head) (Picture from Zoological excursions on Lake Baikal).

However, the fossil remains of the most ancient insect known nowadays, Rhyniognatha hirsti (dated from the early Devonian in Scotland, which was found in the “Rhynie Chert” sedimentary deposit), which has no wings, reveal that this insect shares some traits with winged insects (Pterygota). According to this, the origin of insect wings could be more ancient (probably from the Devonian or even more ancient).

We are still far from knowing the exact moment when the appearance of winged insects took place. But, despite of this, we can affirm that the ability to fly allowed them to reach new habitats, looking for more and better food and also run away from predators more easily. These events have provided a huge evolutionary advantage to insects and allowed them to diversify.

How did wings appeared?

Discrepancies toward the origin and evolution of insect wings is not limited only to “when ” , but also “how”: How did they appeared? Which structures from ancient insects have been modified to become wings?

There exist 4 hypothesis that try to explain the way wings were formed from different ancient organs: branchial hypothesis, stigmatic hypothesis, parapodial hypothesis and paranotal hypothesis.

First of all, and in order to understand all these hypothesis way better, we need to know the basis of corporal structure of insects. Let’s see the body scheme of a cricket (Orhoptera order):

Body scheme of a generic insect. There are 3 principal segments: 1) Head, where central nervous system and feeding functions are located, 2) Thorax, which has a locomotor function (here we can find all the appendices, including wings in winged insects); it’s divided in three parts: prothorax, mesothorax and metathorax; 3) Abdomen, in this segment we can usually find all the visceral organs. Moreover, we can also find the spiraculi located at both soft sides of its body, that is, holes that connect with the tracheal system and through where the exchange of gases takes place (Picture from Asturnatura).

 

Representation of the tracheal or respiratory system of an insect. This system is branched into the organism (Picture by M. Readey, Creative Commons).

 

So now, which are these hypothesis?

1) Branchial hypothesis 

According to this hypothesis, ancient Pterygota insects were aquatic organisms that were derived from terrestrial insects that got adapted to live underwater. Those ancestors breathed, as current insects, through spiracles connected to a net of internal pipes or tracheas. During the adaptation process to aquatic environment, these insects developed branchial or gill sheets on those spiracles in order to breathe underwater. Then, when they migrated back from aquatic to terrestrial environment, these sheets lost their ancient function and became a kind of wings.

According to recent data, it’s considered one of the most plausible hypothesis.

2) Stigmatic hypothesis

In the thoracic region, that is, where legs and wings born, the respiratory spiracles tend to be closed. According to this hypothesis, wings could be tracheal pipes expeled to the outside of the body in the thoracic region.

3) Parapodial hypothesis

This is a very simple hypothesis: it tells us that wings were formed by modified legs.

4) Paranotal hypothesis

A few years ago it was considered the most  plausible hypothesis, but now it competes with the brancial hypothesis. This is the most accepted hypothesis about the origin of insect’s wings. According to this hypothesis, wings were formed by the expansions of the tegumentary membrane located at both sides of the body, that is, the space located between the dorsal and the ventral surface of the body.

The expansions are known as “paranotes” (these structures gave the name to the paranotal hypothesis).

Ancient vs modern: Paleoptera and Neoptera

Nowadays, mostly of insects presents only one or two pairs of wings located, respectively, in the mesothorax and in the metathorax (middle and posterior segments), and not three pairs, as ancient insects usually had.

The way the two pairs of wings are articulated with the thorax, together with their position, allow us to differentiate two main groups of winged insects or Pterygota: Paleoptera and Neoptera.

Paleoptera

Generally, the Paleoptera insects can’t fold up the wings over the abdomen (this is an ancient condition). Moreover, the two pairs of wings are similar both in size and function, and also in the disposition of the veins that travel under their surface. Inside this group we find organisms from the Ephemeroptera order (for more information, take a look to my article about bioindicators), from Odonata order and also from the Palaeodictyoptera group, now extinguished.

An specimen of Odonata with its four wings unfolded because it has no way to fold up them over the abdomen (Picture by Ana_Cotta on Flickr, Creative Commons).

Neoptera

This group contain the rest of winged insects. Contrary to the ones explained above, Neoptera insects possess articulations that allow them to fold up the wings over the abdomen. Moreover, their wings are not always equal , and they can develop another functions (and new ones as well).

The wings of many groups of Neoptera insects have undergone a lot of secondary modifications, which allowed flying insects to diversify even more. Next, I will talk you about these secondary modifications.

An specimen of Diptera with its wings folded over its abdomen thanks to their articulations (Picture by Sander van der Wel on Flickr, Creative Commons).

Secondary modification of Neoptera’s wings

Generally, one of the two pairs of wings assumes the flying function (the ‘main wings’) while the other pair subordinates to the main one. This subordination can be expressed in two ways: 1) without external modifications (the subordinated pair of wings is limited to assist the main pair during the flight), 2) with secondary modifications, so the modified wings assume a new function.

Some Neoptera insects have undergone drastic modifications in one of the two pairs of wings. Let’s see some examples:

COLEOPTERA (beetles): the forewings, known as elytra, are a very hard structures that protect the rest of the body when they’re folded up. In this case, the hind wings are the main ones, so they assume the function of flying.

An specimen of a longhorn coleopter taking off. In this picture we can appreciate the forewings transformed into elytrum and the hind ones assuming the flying function (Picture by Matthew Fang on Flickr, Creative Commons).

HETEROPTERA (greenflies, cicadas, bedbugs): the forewings, known as hemelytra, aren’t completely hardened as in the case of beetles: only de proximal part is hardened, while the distal part has a membrane texture.

2628904535_09cbc0efbb
An specimen of Kleidocerys reseda (Picture by Mick Talbot on Flickr, Creative Commons).

POLINEOPTERA: in both cases that I’ve explained above, the hardening process of the forewings entails the loss of their veins; in Polineoptera insects (for example, cockroaches), the forewings are harder than the hind ones, but they retain their veins.

American-cockroach_polineoptera
An specimen of Periplaneta americana (american cockroach). Its wings are plenty of veins (Picture by Gary Alpert, Creative Commons).

DIPTERA and HIMENOPTERA (flies and mosquitoes; wasps, bees and ants): in this case, the forewings assume the flying function; on the other hand, the hind wings get reduced or modified, and sometimes they don’t appear. The hind wings of flies became equilibrium organs, the halteres.

halterios_dípteros_moscas-y-mosquitos
An specimen of crane fly (Tipulidae). The halteres (red circle) are located behind the forewings (Public domain picture).

ALTRES MODIFICACIONS: we can also talk about the changes in the shape, color, presence of filaments or scales, or even about the variations according to sex, hierarchy or geography location (for example, thats the case of ants or termites).

.              .             .

The origin and evolution of insect wings is still a fact waiting to be solved. Even so, independently of the moment and the way this event took place, is undeniable that wings have become key organs for the evolution and diversification of insects.

REFERENCES

Top picture by USGS Bee Inventory and Monitoring Lab (Creative Commons).

Difusió-anglès