Arxiu d'etiquetes: espermatóforo

La vida (a)sexual de los insectos

La mayoría de grupos de insectos desarrolla organismos unisexuales que se reproducen sexualmente mediante la cópula, generando descendencia a través de la puesta de huevos. Sin embargo, su enorme diversidad también esconde un gran abanico de mecanismos reproductivos.

¡Descúbrelos a través de este artículo! 

Tipos de reproducción

Reproducción sexual: anfigonia y partenogénesis

La reproducción sexual implica la participación de células sexuales especializadas o gametos, las cuales se originan en los órganos sexuales del individuo por meiosis. Es el tipo de reproducción más común entre los artrópodos y los insectos.

1. Anfigonia

En la anfigonia, se generan dos tipos de gametos que, al fusionarse, dan lugar al embrión. Dentro de esta modalidad, la mayoría de insectos son unisexuales o dioicos, por lo que cada organismo desarrolla un sólo tipo de gameto. De hecho, son muy pocos los casos en los que un único organismo genera ambos gametos (hermafroditismo); es el caso de Icerya purchasi (Hemiptera), Perla marginata (Plecoptera) y de diversas especies de la familia Termitoxenidae (Diptera).

Icerya purchasi (izquierda; imagen propiedad de Vijay Cavale, CC 3.0) y Perla marginata (derecha; imagen propiedad de gailhampshire en Flickr, CC 2.0).

Encuentro de pareja y cortejo

En los organismos unisexuales o dioicos, la fusión de los gametos sólo es posible tras encontrar una pareja. Las estrategias que los insectos emplean para encontrar compañero son muy diversas: emisión de feromonas y/o luz, desarrollo de un determinado patrón de coloración o emisión de sonidos y vibraciones (muchas de las cuales ya tratamos en este artículo sobre la comunicación de los insectos).

Una vez encontrada la pareja, puede tener lugar un proceso de cortejo, el cual irá seguido de la cópula si éste tiene éxito. Dicho cortejo puede desarrollarse mediante la ejecución de bailes nupciales, la presentación de ofrendas (p. ej. comida; es el caso de algunas moscas escorpión (Mecoptera)) o la formación de enjambres (vuelos nupciales, como en Hymenoptera), entre otros. En algunos casos, la hembra no decide aparearse con el macho si éste no se encuentra en posesión de un territorio amplio o una fuente de alimento.

En este vídeo podemos ver el vuelo nupcial de las abejas melíferas:

Fecundación

La fecundación o singamia es el proceso mediante el cual los gametos se fusionan para dar lugar al embrión, hecho que tiene lugar tanto en organismos dioicos como hermafroditas.

  • Interna

Siguiendo con los organismos dioicos, el mecanismo más extendido entre los insectos “modernos” para garantizar el encuentro de los gametos es la cópula (fecundación interna). En este caso, el macho suele transmitir directamente sus gametos (espermatozoides) al cuerpo de la hembra, donde se encuentran con los gametos femeninos (óvulos).

Saltamontes de la especie Romalea microptera, nativo de los Estados Unidos. Imagen propiedad de http://www.birdphotos.com, CC 3.0.
  • Externa

En algunos insectos y grupos relacionados más “primitivos”, la fecundación tiene lugar sin el contacto de los órganos sexuales (fecundación externa). En estos casos, el macho libera un espermatóforo, un paquete de esperma generado por las glándulas accesorias de su aparato reproductor, recubierto de una película lipoproteica que previene su desecación. Se considera un paso intermedio entre la reproducción en el medio acuático propia de grupos “primitivos”, los cuales liberaban el esperma al agua sin riesgo a desecarse, y la reproducción en el medio terrestre.

Su producción es propia de grupos relacionados a los hexápodos, como Myriapoda (ciempiés y milpiés); de hexápodos basales, como Collembola, Diplura y Protura; de insectos basales, como Archaeognatha y Zygentoma (pececillos de cobre y pececillos de plata); y de ciertos grupos de insectos más “modernos”, como muchos Orthoptera, Psocoptera, Coleoptera, Neuroptera, Mecoptera y algunos Hymenoptera. En algunos casos, el macho libera el espermatóforo al medio, el cual es recogido posteriormente por la hembra (caso de Collembola); en otros, el macho se lo ofrece a la hembra o bien la dirige al lugar donde éste se encuentra (Zygentoma y Archaeognatha).

Collembola de la especie Sminthurus viridis; detrás, el espermatóforo pedunculado propio de este órden de insectos. Imagen modificada a partir de la fotografía original de Gilles San Martin en Flickr, CC 2.0.
Hembra de Orthoptera recogiendo el espermatóforo de un macho. Imagen modificada a partir de la fotografía original de Sandrine Rouja en Flickr, CC 2.0.

La fecundación interna se considera, pues, una novedad evolutiva y adaptativa al medio terrestre. Sin embargo, a día de hoy aún hay insectos con fecundación interna que conservan la información genética para producir espermatóforo; en estos casos, el macho introduce él mismo el espermatóforo dentro de la hembra, el cual le sirve a ésta como fuente adicional de nutrientes para sus huevos.

En ocasiones, el macho ofrece el espermatóforo como regalo nupcial, incluyendo en éste nutrientes para la hembra.

2. Partenogénesis

En la partenogénesis, la generación de descendencia tiene lugar a través de óvulos sin fecundar. Habitualmente, se la tiende a clasificar como un tipo de reproducción asexual; sin embargo, es mucho más apropiado considerarla un tipo de reproducción sexual al estar implicados los gametos femeninos generados por meiosis.

La partenogénesis puede ser:

  • Accidental: se desarrolla un individuo a partir de un óvulo sin fecundar de forma excepcional en especies anfigónicas; ej. Bombyx mori (mariposa del gusano de seda).
  • Facultativa: algunos óvulos son fecundados y otros no.
  • Obligada: los óvulos sólo pueden desarrollarse sin fecundación. Es el caso de especies que alternan generaciones partenogenéticas y anfigónicas.
Mariposa del gusano de seda (Bombyx mori). De forma extraordinaria, algunos de sus huevos sin fecundar generan descendencia. Imagen propiedad de Nikita en Flickr, CC 2.0.

Además, según la dotación cromosómica del óvulo, la partenogénesis puede ser:

  • Haploide (n) o arrenotoca: los óvulos sin fecundar (n) siempre generan machos y los fecundados (2n), hembras. Se da en abejas y en otros Hymenoptera, en algunos Coleoptera y en Zygentoma, y siempre es facultativa. El control del sexo de la descendencia es un proceso clave en la evolución de las estructuras coloniales en insectos sociales.
En las abejas melíferas, los huevos fecundados dan lugar a hembras  (obreras o, en caso de recibir una alimentación especial, una nueva reina) y los no fecundados, machos. Fotografías de Alex Wild y figura de Ashley Mortensen (web de la Universidad de Florida).

 

  • Diploide (2n) o telitoca: los óvulos sin fecundar (2n) siempre dan lugar a hembras con la misma carga genética que la progenitora (clones). Se da en pulgones (Aphididae, Hemiptera), cucarachas, cochinillas (Coccoidea, Hemiptera) y en algunos escarabajos curculiónidos, y suele ser obligada. Este tipo de partenogénesis tiene la potencialidad de generar una gran cantidad de descendencia en poco tiempo en detrimento de la variabilidad genética. En los pulgones, las generaciones partenogenéticas alternadas con las anfigónicas permiten explosiones demográficas en momentos puntuales.
Pulgones de la especie Aphis nerii. Imagen propiedad de Andrew C, CC 2.0.

A veces, la partenogénesis puede tener lugar en estadios inmaduros, como las larvas o las pupas. Es el caso de la pedogénesis, en la que las formas inmaduras pueden generar descendencia mediante este proceso; se da en algunos cecidómidos (Diptera) y en una especie de escarabajo, Macromalthus debilis, entre otros. No hay que confundirla con la neotenia, caso en el que una forma larvaria desarrolla todos los rasgos y estructuras reproductivos propios de un adulto (caso de algunas cochinillas).

Reproducción asexual

En la reproducción asexual, la generación de descendencia tiene lugar sin la participación de los gametos.

Es una modalidad muy poco habitual en insectos, representada únicamente por una forma muy peculiar conocida como poliembrionía. Mediante este proceso, a partir de un solo óvulo fecundado se generan cientos de individuos por escisión del embrión. Aunque inicialmente tiene lugar una fecundación, el resto de individuos se genera asexualmente. Se da únicamente en unas pocas especies de cecidómidos e himenópteros calcídidos (parasitoides), propiciando una gran explosión poblacional.

Generación de descendencia

La producción de descendencia en los insectos puede tener lugar de formas bien distintas:

Oviparismo

Tiene lugar mediante la puesta de huevos, siendo el mecanismo más extendido.

Puesta de mantis u ooteca (izquierda; imagen propiedad de Scot Nelson en Flickr, CC 2.0) y puesta de la mariposa blanca de la col, Pieris brassicae (derecha; imagen propiedad de Walter Baxter, CC 2.0).

Ovoviviparismo

Los huevos fertilizados son incubados dentro de los conductos reproductivos de la hembra. Ocurre en algunas cucarachas, pulgones, cochinillas y moscas (Muscidae, Calliphoridae y Tachinidae), y en unos pocos escarabajos y trips (Thysanoptera). Los huevos eclosionan inmediatamente antes o después de la puesta.

Viviparismo

Las hembras dan a luz directamente a las larvas. Existen distintas modalidades entre los insectos:

  • Viviparismo pseudoplacentario: la hembra desarrolla huevos con poco vitelo en sus conductos reproductores y ésta los nutre mediante un tejido similar a una placenta. Se da en muchos pulgones y Dermaptera, en algunos Psocoptera y en Polyctenidae (Hemiptera).

En este vídeo de Neil Bromhall, vemos a un grupo de pulgones o áfidos “dando a luz”:

  • Viviparismo hemocélico: los embriones se desarrollan libremente en la hemolinfa de la hembra (líquido interno equivalente a la sangre), de la cual obtienen nutrientes por osmosis. Ocurre sólo en Strepsiptera y en cecidómidos. En algunos cecidómidos, las larvas consumen a su progenitora, que también es una larva (caso extremo de pedogénesis larvaria).
  • Viviparismo adenotrófico: la larva está tan poco desarrollada que debe continuar alimentándose a partir de secreciones procedentes de unas glándulas accesorias (“glándulas mamarias”) situadas en el canal reproductivo de la hembra. Una vez alcanza el tamaño adecuado y tras ser depositada, la larva pupa inmediatamente. Ocurre en dípteros de las familias Glossinidae (mosca tse-tse), Hippoboscidae (moscas de los caballos o palomas), Nycteribidae y Streblidae (moscas de los murciélagos).

En este vídeo de Geoffrey M. Attardo (AAAS/Science), vemos a una mosca tse-tse teniendo a su larva:

.              .              .

 

¿Quién dijo que la vida (a)sexual de los insectos era sencilla? Y tú, ¿Conoces alguna curiosidad? ¡Envíanos tus comentarios!

Referencias

La imagen de portada es propiedad de Irene Lobato Vila (autora de este artículo).

Los nautilos: unos cefalópodos inusuales

Los nautilos son, seguramente, uno de los cefalópodos más desconocidos, pues sus compañeros los calamares, las sepias y los pulpos se llevan toda la atención debido a su presencia en las pescaderías y supermercados y porque se pueden observar con más o menos facilidad poniendo la cabeza bajo el agua. Aquí nos centraremos en su biología y algunas curiosidades. 

INTRODUCCIÓN: LOS CEFALÓPODOS

Los nautilos son un grupo de animales marinos incluidos en la clase de los cefalópodos, los cuales, junto a los bivalvas (mejillones, almejas…), gasterópodos (caracoles de mar, nudibranquios…) y otros grupos menos conocidos, forman el gran grupo de los moluscos, con unas 90.000 especies vivientes (y unas otras 70.000 especies fósiles). Los cefalópodos son animales marinos y depredadores. En vez de presentar el característico pie de los moluscos, lo han transformado en un embudo o sifón para expulsar el agua del interior del cuerpo (y así desplazarse por propulsión) y en una corona de brazos. Los cefalópodos tienen sexos separados, de manera que hay individuos macho y hembra. Para reproducirse, el macho introduce una bolsa de espermatozoides (espermatóforo) en el interior de la hembra con un brazo modificado llamado hectocotilo.

LOS NAUTILOS

Los nautilos, o mejor dicho, los nautiloideos, son una subclase de cefalópodos caracterizados por la presencia de una concha espiral y nacrada, la cual está separada por diferentes cámaras, como resultado de su crecimiento. Estas diferentes cámaras están conectadas entre ellas por el sinfúnculo, un conducto de tejido vivo que regula la entrada y salida de aire y líquido de éstas para controlar la flotabilidad del animal.

Exemplar del gènere Nautilus (Foto: Servando Gion).
Ejemplar del género Nautilus (Foto: Servando Gion).

Su cuerpo, situado únicamente en la cámara más externa, pero unido en la pared de la anterior a través de músculos, presenta más de 47 pares de tentáculos, los cuales no tienen ventosas (pero sí que producen sustancias adherentes), los cuales intervienen en la alimentación y presentan diferentes órganos de los sentidos. Cuatro de éstos, en los machos se han transformado en órganos copuladores. El sistema nervioso está bastante difuso. Presentan un par de ojos, los cuales son relativamente sencillos dentro de los cefalópodos. Como el resto de cefalópodos, presentan un sifón que permite la propulsión de agua para su desplazamiento. En caso de amenaza, gracias a una caperuza se pueden esconder dentro de la concha. Para más detalles de su anatomía, mira la imagen siguiente.

Esquema de l'anatomia d'un nautilus (Foto: Malacologia).
Esquema de la anatomía de un nautilo (Foto: Malacologia).

Son animales con actividad nocturna, los cuales se alimentan de crustáceos y peces de profundidad. Viven en la región tropical de los océanos Pacífico e Índico, los cuales se encuentran cerca del fondo, desde cerca de la superficie hasta los 500 m de profundidad.

Aunque fueron muy abundantes en el pasado, durante el Paleozoico y el Mesozoico, actualmente sólo quedan dos géneros, Nautilus (con 4 especies) y Allonautilus (con 2 especies). Para diferenciar los dos géneros, nos tenemos que fijar en el tamaño del umbilicus, la parte central de la concha (vista por fuera): mientras que Nautilus lo tiene pequeño, de manera que ocupa entre el 5 y el 16% del diámetro total de la concha; en Allonautilus es grande, de manera que ocupa el 20% del diámetro. Otros carácteres internos, como las branquias y el sistema reproductivo, permiten su diferenciación. Aunque hay diferencias entre especies, miden unos 23 cm de diámetro y pueden pesar unos 1,5 kg.

OLYMPUS DIGITAL CAMERA
A la izquierda, un Nautilus pompilius; a la derecha, un Allonautilus scrobiculatus (Foto: Softpedia)

Se trata de animales bastante complicados de observar. De hecho, recientemente se observó un individuo de la especie Allonautilus scrobiculatus, y hacía unos 30 años que no se observaba ninguno!

REFERENCIAS

  • Brusca & Brusca (2005). Invertebrados. Ed. McGraw Hill (2 ed).
  • Hickman, Roberts, Larson, l’Anson & Eisenhour (2006). Principios integrales de Zoología. Ed. McGraw Hill (13 ed)
  • Jereb, P.; Roper, C.F.E. (eds). Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 1. Chambered nautiluses and sepioids (Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae). FAO Species Catalogue for Fishery Purposes. No. 4, Vol. 1. Rome, FAO. 2005. 262p.
  • Malacologia.es: Biología de los moluscos

Difusió-castellà

Ranas, sapos y tritones: los últimos anfibios

Con unas 7000 especies vivientes, los anfibios en la actualidad ocupan prácticamente todos los hábitats de la Tierra. Mientras que en la entrada anterior explicamos el origen de los primeros tetrápodos y cómo éstos dieron lugar a diferentes grupos de anfibios primitivos, en esta entrada explicaremos más detalladamente las características de los anfibios actuales, los llamados lisanfibios.

ANFIBIOS Y LISANFIBIOS

El término “Lissamphibia” (“anfibios lisos”) se utiliza para denominar a los anfibios actuales y sirve para diferenciarlos del resto de anfibios fósiles, mientras que el término Amphibia (“doble vida” refiriéndose al estadio acuático larvario de muchas especies), se utiliza para referirse a todos los tetrápodos menos a los amniotas (reptiles, aves y mamíferos). La mayoría de autores consideran que los lisanfibios son un grupo monofilético (que incluye a todos los descendientes de un antepasado común) que engloba a los diferentes grupos de anfibios actuales. Las principales características de este grupo son:

Caracteres dérmicos

  • Piel sin escamas, lisa y permeable que permite el intercambio de gases (respiración pulmonar y cutánea) y la absorción de agua (la mayoría de anfibios actuales no suelen necesitar beber agua). Esto los hace susceptibles a infecciones cutáneas como la del hongo Batrachocytrium dendrobatidis.
FrogSkinSección de la piel de una rana por Jon Houseman. A: Glándula mucosa, B: Cromóforo, C: Glándula granular venenosa, D: Tejido conectivo, E: Stratum corneum, F: Zona de transición, G: Epidermis, y H: Dermis.
  • Dos tipos de glándulas cutáneas: mucosas (muy numerosas, para mantener la humedad) y granulares (menos numerosas, secretan venenos de diferentes intensidades).

Caracteres óseos

  • Dientes pedicelados y bicúspides.
teethFoto de dientes pedicelados, en los cuales la corona y la base estan hechas de dentina y se encuentran separadas por una fina capa de dentina descalcificada.
  • Un par de cóndilos occipitales.
  • Costillas cortas y rectas que no rodean el cuerpo.
  • Cuatro dedos en las patas delanteras y cinco dedos en las traseras.
10050622254_8cffbfb0e4_oEsqueleto de salamandra gigante en el que se pueden apreciar algunas de las características de los lisanfibios. Foto por Graham Smith.

Caracteres auditivos

  • Papilla amphibiorum, un conjunto de células especializadas en el oído interno que les permite detectar sonidos graves.
  • Complejo formado por el estribo y el opérculo, que unidos a la cápsula auditiva, mejoran la recepción de ondas aéreas y sísmicas.

Otros caracteres

  • Cuerpos grasos asociados a las gónadas.
  • Presencia de bastones verdes en las células receptoras de los ojos (permiten la percepción de más colores).
  • Presencia de un músculo elevador del ojo (llamado levator bulbi).
  • Sistema de ventilación bucal (las costillas cortas no permiten una ventilación pulmonar y, por lo tanto, lo hacen bombeando el aire con la boca).
Two_stroke_buccal_pumpingDiagrama explicativo sobre la ventilación bucal en los lisanfibios, por Mokele.

TAXONOMÍA Y TEORÍAS EVOLUTIVAS

A día de hoy, existen sólo tres órdenes vivientes de lisanfibios: el orden Salientia o Anura (que incluye a ranas y sapos), el orden Caudata o Urodela (salamandras y tritones) y el orden Gymnophiona o Apoda (las cecilias). El segundo nombre de cada orden hace referencia a las especies actuales y a todos los antepasados dentro de su árbol evolutivo, mientras que el primer nombre se refiere al orden completo, desde que se separaron los tres órdenes.

Existen dos hipótesis sobre las relaciones entre los tres órdenes. La más aceptada tanto por los análisis anatómicos como por los moleculares, es que Salientia y Caudata son grupos hermanos dentro del clado Batrachia, y la otra es que los órdenes Caudata y Gymnophiona forman juntos el clado Procera.

Batrachia proceraDos árboles evolutivos hipotéticos por Marcello Ruta & Michael I. Coates (2007), mostrando las hipótesis Batrachia y Procera sobre las relaciones entre Salientia (S), Caudata (C) y Gymnophiona (G).

Actualmente existen tres grupos de hipótesis sobre el origen de los lisanfibios: las hipótesis de los temnospóndilos, las de los lepospóndilos y las del polifiletismo.

Los temnospóndilos son los principales candidatos a ser los antepasados de los lisanfibios, ya que presentan bastantes caracteres compartidos como por ejemplo la presencia de dientes pedicelados bicúspides, y de costillas cortas y rectas. Los autores que defienden esta teoría argumentan que los lisanfibios sufrieron a lo largo de su evolución un proceso de pedomorfosis (retención durante el desarrollo de caracteres juveniles), explicando así porqué los temnospóndilos llegaron a alcanzar tamaños tan grandes, mientras que los lisanfibios suelen tener tamaños más reducidos y estructuras craneales más ligeras y menos osificadas.

temnospondyliDibujos de Marcello Ruta & Michael I. Coates (2007) de esqueletos pertenecientes a Celteden ibericus (izquierda, un lisanfibio) y Apateon pedestris (derecha, un temnospóndilo) para mostrar las similitudes en la estructura esquelética.

Las hipótesis del origen lepospóndilo de los lisanfibios no reciben el mismo apoyo que las del origen temnospóndilo. Aún así, recientemente algunos estudios estadísticos que combinaban datos anatómicos y moleculares han dado cierto soporte a estas hipótesis.

Aun así, hay un tercer grupo de hipótesis que se debe tener en cuenta, la posibilidad de que los lisanfibios sean un grupo polifilético (con diferentes orígenes para los tres órdenes). Según una de estas teorías, las ranas y salamandras (clado Batrachia) tendrían su origen en los temnospóndilos, mientras que las cecilias (orden Gymnophiona o Apoda) se habrían originado de los lepospóndilos, muchos de los cuáles ya habían sufrido un proceso de reducción de extremidades.

Lissamphibian_phylogenyEsquema modificado de las tres hipótesis diferentes sobre el origen de los lisanfibios; 1. Origen lepospóndilo, 2. Origen temnospóndilo, 3. Origen polifilético.

Aun así, la mayoría de autores defienden un origen temnospóndilo monofilético para los lisanfibos, aunque tampoco se deberían descartar hipótesis alternativas.

SALIENTIA O ANURA

Con más de 4750 especies, las ranas y los sapos forman el orden más diverso de lisanfibios. El primer Salientia del que se tiene constancia es Triadobatrachus, que aún teniendo cola, ya presenta algunos de los caracteres típicos de las ranas, como una columna vertebral con pocas vértebras y patas traseras más largas que las delanteras.

TriadobatrachusInterpretació por Pavel Riha, del antiguo Salientia, Triadobatrachus massinoti.

La anatomía de los anuros modernos es única dentro del reino animal. Su esqueleto parece dedicado totalmente a que estos animales puedan saltar (aunque hay muchas especies que se desplazan caminando). Algunas de sus características son:

  • Tronco corto (menos de 12 vértebras) y rígido, cintura pélvica especialmente larga y vértebras de la parte posterior (que en otros anfibios forman la cola) reducidas y fusionadas formando el urostilo.
  • Extremidades posteriores largas, con la tibia y la fíbula fusionadas (para ayudar a impulsarse) y extremidades anteriores cortas y fuertes (para resistir el impacto del aterrizaje).
3888291918_f779053a0a_oFoto de una Rana grylio, un anuro americano típico.

Además, de entre todos los anfibios actuales, las ranas son las que tienen más desarrollado el aparato auditivo y los órganos vocales. Los machos a menudo presentan estructuras especializadas en amplificar el sonido durante la época de apareamiento.

Litoria_chloris_callingEjemplar de Litoria chloris mostrando el saco vocal, usado para amplificar el sonido de sus llamadas.

El tamaño de los anuros varía desde los 3 kg de peso y los 35 centímetros de longitud de la rana goliat (Conraua goliath) hasta los 7,7 milímetros de longitud de la recientemente descubierta Paedophryne amauensis, el vertebrado más pequeño conocido en la actualidad.

Paratype_of_Paedophryne_amauensis_(LSUMZ_95004)Foto de Rittmeyer EN, Allison A, Gründler MC, Thompson DK, Austin CC (2012)  de Paedophryne amanuensis, en vertebrado más pequeño del mundo, encima de un centavo de dólar.

Con tanta diversidad, las estrategias vitales de los anuros varían enormemente y es difícil hacer generalizaciones sobre su biología reproductiva, aunque la mayoría presentan desarrollo indirecto (nacen como renacuajos y sufren una metamorfosis) y se reproducen y hacen la puesta en un medio acuoso.

BufoBufoTadpolesRenacuajos de sapo común (Bufo bufo) del norte de Alemania por Christian Fischer.

URODELA O CAUDATA

Los urodelos o caudados son el orden de lisanfibios que más se asemejan externamente a los anfibios primitivos. Este grupo incluye a salamandras y tritones, la mayoría de los cuáles presentan un cuerpo de forma alargada, una cola bien desarrollada y cuatro patas relativamente cortas. La mayoría de urodelos son terrestres y se encuentran distribuidos principalmente por el hemisferio norte, con algunas especies habitando los trópicos.

Salamandra_TigreFoto de una salamandra tigre del este (Ambystoma tigrinum) de la Casa de las Ciencias, Coruña - España. Tomada por Carla Isabel Ribeiro.

Prácticamente todas las especies presentan fecundación interna y son ovíparas. La mayoría presenta desarrollo indirecto (larva, metamorfosis, adulto) y las larvas suelen parecerse a adultos en miniatura con branquias externas ramificadas. En varios grupos de salamandras se dan fenómenos de neotenia, en que los individuos, todo y desarrollarse sexualmente como adultos, externamente siguen teniendo caracteres larvarios.

Joung_and_very_large_larva_of_Salamandra_infraimmaculata,_Ein_Kamon,_IsraelLarvas de distintas edades de Salamandra infraimmaculata, Ein Kamon, Israel. Foto por Ab-Schetui.

Actualmente, los urodelos se clasifican en tres subórdenes: los Sirenoidea, los Cryptobranchoidea y los Salamandroidea. Los sirenoideos son unos urodelos con caracteres especializados y primitivos, como la pérdida de las extremidades posteriores y la presencia de branquias externas. Los criptobrancoideos son grandes salamandras primitivas (de hasta 160 cm) que presentan fertilización externa, mientras que los salamandroideos son el grupo más numeroso de urodelos (con más de 500 especies) y el más diverso, siendo muchas especies terrestres y presentando fertilización interna mediante paquetes de esperma llamados espermatóforos.

20090924201238!P_striatus_USGSFoto de un Pseudobranchus striatus un sirenoideu del Estats Units.

GYMNOPHIONA O APODA

El miembro conocido más antiguo del orden Gymnophiona es el llamado Eocaecilia micropodia, un anfibio de unos 15 cm de longitud con un cuerpo considerablemente largo, una cola corta y unas patas muy pequeñas.

Eocaecilia_BWReconstrucció per Nobu Tamura de Eocaecilia micropodia un antic Gymnophiona de principis del Juràssic.

Las cecilias actuales (orden Apoda) han perdido completamente cualquier rastro de patas, de cintura o de cola debido a su adaptación a un estilo de vida subterráneo. Por esto han sufrido también un proceso de endurecimiento del cráneo y sus ojos están muy reducidos. Además presentan anillos segmentarios por todo el cuerpo que hace que se parezcan a lombrices de tierra.

Ichthyophis kohtaoensis, ca 12Foto de Ichthyophis kohtaoensis) de Tailandia, por Kerry Matz.

Actualmente existen unas 200 especies de cecilias divididas en 10 familias. Su tamaño varía de unos 7 cm en la especie Idiocranium russeli del Camerún, hasta los 1,5 metros de la Caecilia thompsoni de Colombia. Presentan una distribución pantropical, fertilización interna y gran variación en el desarrollo (hay especies vivíparas y ovíparas, con metamorfosis y con desarrollo directo).

KONICA MINOLTA DIGITAL CAMERAFoto de Gymnopis multiplicata una cecilia americana. Foto por Teague O'Mara.

REFERENCIAS

Se han consultado las siguientes fuentes en la elaboración de los contenidos de esta entrada:

 Difusió-castellà

Maratus sp.: la araña que soñaba con ser un pavo real

Si os dijera que en Australia habitan pavos reales de unos 5mm, ¿os lo creeríais? Si bien es cierto que en este país abundan organismos sorprendentes, de momento los científicos no han encontrado aves tan pequeñas. Ahora bien, sí existe un pequeño animal que alberga un enorme parecido con ellas: las arañas pavo real (Maratus sp., familia Salticidae), cuyo “abdomen” u opistosoma (parte posterior del cuerpo de las arañas) presenta una especie de “alas” que se despliegan hacia los lados como la cola de un pavo real.

El mes pasado os mostramos algunas imágenes de estos organismos en las páginas de nuestras redes sociales. A lo largo de este artículo, conoceréis sus características más peculiares y descubriréis la función que esconde su opistosoma desplegable.

LAS ARAÑAS SALTARINAS

Las arañas pavo real se incluyen dentro de la familia Salticidae, comúnmente conocidas como arañas saltarinas o saltícidos. Esta familia incluye más 5000 especies (posiblemente el grupo de arañas más diverso y abundante) y su distribución es prácticamente mundial (pudiéndose encontrar, incluso, en lo alto del monte Everest; este es el caso de la especie Euophrys omnisuperstes). Aun así, se concentran mayoritariamente en bosques tropicales.

¿CÓMO PODEMOS DISTINGUIRLAS?

CARACTERÍSTICAS GENERALES

Las arañas de la familia Salticidae, por lo general, apenas alcanzan unos pocos milímetros de longitud cuando se hacen adultas (lo más habitual es que no sobrepasen los 10mm). Anatómicamente, los organismos de este grupo se caracterizan por poseer dos grandes ojos simples frontales flanqueados por dos más pequeños, más otros cuatro ojos diminutos situados por encima y a los lados de éstos. La posición y tamaño de estos ojos les confieren una visión excelente en comparación a otros grupos de arañas, e incluso comparado con otros grupos de artrópodos su capacidad visual es excepcional.

¡Mirad qué ojos más grandes! ¿Alguien se resiste a ellos?

Ejemplar de la araña saltarina Paraphidippus auranticus (Foto de Thomas Shahan (c)).
Además de poseer una buena visión, estas arañas son capaces de saltar una distancia de hasta 50 veces su longitud, facultad por la que recibieron el adjetivo de “saltarinas”. Son sobretodo su capacidad para cubrir grandes distancias de un solo salto y su excelente visión lo que convierte a estas arañas en hábiles depredadoras, las cuales cazan a sus presas mediante la técnica del acecho sin la necesidad de construir telarañas o trampas de seda para este fin; además, algunas de sus patas anteriores tienden a ser más largas que el resto, hecho que mejora la sujeción de las presas.
Araña saltarina depredando a un ejemplar de Diaea evanida o araña rosa de las flores (Foto de James Niland en Flickr, Creative Commons).

Los individuos de esta familia de arañas suelen presentar un dimorfismo sexual muy marcado (esto es, diferencias fisionómicas notables entre machos y hembras). Los machos de las arañas saltarinas suelen tener unos apéndices bucales (o palpos) muy engrosados que utilizan durante el cortejo y la cópula, tanto para captar la atención de las hembras como para transmitirles el espermatóforo (masa o cápsula de espermatozoides) durante el apareamiento.

Macho de araña saltarina de la especie Sitticus fasciger; se aprecian los palpos engrosados (de color oscuro) (Foto de sankax en Flickr, Creative Commons).
Hembra de araña saltarina de la especie Sitticus fasciger (Foto de sankax en Fickr, Creative Commons).

Además de unos palpos más desarrollados, los machos de algunas especies de esta familia de arañas se caracterizan por presentar un opistosoma (la parte posterior del cuerpo de las arañas) colorido o con propiedades iridiscentes; algunos, incluso, reflejan las radiaciones UV procedentes del Sol, las cuales son detectadas por las hembras de su misma especie gracias a su excelente visión, tal y como apuntan estudios recientes. Las hembras, en cambio, suelen ser de colores más apagados y crípticos (aunque no siempre).