Arxiu d'etiquetes: ephemeroptera

Flying made insects more diverse

The appearance of insect wings represented an adaptive improvement in the evolutionary history of these organisms, since they allowed them to spread and diversify across all kind of habitats. It is precisely for these events that wings are very diverse organs which have undergone a lot of changes.

In the following article, I will talk about the appearance of wings as elements that have ensured the diversification of insects, and also about the evolution of these organs and about their subsequent changes.

Introduction

Insects form the most diverse and successful group among the current fauna, and they’re also the unique invertebrates capable to fly. Even though they almost haven’t change since their appearance during the Devonian era (395-345Ma), the appearance of wings and of the ability to fly (alongside with other events that took place at the same time) allowed them to diversify rapidly.

Línea-geológica
Timeline of geological eras. Hexapoda and also insects appeared during the Devonian era (Picture from buglady.org).

Nowadays, there are almost 1 million of species of insects identified, and it’s known that there are lots of them waiting to be identified.

When winged insects appeared?

As you probably know, not all insects worldwide have wings: there are apterous insects (that is, insects without wings), which form the Apterygota group, and winged insects or Pterygota (is interesting to say that some organisms of this group have lost their wings later).

The most ancient winged insect is probably Delitzchala bitterfeldensis, an organism from the Palaeodictyoptera group dated from early Carboniferous in Germany (50Ma after the appearance of insects during the Devonian era, more or less).

Approximated representation of a Palaeodictyoptera. In contrast with current insects, these ones had three pair of wings instead of only one or two (the first one was probably a couple of little lobes located near the head) (Picture from Zoological excursions on Lake Baikal).

However, the fossil remains of the most ancient insect known nowadays, Rhyniognatha hirsti (dated from the early Devonian in Scotland, which was found in the “Rhynie Chert” sedimentary deposit), which has no wings, reveal that this insect shares some traits with winged insects (Pterygota). According to this, the origin of insect wings could be more ancient (probably from the Devonian or even more ancient).

We are still far from knowing the exact moment when the appearance of winged insects took place. But, despite of this, we can affirm that the ability to fly allowed them to reach new habitats, looking for more and better food and also run away from predators more easily. These events have provided a huge evolutionary advantage to insects and allowed them to diversify.

How did wings appeared?

Discrepancies toward the origin and evolution of insect wings is not limited only to “when ” , but also “how”: How did they appeared? Which structures from ancient insects have been modified to become wings?

There exist 4 hypothesis that try to explain the way wings were formed from different ancient organs: branchial hypothesis, stigmatic hypothesis, parapodial hypothesis and paranotal hypothesis.

First of all, and in order to understand all these hypothesis way better, we need to know the basis of corporal structure of insects. Let’s see the body scheme of a cricket (Orhoptera order):

Body scheme of a generic insect. There are 3 principal segments: 1) Head, where central nervous system and feeding functions are located, 2) Thorax, which has a locomotor function (here we can find all the appendices, including wings in winged insects); it’s divided in three parts: prothorax, mesothorax and metathorax; 3) Abdomen, in this segment we can usually find all the visceral organs. Moreover, we can also find the spiraculi located at both soft sides of its body, that is, holes that connect with the tracheal system and through where the exchange of gases takes place (Picture from Asturnatura).

 

Representation of the tracheal or respiratory system of an insect. This system is branched into the organism (Picture by M. Readey, Creative Commons).

 

So now, which are these hypothesis?

1) Branchial hypothesis 

According to this hypothesis, ancient Pterygota insects were aquatic organisms that were derived from terrestrial insects that got adapted to live underwater. Those ancestors breathed, as current insects, through spiracles connected to a net of internal pipes or tracheas. During the adaptation process to aquatic environment, these insects developed branchial or gill sheets on those spiracles in order to breathe underwater. Then, when they migrated back from aquatic to terrestrial environment, these sheets lost their ancient function and became a kind of wings.

According to recent data, it’s considered one of the most plausible hypothesis.

2) Stigmatic hypothesis

In the thoracic region, that is, where legs and wings born, the respiratory spiracles tend to be closed. According to this hypothesis, wings could be tracheal pipes expeled to the outside of the body in the thoracic region.

3) Parapodial hypothesis

This is a very simple hypothesis: it tells us that wings were formed by modified legs.

4) Paranotal hypothesis

A few years ago it was considered the most  plausible hypothesis, but now it competes with the brancial hypothesis. This is the most accepted hypothesis about the origin of insect’s wings. According to this hypothesis, wings were formed by the expansions of the tegumentary membrane located at both sides of the body, that is, the space located between the dorsal and the ventral surface of the body.

The expansions are known as “paranotes” (these structures gave the name to the paranotal hypothesis).

Ancient vs modern: Paleoptera and Neoptera

Nowadays, mostly of insects presents only one or two pairs of wings located, respectively, in the mesothorax and in the metathorax (middle and posterior segments), and not three pairs, as ancient insects usually had.

The way the two pairs of wings are articulated with the thorax, together with their position, allow us to differentiate two main groups of winged insects or Pterygota: Paleoptera and Neoptera.

Paleoptera

Generally, the Paleoptera insects can’t fold up the wings over the abdomen (this is an ancient condition). Moreover, the two pairs of wings are similar both in size and function, and also in the disposition of the veins that travel under their surface. Inside this group we find organisms from the Ephemeroptera order (for more information, take a look to my article about bioindicators), from Odonata order and also from the Palaeodictyoptera group, now extinguished.

An specimen of Odonata with its four wings unfolded because it has no way to fold up them over the abdomen (Picture by Ana_Cotta on Flickr, Creative Commons).

Neoptera

This group contain the rest of winged insects. Contrary to the ones explained above, Neoptera insects possess articulations that allow them to fold up the wings over the abdomen. Moreover, their wings are not always equal , and they can develop another functions (and new ones as well).

The wings of many groups of Neoptera insects have undergone a lot of secondary modifications, which allowed flying insects to diversify even more. Next, I will talk you about these secondary modifications.

An specimen of Diptera with its wings folded over its abdomen thanks to their articulations (Picture by Sander van der Wel on Flickr, Creative Commons).

Secondary modification of Neoptera’s wings

Generally, one of the two pairs of wings assumes the flying function (the ‘main wings’) while the other pair subordinates to the main one. This subordination can be expressed in two ways: 1) without external modifications (the subordinated pair of wings is limited to assist the main pair during the flight), 2) with secondary modifications, so the modified wings assume a new function.

Some Neoptera insects have undergone drastic modifications in one of the two pairs of wings. Let’s see some examples:

COLEOPTERA (beetles): the forewings, known as elytra, are a very hard structures that protect the rest of the body when they’re folded up. In this case, the hind wings are the main ones, so they assume the function of flying.

An specimen of a longhorn coleopter taking off. In this picture we can appreciate the forewings transformed into elytrum and the hind ones assuming the flying function (Picture by Matthew Fang on Flickr, Creative Commons).

HETEROPTERA (greenflies, cicadas, bedbugs): the forewings, known as hemelytra, aren’t completely hardened as in the case of beetles: only de proximal part is hardened, while the distal part has a membrane texture.

2628904535_09cbc0efbb
An specimen of Kleidocerys reseda (Picture by Mick Talbot on Flickr, Creative Commons).

POLINEOPTERA: in both cases that I’ve explained above, the hardening process of the forewings entails the loss of their veins; in Polineoptera insects (for example, cockroaches), the forewings are harder than the hind ones, but they retain their veins.

American-cockroach_polineoptera
An specimen of Periplaneta americana (american cockroach). Its wings are plenty of veins (Picture by Gary Alpert, Creative Commons).

DIPTERA and HIMENOPTERA (flies and mosquitoes; wasps, bees and ants): in this case, the forewings assume the flying function; on the other hand, the hind wings get reduced or modified, and sometimes they don’t appear. The hind wings of flies became equilibrium organs, the halteres.

halterios_dípteros_moscas-y-mosquitos
An specimen of crane fly (Tipulidae). The halteres (red circle) are located behind the forewings (Public domain picture).

ALTRES MODIFICACIONS: we can also talk about the changes in the shape, color, presence of filaments or scales, or even about the variations according to sex, hierarchy or geography location (for example, thats the case of ants or termites).

.              .             .

The origin and evolution of insect wings is still a fact waiting to be solved. Even so, independently of the moment and the way this event took place, is undeniable that wings have become key organs for the evolution and diversification of insects.

REFERENCES

Top picture by USGS Bee Inventory and Monitoring Lab (Creative Commons).

Difusió-anglès

What do insects tell us about the health of our rivers?

Nowadays, concern about the health of inland waters (rivers, lakes, etc.) is growing, mainly due to increased use (and abuse) of these for human consumption. A few years ago, an expansion of the use of biotic indices took place, which allow us to determine the health of aquatic ecosystems; these indices usually use data such as presence, absence or/and abundance of different organisms known as ‘bioindicators’, that is, species that can be used to monitor the health of an environment or ecosystem. Among these organisms, there are a lot of arthropods.

Along this article, I will briefly explain what bioindicators are, the main role of arthropods as bioindicators and also introduce some of the most used bioindication indices to monitor the quality of riverine ecosystems in the Iberian Peninsula.

What is a bioindicator?

The term ‘bioindicator’ is used to refer to those biological processes, species or/and communities of organisms which can be used to assess the quality of an ecosystem and also how this ecosystem evolves over time, which is especially useful when changes take place due to anthropogenic disturbances, such as pollution.

Thus, in accordance with the above, a bioindicator can be:

  • A particular species, whose presence/absence or abundance rate informs us of the state of health of a studied ecosystem, or
  • A population or a community composed of various organisms which varies functionally or structurally according to the conditions of  environment.

Example: Lecanora conizaeoides lichen is highly resistant to pollution. Its presence on the studied ecosystem, coupled with the disappearance of another lichens, is indicative of high air pollution.

Lecanora conizaeoides (Picture by James Lindsey).

What do we consider a ‘good bioindicator’?

Do all the organisms have the necessary traits to become bioindicator subjects? The answer is no. Even though there is not a bioindicator prototype (because all depends on the studied ecosystem), we can resume here some of the traits that scientists take into account to select good bioindicator organisms:

  • They have to respond to disturbances that take place on their ecosystem to a greater or lesser degree. This response should be comparable to that emitted by the rest of the organisms of the same species, and this response also has to be well correlated with the studied environment disturbances.
  • Their response have to be representative of all the community or population.
  • They must be native of the studied ecosystem and also be ubiquitous (that is, to be present in almost all ecosystems of the same or similar characteristics).
  • They have to be abundant (rare species aren’t optimum subjects).
  • They must be relatively stable to moderate climate changes (i.e. a storm or a natural temperature change does not affect them more than normal).
  • They should be easy to detect and, as possible, they have to be sedentary.
  • They have to be well studied, both from an ecological point of view as taxonomic (to know, therefore, their tolerance to environmental disturbances).
  • Finally, they should be easy to manipulate and monitor in the laboratory.

The use of bioindicators will be optimized if we use entire communities or populations instead of using a single or a couple species, because this allows us to cover a wide interval of environmental tolerances: from organisms with a narrow tolerance range (that is, stenotopic) and sensitive to pollution, to very tolerant organisms that can survive in very polluted environments.

Thus, we will be able to know if an ecosystem is highly altered if we find only a very tolerant species and none of the considered sensitive species.

Bioindicator animals from inland waters

Nowadays, scientists use a lot of animals as bioindicators: from microorganism and microinvertebrates to terrestrial and aquatic vertebrates (micromammals, birds, fishes, etc.). In inland waters, and especially in the context of studies of riverine water quality, scientists mostly use aquatic macroinvertebrates to assess the quality of these ecosystems. Next, let’s see what a macroinvertebrate is.

What are macroinvertebrates?

The term ‘macroinvertebrate’ does not correspond to any taxonomic classification, but with an artificial concept that includes different aquatic invertebrate organisms.

Generally, is said that macroinvertebrates are organisms that can be trapped by a net with holes about 250μm.

9895263846_fd51b55e3f_c
Collecting macroinvertebrates by using a kick seine (Picture by USFWS/Southeast , Creative Commons).

Macroinvertebrates are mainly benthic, that is, animals that inhabit the substrate of aquatic ecosystems at least during some stage of their life cycle (although there are some that swim freely in water column or on its surface).

We can find a lot of macroinvertebrate groups in rivers and lakes, which can be classified in two main groups:

Picture sources: (1) Luis Silva Margareto ©, (2) DPDx Image Library, (3) Oakley Originals, Creative Commons, (4) Ryan Hodnett, Creative Commons, (5) Will Thomas, Creative Commons, (6) Duncan Hull, Creative Commons.

Among these groups, there are both tolerant organisms to environment distrubances (i.e. leeches) and sensitive organisms (i.e. a lot of larvae insects).

Most inland aquatic macroinvertebrates (≃80%) are arthropods (of which I will discuss in the next section), among which there are many insects and, especially, their larvae (which are generally benthic), whose study and observation play an essential role on calculating indices of water quality.

Importance of insects in bioindication

As I’ve said above, about 80% of macroinvertebrates of inland waters are arthropods and, mostly, different orders of insects in its larval or nymphal form. Let’s see some of the most common groups we can find in rivers and lakes:

Trichoptera (or caddisflies)

They are insects closely related to the Lepidoptera order (butterflies and moths). Their aquatic nymphs can build a shelter around their bodies made of substrate materials. We can distinguish them from other aquatic insect larvae because they have a couple of anal filaments provided with strong hoofs. They usually inhabit clear and clean waters with a lot of currents.

Trichoptera nymph (inside its shelter, left) and adult (right). Picture of the nymph by Matt Reinbold (Creative Commons) and picture of the adult by Donald Hobern (Creative Commons).

Ephemeroptera (or mayflies)

One of the most ancient orders of flying insects. Their aquatic nymphs, which usually inhabit rivers, are characterized for having three long anal filaments. Adults, which fly over the water surface, are very fragile and have a short life cycle in comparison with nymphs (the name Ephemeroptera is derived from Greek ‘ephemera’ meaning sort-lived, and ‘ptera’ meaning wings).

Ephemeroptera nymph (left) and adult (right). Picture of the nymph by Keisotyo (Creative Commons) and picture of the adult by Mick Talbot (Creative Commons).

Plecoptera (or stoneflies)

Flying insects very similar to Ephemeroptera order. Like these, they have anal filaments, but they differentiate from them because they have two apical hooks in each leg. They usually inhabit lakes and streams.

Plecoptera nymph (left) and adult (right). Picture of the nymph by Böhringer (Creative Commons) and picture of the adult by gailhampshire (Creative Commons).

Other groups of insects with aquatic larvae or nymphs

Among the most common insects inhabiting rivers and lakes we can also find species of Odonata order (dragonflies and damselflies), Coleoptera (beetles), Diptera (mosquitoes and flies), etc.

Among all the organisms mentioned above, there are very tolerant species to pollution (i.e. some Diptera larvae; this is the case of some species of Chironomidae family, which are very tolerant to organic and inorganic pollution due to the presence of heavy metals in their environment) and also very sensitive species (i.e. some species of Trichoptera order).

Depending on their tolerance to environment disturbances, scientists group these organisms (plus the rest of macroinvertebrates) into different categories that are assigned a value. This values, at the end, allow us to calculate water quality indices.

Biotic indices for riverine waters

The different pollution tolerance degrees among macroinvertebrates of a community allow us to classify them and to assign them a qualitative value (the bigger the number is, more sensitive are organisms to pollution). Thanks to these values, we can calculate different biotic indices, which are no more than qualitative values assigned to a community in order to classify it according to its quality: the greater the value is, better is the water quality.

One of the most used indices on the assessment of ecological state of rivers from the Iberian Peninsula is the IBMWP index (Iberian Bio-Monitoring Working Party), an adaptation by Alba Tercedor (1988) of the British index BMWP. In rough outlines, the greater the value is, better is the water quality. On this website you will find more details about this index, and also the pre-established values assigned to each macroinvertebrate (available in Spanish only).

In additions, there is also used the IASPT index, a complementary index which is the result of divide the IBMWP value by the number of identified taxa. This index give us information about the dominant community in the studied location. You can see more details on this website (available in Spanish only).

.      .      .

As you probably have seen while reading of this article, macroinvertebrates, and insects especially, play an important role in the study of inland water quality. Furthermore, their presence or absence is extremely important for the rest of the organisms of their ecosystem, because of what we must become aware of the problems deriving from the reduction of their number or diversity.

REFERENCES

Head photography by U.S. Fish and Wildlife Service Southeast Region.

Difusió-anglès