Arxiu d'etiquetes: escalfament global

El 54% de la població mundial considera el canvi climàtic un problema molt greu

El canvi climàtic (millor anomenat canvi global ja que no només afecta el clima) és un tema molt viu aquests dies. El motiu és que el dia 30 de novembre va començar a París la Cimera del Clima (el COP21), en la qual s’han reunit més de 190 nacions, i va finalitzar el dia 11 de desembre. Aquí, en lloc de parlar de l’evolució del clima i dels seus possibles efectes (segur que hi ha un munt de llocs on trobar aquesta informació), revelarem els resultats d’una enquesta realitzada pel Pew Research Center sobre l’opinió de la població mundial sobre el canvi global.

SOBRE L’ENQUESTA

L’enquesta va tenir lloc entre el 25 de març i el 27 de maig de 2015. La van contestar 45.535 persones de 40 països de tot el món.

PREOCUPACIÓ GENERAL

La majoria de la gent enquestada de les 40 nacions considera que el canvi climàtic és un problema seriós. En concret, el 54% considera que és un problema molt seriós. Amèrica Llatina (sobretot Brasil, Xile i Perú) i Àfrica (principalment Burkina Faso, Uganda i Ghana) estan fins i tot més preocupats que la mitjana global. Tot i això, el 85% diu que el canvi climàtic és un problema seriós en algun grau (molt seriós o seriós).

A més, el 51% sosté que aquest problema mundial ja està afectant a la gent ara (és a Amèrica Llatina, Europa i Àfrica on estan més preocupats en aquest cas) i un altre 40% estan molt preocupats de que el canvi climàtic els afecti personalment en el futur (especialment a Amèrica Llatina).

Harm personally

Percentatge de gent molt preocupada de que el canvi climàtic el pugui afectar personalment en el futur (Foto: Pew Research Center, 2015).

El que crida l’atenció és el fet que els Estats Units i la Xina, els dos països del món que produeixen més diòxid de carboni, estan entre els menys preocupats. Generalment, la gent dels països que més carboni produeixen per càpita estan menys preocupats pel problema.

QUINES SÓN LES GRANS PORS?

En general, el 44% de la gent que ha respost considera que la sequera és la principal preocupació, de fet, és la principal por en totes les regions; seguit de la meteorologia extrema (com les inundacions o els temporals intensos, 25%), la calor extrema (14%) i l’augment del nivell del mar (6%).

drought climate change
La sequera és la preocupació principal en totes les nacions enquestades (Foto: Weather Wiz Kids).

Amèrica Llatina, Àfrica i Estats Units estan més preocupats per la sequera que la mitjana mundial, mentre que Àsia/Pacífic i Europa sobrepassen la mitjana pel que fa a la meteorologia extrema.

Climate change concerns
Mitjanes regionals per a les principals preocupacions del canvi climàtic (Foto: Pew Research Center, 2015).

HA CANVIAT LA PERCEPCIÓ EN EL TIEMPS?

En general, hi ha hagut un petit increment en la percepció que el canvi climàtic és un problema molt seriós. Mentre que el 2010 el 47% ho consideraven com a tal, el 2015 s’ha incrementat fins al 49%.

Tot i això, en alguns països la percepció ha canviat. En algunes economies clau, com Turquia (reducció del 37%), la Xina (-23%), Corea del Sud (-20%) o el Japó (-13%); el nombre de persones que pensa que el canvi global és un problema molt seriós s’ha reduït. D’altra banda, a Nigèria (un augment del 18%), a França (+ 10%) i els Estats Units (+ 8%) la preocupació és ara més alta.

QUÈ S’HAURIA DE FER PER SOLUCIONAR-HO?

En 39 dels 40 països (a excepció del Pakistan), la gent considera que els seus països haurien de fer alguna cosa per lluitar en contra del problema. En concret, el 78% de la gent enquestada dóna suport a que els seus països haurien de limitar les emissions de gasos d’efecte hivernacle, especialment a Europa (una mitjana del 87%) i Amèrica Llatina (83%).

Però això no seria suficient. El 67% considera que la gent hauria de modificar el seu estil de vida (sobretot els llatinoamericans i els europeus), mentre que un 22% confia que amb la tecnologia seria suficient per resoldre el problema. Probablement, la combinació de tots dos seria la solució.

Quins països haurien de fer més? El 54% creu que els països rics, responsables de la major part dels gasos d’efecte hivernacle, haurien de fer més esforços que els que estan en vies de desenvolupament; mentre que el 38% considera que els països en vies de desenvolupament haurien de fer el mateix esforç ja que seran els que més en produiran en el futur.

REFERÈNCIES

Difusió-català

Anuncis

Evolució per a principiants 2: la coevolució

Després de l’èxit d’Evolució per a principiants, seguim amb un article per seguir coneixent aspectes bàsics de l’evolució biològica. Per què hi ha insectes que semblen orquídies i viceversa? Per què gaseles i guepards són gairebé igual de ràpids? Per què el teu gos t’entén? En altres paraules, què és la coevolució?

QUÈ ÉS LA COEVOLUCIÓ?

Ja sabem que és inevitable que els éssers vius estableixen relacions de simbiosi entre ells. Uns depenen d’altres per sobreviure, i alhora, de l’accés a elements del seu entorn com aigua, llum o aire. Aquestes pressions mútues entre espècies fan que evolucionin conjuntament i segons evolucioni una espècie, obligarà al seu torn a l’altra a evolucionar. Vegem alguns exemples:

POL·LINITZACIÓ

El procés més conegut de coevolució el trobem en la pol·linització. Va ser de fet el primer estudi coevolutiu (1859), a càrrec de Darwin, encara que ell no utilitzés aquest terme. Els primers en utilitar-lo van ser Ehrlich i Raven (1964).

Els insectes ja existien molt abans de l’aparició de plantes amb flor, però el seu èxit es va deure al descobriment que el pol·len és una bona reserva d’energia. Al seu torn, les plantes troben en els insectes una manera més eficaç de transportar el pol·len cap a una altra flor. La pol·linització gràcies al vent (anemofilia) requereix més producció de pol·len i una bona dosi d’atzar perquè almenys algunes flors de la mateixa espècie siguin fecundades. Moltes plantes han desenvolupat flors que atrapen als insectes fins que estan coberts de pol·len i els deixen escapar. Aquests insectes presenten pèls en el seu cos per permetre aquest procés. Al seu torn alguns animals han desenvolupat llargs apèndixs (becs dels colibrís, espiritrompes de certes papallones…) per accedir al nèctar.

Polilla de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock
Arna de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock

És famós el cas de l’arna de Darwin (Xanthopan morganii praedicta) de la qual ja hem parlat en una ocasió. Charles Darwin, estudiant l’orquídia de Nadal (Angraecum sesquipedale), va observar que el nèctar de la flor es trobava a 29 cm de l’exterior. Va intuir que hauria d’existir un animal amb una espiritrompa d’aquesta mida. Onze anys després, el mateix Alfred Russell Wallace el va informar que havia esfinxs de Morgan amb trompes de més de 20 cm i un temps més tard es van trobar a la mateixa zona on Darwin havia estudiat aquesta espècie d’orquídia (Madagascar). En honor de tots dos es va afegir el “praedicta” al nom científic.

També existeixen les anomenades orquídies abelleres, que imiten femelles d’insectes per assegurar la seva pol·linització. Si vols saber més sobre aquestes orquídies i la de Nadal, no et perdis aquest article de l’Adriel.

Anoura fistulata, murcielago, bat
El ratpenat Anoura fistulata i la seva llarga llengua. Foto de Nathan Muchhala

Però moltes plantes no només depenen dels insectes, també algunes aus (com els colibrís) i mamífers (com ratpenats) són imprescindibles per a la seva fecundació. El rècord de mamífer amb la llengua més llarga del món i segon vertebrat (per darrere del camaleó) se l’emporta un ratpenat de l’Equador (Anoura fistulata); seva llengua mesura 8 cm (el 150% de la longitud del seu cos). És l’únic que pol·linitza una planta anomenada Centropogon nigricans, malgrat l’existència d’altres espècies de ratpenats en el mateix hàbitat de la planta. Això planteja la pregunta sobre si l’evolució està ben definida i es dóna entre parells d’espècies o per contra és difusa i es deu a la interacció de múltiples espècies.

RELACIONS DEPREDADOR-PRESA

El guepard (Acinonyx jubatus) és el vertebrat més ràpid sobre la terra (fins a 115 km/h). La gasela de Thomson (Eudorcas thomsonii), el segon (fins a 80 km/h). Els guepards han de ser prou ràpids per capturar alguna gasela (però no totes, a risc de desaparèixer ells mateixos) i les gaseles prou ràpides per escapar alguna vegada i reproduir-se. Sobreviuen les més ràpides, així que al seu torn la naturalesa selecciona els guepards més ràpids, que són els que sobreviuen al poder menjar. La pressió dels depredadors és un factor important que determina la supervivència d’una població i quines estratègies ha de seguir la població per sobreviure. Així mateix, els depredadors hauran de trobar solucions a les possibles noves formes de vida de les seves preses per tenir èxit.

Guepardo persiguiendo una gacela. Foto de Federico Veronesi

Guepard perseguint una gasela de Thomson a Kenya. Foto de Federico Veronesi

El mateix succeeix amb altres relacions depredador-presa, paràsit-hoste o herbívors-plantes, ja sigui amb el desenvolupament de la velocitat o altres estratègies de supervivència com verins, punxes…

HUMANS I GOSSOS… I BACTERIS

La nostra relació amb els gossos, que data de temps prehistòrics, també és un cas de coevolució. Això ens permet, per exemple, crear llaços afectius amb només mirar-los. Si vols ampliar la informació, et convidem a llegir aquest article passat on vam tractar el tema de l’evolució de gossos i humans en profunditat.

Un altre exemple és la relació que hem establert amb els bacteris del nostre sistema digestiu, indispensables per a la nostra supervivència. O també amb els patògens: han coevolucionat amb els nostres antibiòtics, de manera que en usar-los indiscriminadament, s’ha afavorit la resistència d’aquestes espècies de bacteris als antibiòtics.

IMPORTÀNCIA DE LA COEVOLUCIÓ

La coevolució és un dels principals processos responsables de la gran biodiversitat de la Terra. Segons Thompson, és la responsable que hi hagi milions d’espècies en lloc de milers.

Les interaccions que s’han desenvolupat amb la coevolució són importants per a la conservació de les espècies. En els casos on l’evolució ha estat molt estreta entre dues espècies, l’extinció d’una portarà a l’altra gairebé amb seguretat també a l’extinció. Els humans alterem constantment els ecosistemes i per tant, la biodiversitat i evolució de les espècies. Amb només la disminució d’una espècie, afectem moltes més. És el cas de la llúdriga marina (Enhydra lutris), que s’alimenta d’eriçons.

Nutria marina (Enhydra lutris) comiendo erizos. Foto de Vancouver Aquarium
Llúdriga marina (Enhydra lutris) menjant eriçons. Foto de Vancouver Aquarium

En ser caçada per la seva pell, el segle passat els eriçons van augmentar de nombre, van arrasar poblacions senceres d’algues (consumidores de CO2, un dels responsables de l’escalfament global), les foques que trobaven refugi en les algues ara inexistents, eren més caçades per les orques… la llúdriga és doncs una espècie clau per a l’equilibri d’aquest ecosistema i del planeta, ja que ha evolucionat conjuntament amb els eriçons i algues.

De les relacions coevolutives entre flors i animals depèn la pol·linització de milers d’espècies, entre elles moltes d’interès agrícola, de manera que no cal perdre de vista la gravetat de l’assumpte de la desaparició d’un gran nombre d’abelles i altres insectes en els últims anys. Un complex cas de coevolució que ens afectaria directament és la reproducció de la figuera.

EN RESUM

Com hem vist, la coevolució és el canvi evolutiu entre dues o més espècies que interactuen, de manera recíproca i gràcies a la selecció natural.

Perquè hi hagi coevolució s’ha de complir:

  • Especificitat: l’evolució de cada caràcter d’una espècie es deu a pressions selectives del caràcter de l’altra espècie.
  • Reciprocitat: els caràcters evolucionen de manera conjunta.
  • Simultaneïtat: els caràcters evolucionen al mateix temps.

REFERENCIAS

mireia querol rovira

Com afecten la temperatura i l’escalfament global al sexe dels rèptils?

En la majoria d’animals el sexe d’un individu queda determinat en el moment de la fecundació; quan l’òvul i l’espermatozou es fusionen queda fixat si aquell animal serà un mascle o una femella. Tanmateix, en molts grups de rèptils la determinació sexual ve determinada posteriorment durant la incubació, i el factor que la determina és la temperatura a la qual s’incuben els ous. En els rèptils això fa que, l’ambient jugui un paper crucial en determinar la proporció de mascles i femelles que sortiran d’una posta i que per tant, aquests animals siguin molt susceptibles a alteracions en la temperatura causades per exemple, per l’escalfament global.

DETERMINACIÓ SEXUAL: DSG VS DST

En la majoria d’espècies animals, la diferenciació sexual (el desenvolupament de ovaris o testicles) ve determinada genèticament (DSG). En aquests casos, el sexe d’un individu ve determinat per un cromosoma, un gen o un al·lel concret que provocarà la diferenciació cap a un sexe o un altre. Entre els vertebrats, existeixen dos tipus principals de DSG, el sistema XX/XY en mamífers (en que XX és una femella i XY és un mascle) i el ZW/ZZ en aus i alguns peixos (ZW correspon a una femella i ZZ a un mascle).

Types_of_sex_determinationExemples de diferents tipus de determinació sexual genètica en vertebrats i invertebrats, per CFCF.

En el cas dels rèptils, existeix una gran varietat de mecanismes de determinació sexual. Alguns presenten models de DSG; moltes serps segueixen el sistema ZW/ZZ i alguns llangardaixos el XX/XY. Tanmateix, en molts grups el sexe de la descendència ve determinat principalment per la temperatura d’incubació de l’ou (DST), fent que l’ambient jugui un paper molt important en la proporció de mascles i femelles que trobem en una població.

Eastern_Bearded_Dragon_defenceEl drac barbut de l’est (Pogona barbata) és un exemple de rèptil amb DSG, però al qual també li afecta la temperatura d’incubació. Foto de Trent Townsend.

Tot i així, els mecanismes de determinació sexual genètic i de temperatura no són excloents. Els rèptils amb DST tenen una base genètica per a la diferenciació ovàrica o testicular que ve regulada per la temperatura. Igualment, s’ha observat que en rèptils amb DSG, com ara el drac barbut australià (Pogona barbata), les altes temperatures durant la incubació fan que individus que genèticament són mascles (cromosomes ZZ) es desenvolupin funcionalment com a femelles. Això demostra que en els rèptils, no existeix una divisió estricta entre la DSG i la DST.

TEMPERATURA I SEXE

El període d’incubació durant el qual es determina el sexe d’un individu s’anomena període d’incubació crític i normalment correspon al segon terç del període d’incubació, durant el qual la temperatura s’ha de mantenir constant. Aquest període d’incubació crític sol durar entre 7 i 15 dies, segons l’espècie. Després d’aquest període, el sexe de l’individu normalment no es pot revertir (mecanisme de tot o res).

Audobon Zoo, New Orleans, Louisiana
Cria de dragó de komodo (Varanus komodoensis) eclosionant. Foto de Frank Peters.

La temperatura durant el període d’incubació crític altera la funció de l’aromatasa, hormona que converteix els andrògens (hormones masculinitzadores) en estrògens (hormones feminitzadores). A temperatures que donen mascles, l’activitat de l’aromatasa s’inhibeix, mentre que a temperatures que donen femelles l’activitat de l’aromatasa es manté.

AromatassssssaGràfics de l’activitat de l’aromatasa respecte les hormones gonadals en embrions de tortuga d’estany (Emys orbicularis) a 25oC (mascles) i a 30oC (femelles) durant el període d’incubació crític, tret de Pieau et al. 1999.

La DST la trobem en tots els grups de rèptils excepte en les serps (que segueixen el sistema ZW/ZZ). En llangardaixos i tortugues hi trobem tant determinació sexual genètica com per temperatura, mentre que en les tuatares i els crocodilians el sexe es determina exclusivament per la temperatura. Actualment, es coneixen diferents models de determinació sexual per temperatura.

MODEL I

Aquest model és el més senzill, en el que temperatures d’incubació més altes donen lloc a un sexe i temperatures d’incubació més baixes donen lloc a l’altre. Temperatures intermèdies solen donar individus d’ambdós sexes i, molt rarament, a individus intersexes. Aquest model està dividit en:

  • Model Ia DST: en el que ous incubats a temperatures altes donen alts percentatges de femelles i ous a temperatures baixes donen alts percentatges de mascles. Aquest es troba present en moltes espècies de tortugues.
Emys_orbicularis_portraitFoto d’una tortuga d’estany (Emys orbicularis), espècie que segueix el model Ia DST; a 25oC o menys d’incubació només neixen mascles, mentre que a 30oC o més només neixen femelles. Foto de Francesco Canu.
  • Model Ib DST: on passa el contrari; les altes temperatures donen mascles i les baixes temperatures donen femelles. Aquest es dona en alguns llangardaixos amb DST i les tuatares.
TuataraEl tuatara (Sphenodon punctatus) és un dels rèptils que segueixen el model Ib DST; la temperatura límit es troba entre 21-22oC, per sobre de la qual naixeran mascles i per sota de la qual naixeran femelles.

MODEL II

Aquest model és una mica més complex que l’anterior. En aquest, els embrions incubats a temperatures extremes (molt altes o molt baixes) es diferenciaran a un sexe, mentre que els que siguin incubats a temperatures intermèdies, es diferenciaran al sexe contrari.

CrocnestFoto d’al·ligàtors del Mississippí (Alligator mississippiensis) de diferents edats. Aquests rèptils segueixen el model II DST; a uns 34oC neixen mascles, i a temperatures per sobre i per sota, neixen femelles.

Aquest model es dóna en els crocodilians, en algunes tortugues i en molts llangardaixos. Estudis filogenètics recents, indiquen que aquest és el model de DST ancestral dels rèptils. Hi ha qui argumenta, que tots els casos de DST són de model II, però que en la naturalesa mai s’arriba als dos extrems de temperatura, tot i que això encara està per demostrar.

SEXE DETERMINAT PER TEMPERATURA: AVANTATGES I INCONVENIENTS

Avui dia encara no s’entén del tot els avantatges evolutius de la determinació sexual per temperatura. El cas dels rèptils és molt curiós, ja que aus, mamífers i amfibis determinen el sexe genèticament en la majoria de casos, mentre que en els rèptils hi trobem una mica de tot.

Actualment, s’estan realitzant estudis per comprovar si algunes temperatures afavoreixen la salut dels mascles i algunes altres la de les femelles. En un d’aquests estudis, s’observà que les tortugues mossegadores incubades a temperatures intermèdies (que produïen tant mascles com femelles) eren més actives que les incubades a temperatures que donaven un sol sexe, fent que fossin més vulnerables a l’atac de depredadors que es guien visualment. Tot i així, en l’actualitat no hi ha proves suficients que indiquin fins a on es podrien aplicar aquests descobriments. És possible que els rèptils amb DST siguin capaços de manipular el sexe de la seva descendència, alterant la proporció d’hormones sexuals en base a la temperatura del lloc de nidificació.

Snapping_turtle_eggs_mdPosta de tortuga mossegadora (Chelydra serpentina), un queloni americà d’aigua dolça. Foto de Moondigger.

El que és més fàcil de predir són els inconvenients que comporta la DST. Qualsevol canvi que es produeixi en la temperatura de les àrees de nidificació pot afectar negativament a la població d’una espècie determinada. Si es tala un bosc on abans hi havia ombra o es construeixen edificis en una zona prèviament assolellada, canviaran els microclimes de les postes d’ous de qualsevol rèptil que nidifiqui allà.

El canvi global, o canvi climàtic, representa una amenaça addicional per als rèptils amb DST. L’augment de la temperatura mitja del planeta i les fluctuacions de temperatura d’un any a l’altre, afecten al nombre de mascles i femelles que neixen d’algunes espècies de rèptils. Aquest fenomen s’ha observat, per exemple, en les tortugues pintades (Chrysemys picta), en les quals s’ha predit que un augment de 4oC en la temperatura del seu hàbitat provocaria l’extinció de l’espècie, ja que només naixerien femelles.

baby-painted-turtle-chrysemys-pictaCria de tortuga pintada (Chrysemys picta), espècie en la que temperatures d’incubació d’entre 23-27oC donen mascles i temperatures per sobre o per sota donen femelles (model II). Foto de Cava Zachary.

REFERÈNCIES

Durant l’elaboració d’aquesta entrada s’han utilitzat les següents fonts:

Difusió-català

Migració en perill! La papallona monarca desapareix

Generalment, tendim a associar els fenòmens migratoris amb organismes complexes (grans mamífers i aus). Però, com se sol dir, sempre hi ha excepcions: les poblacions nord-americanes de la papallona monarca (Danaus plexippus) realitzen cada any un viatge de gairebé 5000km (més que el que recorren alguns animals superiors!) amb l’objectiu d’assolir les àrees d’hibernació, on s’hi concentren milers d’exemplars. Malauradament, els fenòmens migratoris depenen de molts factors que, actualment, es troben vulnerats degut sobretot a la pressió antròpica, de manera que el futur d’aquestes poblacions, així com de les seves migracions, es troba en perill.

Al llarg d’aquest article, veurem alguns dels aspectes més curiosos de la biologia d’aquests organismes, les causes que podrien estar posant en perill les seves poblacions i les conseqüències que això comportaria.

INTRODUCCIÓ

La papallona monarca (Danaus plexippus) és un lepidòpters de la família Nymphalidae. És, possiblement, una de les papallones més conegudes de Nord Amèrica, atès que les seves poblacions realitzen cada tardor una migració de quasi 5000km des del nord dels EEUU i Canadà fins la costa de Califòrnia i Mèxic, on hi passen l’hivern. És, amb diferència, l’insecte que duu a terme la migració més extensa i nombrosa de tots.

Exemplar de papallona monarca (Danaus plexippus) amb el seu patró de colors típic: blanc, negre i taronja (Foto de Peter Miller a Flickr, Creative Commons).

Encara que les poblacions nord-americanes d’aquesta espècie són les més conegudes degut al seu patró migratori, també n’hi ha a diverses illes de l’Atlàntic (Illes Canàries, Açores i Madeira) i, ocasionalment, també com a migrants transoceàniques a Europa Occidental (Illes britàniques i Espanya). Alhora, també van ser introduïes a Nova Zelanda i Austràlia durant el segle XIX.

CICLE DE VIDA

El cicle vital d’aquesta espècie és molt singular. Per començar, es tracta d’una papallona especialista: deposita la posta exclusivament sobre plantes del gènere Asclepias, i les erugues que en neixen (de ratlles blanques, negres y grogues) s’alimenten únicament d’aquesta planta. Aquest fet és especialment important degut a què aquestes plantes contenen glicòsids cardíacs que l’eruga va assimilant fins a adquirir un gust desagradable pels depredadors, el qual conservarà a l’adultesa.

oruga_mariposa_monarca-algodoncillo
Eruga de papallona monarca (Foto de Lisa Brown a Flickr, Creative Commons).

Un cop completada la fase d’eruga, té lloc la metamorfosis, procés mitjançant el qual esdevenen papallones adultes amb el seu característic patró de colors. Els colors cridaners tant de les erugues com dels adults amaguen una funció comunicativa: es tracta d’un mecanisme per alertar de la seva toxicitat, fet que en termes científics es coneix com a aposematisme o mimetisme aposemàtic, fet força freqüents en molts grups d’animals (inclús en alguns mamífers).

metamorfosis_mariposa_monarca
Fases de la metamorfosi de la papallona monarca (Foto de Steve Greer Photography).

La fase adulta també presenta certes particularitats: durant l’època reproductiva (abril-agost), es produeixen diverses generacions d’adults, els quals tenen una esperança de vida d’unes poques setmanes. Llavors té lloc un esdeveniment sorprenent: la generació nascuda a finals d’agost, moment en què les temperatures comencen a disminuir i els dies es fan més curts, posa en pausa la seva capacitat reproductiva deixant els òrgans sexuals sense madurar (fenomen conegut com a diapausa reproductiva) i destina tots els seus recursos a allargar la seva esperança de vida fins als 9 mesos d’edat. Aquesta generació rep el nom de “generació Matusalem” atès a la seva longevitat.

Aquest augment de la longevitat permet a aquestes papallones realitzar la migració per assolir les àrees d’hivernació (costa de Califòrnia i Mèxic) i, un cop finalitzat l’hivern, tornar de nou al nord de EEUU i Canadà.

santurario_el_rosario-México
Centenars de papallones monarca sobrevolant el Santuario el Rosario (Mèxic) (Foto de Luna sin estrellas a Flickr, Creative Commons).

UNA ODISSEA D’ANADA I TORNADA: LA GRAN MIGRACIÓ

Tot i que la papallona monarca no es troba només a Nord-Amèrica, no s’ha registrat un fenomen migratori tan espectacular com el d’aquestes poblacions en cap altre dels lloc on resideix. Això es creu que és degut a l’enorme expansió que van patir les Asclepias (planta de la qual s’alimenten) per tot el territori, fet que va permetre a les papallones expandir-se cap al sud.

QUINS LLOCS VISITA LA PAPALLONA?

Les migracions sempre són fenòmens complexos. En el cas de la papallona monarca, la migració cap al sud es troba dividida en dues grans migracions simultànies:

  • La migració de l’est, formada per aquelles papallones que viatgen des de l’est de les Muntanyes Rocalloses, sud de Canadà i gran part de EEUU fins al centre de Mèxic (90% del total de papallones monarca nord-americanes).
  • La migració de l’oest, que inclou aquelles papallones que viatgen des de l’oest de les Muntanyes Rocalloses, el sud de Canadà i una petita part de EEUU fins a diversos llocs d’hibernació situats a la costa de Califòrnia (constitueixen el 10% restat de la població nord-americana).
Rutes migratòries de la papallona monarca a Nord Amèrica (anada i tornada) (Fonts: Monarchwatch.org i Monarch Alert).

Un cop a les zones d’hibernació, la papallona no es reprodueix, sinó que es sumeix en un estat letàrgic fins la primavera següent, moment en què es tornen sexualment actives, copulen i inicien el seu viatge de retorn al nord. És per això que és molt habitual trobar-les formant grans aglomeracions a sobre d’arbres durant l’hivern.

Milers de papallones monarca aglomerades sobre la vegetació dels boscos a les zones d’hibernació (Foto de Carlos Adampol Galindo a Flickr, Creative Commons).

FIGURES DE PROTECCIÓ

Allà per on passa, la papallona monarca es troba emparada per nombroses figures de protecció.

Una de les més importants és la Reserva de la Biosfera de la Papallona Monarca (Estat de Mèxic), la quan va ser declarada Patrimoni de la Humanitat per la Unesco al 2008.

Reserva de la Biosfera de la Papallona Monarca (Foto de Michelle Tribe a Flickr, Creative Commons).

I no és estrany que es trobi tan protegida: a banda de ser un espectacle impressionant, es tracta d’organismes amb un paper pol·linitzador molt rellevant degut al seu ampli rang de dispersió, fet que és vital tant per mantenir la riquesa floral salvatge com pel bon desenvolupament dels cultius de Nord Amèrica.

LA “REINA” ESTÀ EN PERILL!

Tot i els esforços que es fan per protegir-la, el fenomen migratori de la papallona monarca nord-americana es troba en perill degut a la pressió antròpica, fet que alhora podria posar en perill el futur d’aquestes poblacions.

Segons dades recents proporcionades per la WWF, la superfície ocupada per les papallones a les zones d’hibernació ha disminuït un 94% en 10 anys, passant de 27,48 acres ocupades al 2003 a tan sols 1,65 acres al 2013, la xifra més petita registrada en els últims 20 anys.

Reducció de la superfície ocupada por les papallones monarca a les zones d’hibernació (Dades de la WWF).

Si bé és cert que, de forma natural, la superfície ocupada per la papallona a les zones d’hibernació sempre ha fluctuat any rere any, fins ara no s’havia registrat un descens tan acusat i sense recuperació d’aquests valors. Per tant, les papallones estan deixant de viatjar tan al sud.

Àrea total ocupada por les papallones a les zones d’hibernació des del 1993 fins el 2013 (WWF-Telcel-CONANP).

Aquesta recessió s’ha registrat també en altres espècies de papallona arreu del món, motiu pel qual deu existir algun factor en comú que estigui afectant les seves poblacions.

QUINES PODRIEN SER LES CAUSES D’AQUESTA RECESSIÓ?

Segons la WWF, les causes que podrien estar comprometent la migració de les monarques són:

  • La reducció de l’àrea de dispersió de les Asclepias: les erugues s’alimenten exclusivament d’aquestes plantes, de les quals adquireixen la seva toxicitat. Ara bé, l’ús de determinats herbicides i els canvis en els règims de pluges podrien estar limitant el seu rang a bona part de Nord Amèrica, el que posaria en perill la seva font d’alimentació.
  • La desforestació: la tala massiva d’arbres i la desertització estarien reduint els seus hàbitats d’hibernació.
  • Clima extrem: els efectes del canvi global, com l’accentuació de les diferències de temperatura nord-sud i els canvis en els règims de pluges dificultarien la supervivència dels adults més enllà d’unes poques setmanes, impedint les migracions.

QUÈ ES FA ACTUALMENT PER AJUDAR-LA?

Danaus plexippus és una espècie amb un paper pol·linitzador molt important, motiu pel qual existeix (o hauria d’existir) un enorme interès per conservar-la en tot el seu rang de dispersió.

Actualment, la majoria de figures de protecció de Nord Amèrica estan posant tot el seu esforç en millorar les condicions dels seus hàbitats. Entre elles, la Reserva de la Biosfera de la Papallona Monarca de Mèxic juntament amb la WWF estan tractant de restaurar els boscos de les zones d’hibernació i de promoure un turisme sostenible (per saber-ne més, entra en aquest link per llegir sobre les accions que s’estan duent a terme).

 .            .            .

El cas de la papallona monarca no és un fet aïllat: a dia d’avui moltes espècies amb un rang ampli de dispersió veuen compromeses les seves poblacions i les seves migracions degut a l’impacte de diversos fenòmens, els quals, per més que no ho vulguem, solen estar causats per l’ésser humà. Encara hi ha molta feina per fer, i depèn de tots nosaltres.

REFERÈNCIES

Imatge de portada per en Carlos Adampol Galindo a Flickr.

Difusió-català

Les plantes i el canvi climàtic

Des de fa uns quants anys hem sentit parlar del canvi climàtic. Avui dia ja és una evidència i també una preocupació. No només ens afecta a nosaltres, als humans, sinó que també a tota la vida. S’ha parlat bastant de l’escalfament global, però potser no s’ha fet tanta transmissió del que succeeix amb la vegetació. Són moltes coses les que es veuen afectades pel canvi climàtic i la vegetació també n’és una d’elles. A més, els canvis produïts en aquesta també ens afecten a nosaltres. Però, quins són aquests canvis?, com els pot regular la vegetació? I, com podem ajudar a mitigar-los a través d’aquesta?

CANVIS EN LA VEGETACIÓ

Distribució dels biomes

En general, degut al canvi climàtic s’espera un increment de les precipitacions a algunes parts del planeta, mentre que en d’altres s’espera un descens. També es denota un increment global de la temperatura. Això comporta un desplaçament en la localització dels biomes, les grans unitats de vegetació (per exemple: selves, boscos tropicals, tundres, etc.).

biomes
Triangle dels biomes segons altitud, latitud i humitat (Imatge de Peter Halasaz).

Per una altra banda, existeix una tendència al augment de la distribució de les espècies en els rangs septentrionals (latituds altes) i un detriment en regions meridionals (latituds baixes). Això porta greus problemes associats; el canvi en la distribució de les espècies afecta a la seva conservació i la seva genètica. En conseqüència, les poblacions situades als marges meridionals, que han estat considerades molt importants per a la conservació a llarg termini de la diversitat genètica i pel seu potencial evolutiu, es veuen en perill per aquesta pèrdua. I, en canvi, els rangs septentrionals es veurien afectats per l’arribada d’altres espècies competidores que podrien desplaçar a les presents, essent doncs invasores.

Distribució de les espècies

Dins l’escenari del canvi climàtic, les espècies tenen una certa capacitat per reajustar la seva distribució i per adaptar-se a aquest.

Però, quin tipus d’espècies podrien estar responent més ràpidament a aquest canvi? Es dedueix que aquelles amb un cicle de vida més ràpid i una capacitat de dispersió major seran les que mostrin una major adaptació i responguin millor. Això podria comportar una pèrdua de les plantes amb ritmes més lents.

Galactites tomentosa
La calcida blanca (Galactites tomentosa) una planta de cicle ràpid i amb gran dispersió (Imatge de Ghislain118).

Un factor que facilita el reajustament en la distribució és la presència de corredors naturals: aquests són parts del territori geogràfic que permeten la connectivitat i desplaçament d’espècies d’un lloc a un altre. Són importants per evitar que aquestes quedis aïllades i puguin desplaçar-se cap a noves regions.

Un altre factor és el gradient altitudinal, aquest proporciona molts refugis per a les espècies, facilita la presència de corredors i permet la redistribució de les espècies en altitud. Per tant, en aquells territoris on hi hagi més rang altitudinal es veurà afavorida la conservació.

En resum, la capacitat de les espècies per fer front al canvi climàtic depèn de les característiques pròpies de l’espècie i les del territori. I, per contra, la vulnerabilitat de les espècies al canvi climàtic es produeix quan la velocitat que aquestes presenten per poder desplaçar la seva distribució o adaptar-se és menor a la velocitat del canvi climàtic.

A nivell intern

El canvi climàtic també afecta a la planta com a organisme, ja que li produeix canvis al seu metabolisme i a la seva fenologia (ritmes periòdics o estacionals de la planta).

Un dels factors que porta a aquest canvi climàtic és l’increment de la concentració de diòxid de carboni (CO2) a l’atmosfera. Això podria produir un fenomen de fertilització de la vegetació. Amb l’augment de COa l’atmosfera s’incrementa també la captació d’aquest per les plantes, augmentat així la fotosíntesi i permetent una major assimilació. Però, no és tot avantatges, perquè per això es produeix una pèrdua d’aigua important, degut a que els estomes (estructura que permeten l’intercanvi de gasos i la transpiració) romanen oberts molt temps per incorporar aquest CO2. Per tant, hi ha efectes contraposats i la fertilització dependrà de la planta en sí, com també del clima local. Molts estudis han demostrat que diverses plantes reaccionen diferent a aquest increment de CO2, ja que el compost afecta a varis processos fisiològics i per tant les respostes no són úniques . Per tant, ens trobem amb un factor que altera el metabolisme de les plantes i que no es pot predir com seran els seus efectes sobre elles. A més, aquest efecte fertilitzat està limitat per la quantitat de nutrients presents i sense ells la producció es frena.

fotosíntesi
Procés de fotosíntesi (Imatge de At09kg).

Per un altre costat, no hem d’oblidar que el canvi climàtic també altera el règim estacional (les estacions de l’any) i que això afecta al ritme de la vegetació, a la seva fenologia. Això pot comportar repercussions inclús a escala global; per exemple, podria produir un desajust en la producció de plantes cultivades per a l’alimentació.

PLANTES COM A REGUALADORES DEL CLIMA

Encara que no es pot parlar de les plantes com a reguladores del clima global, esta clar que hi ha una relació entre el clima i la vegetació. Però, aquesta relació és un tant complicada perquè la vegetació té tan efectes d’escalfament com de refredament del clima.

La vegetació disminueix l’albedo; els colors foscos absorbeixen més la radiació solar i per tant menys llum solar es reflecteix cap al exterior. A més. al ser organismes amb superfície rugosa s’augmenta l’absorció. En conseqüència, si hi ha més vegetació, la temperatura local (calor transferida) augmenta més.

Però, per altra banda, al augmentar la vegetació hi ha més evapotranspiració (conjunt de l’evaporació d’aigua d’una superfície i la transpiració a través de la planta). De manera que el calor es consumeix en passar l’aigua líquida a forma gasosa, el que comporta un refredament. A més, l’evapotranspiració també ajuda augmentar les precipitacions locals.

Biophysical effects of landcover
Efectes biofísics de diferents usos del sòl i la seva acció sobre el clima local (Imatge de Jackson et al. 2008. Environmental Research Letters.3: article 0440066).

Per tant, és un efecte ambigu i en determinats entorns pesa més l’efecte de refredament, mentre que en altres té més rellevància el d’escalfament.

MITIGACIÓ

Avui dia hi ha varies propostes per reduir el canvi climàtic, però com poden ajudar les plantes?

Les comunitats vegetals poden actuar com a embornals, reserves de carboni, ja que a través de l’assimilació de COajuden a compensar les emissions. Un maneig adequat dels ecosistemes agraris i dels boscos pot ajudar a la captació i emmagatzematge del carboni. Per altra banda, si s’aconsegueix reduir la desforestació i augmentar la protecció d’habitats naturals i boscos, es reduirien les emissions i s’estimularia aquest efecte embornal. Tot i així, existeix el risc de que aquests embornals es puguin convertir en fonts d’emissió; per exemple, degut a un incendi.

Finalment, presentar els biocombustibles: aquests, a diferència dels combustibles fòssils (com el petroli), són recursos renovables, ja que es tracta de cultius de plantes destinats al ús de combustible. Encara que no aconsegueixen retirar CO2 de l’atmosfera ni redueixen emissions de carboni, eviten l’increment d’aquest a l’atmosfera. Per aquest motiu no arribarien a ser una tècnica del tot mitigadora, però mantenen el balanç d’emissió i captació neutre. El problema és que poden generar efectes colaterals a nivell social i ambiental, com l’increment de preus d’altres cultius o la desforestació per a instaurar aquests cultius, cosa que no hauria de succeir.

800px-Canaviais_Sao_Paulo_01_2008_06
Cultiu de canya de sucre (Saccharum officinarum) a Brasil per produir biocombustible (Imatge de Mariordo).

Difusió-català

REFERÈNCIES

La migració de les balenes està canviant pel canvi global

Resultats d’una investigació que ha tingut lloc del 1984 al 2010 al Golf de St. Lawrence (Canadà, Oceà Atlàntic Nord) sobre els canvis en els patrons de migració degut al canvi global ha estat publicat aquest març a Plos One. En aquest article, trobaràs un resum de tal article. 

INTRODUCCIÓ

El canvi global (mal anomenat canvi climàtic) és un canvi a escala planetària del sistema climàtic de la Terra. Malgrat ser un procés natural, en les últimes dècades la causa dels canvis som els humans ja que hem produït un increment de l’alliberament de diòxid de carboni degut a la combustió de combustibles fòssils.

MIGRACIÓ DE LES BALENES

El canvi global suposa un repte per a les espècies migratòries ja que la temporalitat de les migracions estacionals és important per maximitzar l’explotació dels pics d’abundància de les preses en les àrees d’alimentació, que, a la vegada, s’estan adaptant a l’escalfament de la Terra. Altres causes promotores de les migracions són l’ús de recursos com l’aparellament i el resguard. Aquest és el cas del rorqual comú (Balaenoptera physalus) i la balena amb gep (Megaptera novaeangliae), que s’alimenten d’una gran varietat de zooplàncton i cries de peixos. Aquest zooplàncton creix degut a l’increment del fitoplàncton, el qual creix per l’increment de la llum i els nutrients a l’estiu. Recorda que en aquest post pots llegir sobre el comportament alimentari de les balenes de gep. Aquest no és el primer article que indica canvis en el rang de les migracions de les espècies tant a l’estiu com a l’hivern i les seves alteracions en la temporalitat.

Fin whale (Balaenoptera physalus) (Picture from Circe).
Rorqual comú (Balaenoptera physalus) (Foto de Circe).
Humpback whale (Megaptera novaengliae) (Picture from Underwater Photography Guide).
Balena de gep (Megaptera novaeangliae) (Foto de Underwater Photography Guide).

S’observa un patró general en les espècies migratòries: utilitzen regions de latituds altes a l’estiu per aprofitar l’alta productivitat i abundància de les seves preses i algunes es reprodueixen durant aquest període. Generalment, les espècies migratòries de llarga distància s’adapten pitjor al canvi climàtic que els de curta distància.

humpback whale migration
El cas de la migració de la balena de gep (Megaptera novaeangliae) (Foto de NOAA).

Molts misticets comencen les migracions estacionals des de zones allunyades més de centenars o milers de kilòmetres, alternant entre les zones de criança a l’hivern de les latituds baixes a les d’alimentació en latituds altes. La resposta dels mamífers marins al canvi global ha estat predita:

  • Distribució més propera al pol i arribada abans en les àrees d’alimentació per seguir el canvi de distribució de les seves preses.
  • Temps de residència més llargs en latituds altes com a resposta a la millora de la productivitat.

Si vols aprendre més sobre el comportament de cetacis i altres aspectes, pots realitzar aquest curs online. Més informació aquí. A més, si prems sobre la imatge podràs cursar-lo per 35€ i no per 50€ (hi ha 50 cupons, fins el 31 de març). 

CatalàCOM AFECTA EL CANVI GLOBAL A LA MIGRACIÓ DE LES BALENES?

Els resultats de l’article mostren que el rorqual comú i la balena de gep arriben abans a l’àrea d’estudi durant els 27 anys que ha durat la investigació. De totes maneres, la taxa de canvi de més d’un dia per any no s’ha documentat mai. Ambdues espècies també marxen abans, com s’ha observat en altres espècies. La sortida de les balenes de gep va canviar amb la mateixa taxa que l’arribada, de manera que el temps de residència es manté constant. Per altra banda, els rorquals han augmentat el seu temps de residència de 4 dies a 20 dies. De tota manera, aquest increment està subjecte a un biaix degut a les poques mostres en els dos primers anys i hi ha una evidència dèbil que els rorquals hagin incrementat aquest temps.

migració rorqual comú balena de gep iubarta
Data mitjana del primer i últim albirament en rorqual comú (Balaenoptera physalus) i balena de gep (Megaptera novaeangliae) (Dades de Ramp C. et al. 2015).

A més, els resultats suggereixen que la regió representa només una fracció del potencial rang d’estiu en ambdues espècies i que les dues passen només una part de l’estiu allà. El que està clar és que ambdues espècies mostren les mateixes adaptacions del comportament i han avançat la seva presència temporal a l’àrea un mes.

Altres estudis mostren que les balenes grises (Eschrichtius robustus) probablement han aturat les migracions anuals a Alaska (Stafford K et al. 2007).

PER QUÈ LES BALENES CANVIEN ELS SEUS PATRONS DE MIGRACIÓ?

Sembla ser que l’arribada dels rorquals al Golf segueix el canvi en a data de trencament del gel i la temperatura superficial del mar els hi indica a les balenes que ja ha arribat el moment de tornar al Golf. Hi ha un decalatge de 13-15 setmanes entre quan l’àrea està totalment lliure de gel i la seva arribada. Això també s’ha vist a les Açores, on els rorquals i balenes de gep arriben 15 setmanes després de l’inici del bloom de primavera per alimentar-se mentre estan de pas per la zona per anar a les latituds més altes per alimentar-se a l’estiu.

La influència de la temperatura superficial del mar al gener al Golf pot haver desencadenat la sortida primerenca de les balenes de gep de les àrees de cria i així la seva arriada abans al Golf.

Aquests dues espècies de balena són consumidors generalistes i la seva arribada al Golf està relacionat amb l’arribada de les seves preses. La millora de la temperatura i les condicions de llum i el trencament primerenc del gel (junt amb una temperatura superficial del mar més alta) permet un bloom de fitoplàncton seguit del creixement del zooplàncton. Així, l’arribada primerenca dels rorquals i balenes de gep els permet menjar sobre les seves preses. De totes maneres, hi ha un decalatge de dues setmanes entre l’arribada dels rorquals i les balenes de gep, el que permet a les segones menjar sobre nivells tròfics superiors el que redueix la competència.

CONCLUSIÓ

El canvi global ha canviat la data d’arribada dels rorquals i balenes de gep al Golf de St. Lawrence (Canadà) a una taxa mai documentada abans de més de 1 dia per any, mantenint-se una diferència de dues setmanes entre l’arribada de les dues espècies i permetent la separació temporal del nínxol ecològic. De totes maneres, la data de sortida d’ambdues espècies també és més primerenca però a diferents taxes, resultant en un increment de la superposició temporal, indicant que la separació pot estar desapareixent. La tendència en l’arribada està relacionada amb el trencament més aviat del gel i l’increment de la temperatura superficial marina.

REFERENCIES

Aquest pots es basa en el següent article:

  • Ramp C, Delarue J, Palsboll PJ, Sears R, Hammond PS (2015). Adapting to a Warmer Ocean – Seasonal Shift of Baleen Whale Movements over Three Decades. PLoS ONE 10(3): e0121374. doi: 10.1371/journal.pone.0121374

Si t’ha agradat aquest article, si us plau comparteix-lo a les xarxes socials. L’objectiu del blog, al cap i a la fi, és divulgar la ciència i arribar a tanta gent como sigui possible. Si vols, ens pots deixar els teus comentaris. 

Aquesta publicació té una llicència Creative Commons:

Llicència Creative Commons

Recorda: curs online de cetacis. Més informació aquí. A més, si prems sobre la imatge podràs cursar-lo per 35€ i no per 50€ (hi ha 50 cupons, fins el 31 de març). 

Català