Arxiu d'etiquetes: estromatolito

Fotosíntesis y vida vegetal

En este artículo hablaremos de la fotosíntesis y de las primeras formas de vida vegetal. En la sistemática actual, el término de planta se ajusta a plantas fundamentalmente del medio terrestre, mientras que el término vegetal es un término antiguo de connotación aristotélica que alude a organismos con funciones fotosintéticas. Pero, como en todo, hay excepciones.

El término planta se acuñó hace muchísimos años. Pero, previamente, fue Aristóteles quién diferenció a los seres vivos en tres grandes grupos:

  • Vegetales (alma vegetativa): realizan la nutrición y reproducción.
  • Animales (alma sensitiva): nutrición, reproducción, percepción, movimiento y deseo.
  • Ser humano: añade a la lista anterior la capacidad de razonar.
Aristotle_Dominiopublico
Aristóteles (Dominio público)

Esta manera simplista de percibir el mundo vivo ha perdurado durante mucho tiempo, y ha ido variando con los estudios de diferentes autores como Linneo o Whittaker, entre otros.

Una clasificación muy actual es la propuesta en 2012, The Revised Classification of Eukaryotes. J. Eukariot. Microbiol. 59 (5): 429-493; nos revela un verdadero árbol de la vida.

image description
Sina ;. Adl, et al. (2012) The revised classification of Eukaryotes.  J Eukaryot Microbiol.; 59 (5): 429-493

¿QUÉ ES LA FOTOSÍNTESIS? ¿ES UN PROCESO ÚNICO?

La fotosíntesis es un proceso metabólico que permite usar la energía lumínica para transformar compuestos simples e inorgánicos en complejos orgánicos. Para hacer esto necesitan una serie de pigmentos fotosintéticos que capten estos rayos de luz y que mediante una serie de reacciones químicas permitan realizar procesos internos que den lugar a los compuestos orgánicos.

Esta opción nutritiva ha  sido desarrollada por muchos organismos en múltiples grupos y ramas del árbol de la vida de los eucariotas. Y entre ellos encontramos a los Archaeplastida, el linaje de organismos que ha dado pie a las plantas terrestres.

Las plantas terrestres (Embryophyta) son fácilmente definibles, pero ¿y las algas? Por lo general, se dice que son organismos eucariotas que viven fundamentalmente en el medio acuático y que tienen una organización relativamente simple (coloniales simples o con órganos muy simples), pero esto no es siempre verdad. Por este motivo, todos los grupos de Archaeplastida que quedan fuera del concepto de plantas terrestres (un pequeño grupo dentro de Archaeplastida) son denominados “algas”.

También hay procariotas fotosintéticos del dominio Eubacteria, y es en estos donde la fotosíntesis presenta una gran variabilidad. Mientras que en los eucariotas es única: la fotosíntesis oxigénica.

El dominio eubacteria es muy amplio, y en sus ramificaciones hay hasta 5 grandes grupos de organismos fotosintéticos: Chloroflexi, Firmicutes, Chlorobi, Proteobacteria y Cianobacterias. Estas últimas son las únicas eubacterias que realizan una fotosíntesis oxigénica; con liberación de oxígeno de las moléculas de agua y usando como donador de electrones el hidrogeno del agua. En el resto, tienen lugar una fotosíntesis anoxigénica: el donador de electrones es el azufre o el sulfuro de hidrógeno, pero jamás liberan O2 dado que raras veces interviene el agua en el proceso; es por esto que son conocidas como bacterias rojas o lilas del azufre.

La fotosíntesis es, probablemente, más antigua que la vida misma. La oxigénica, que está circunscrita a este grupo de bacterias, las cianobacterias, probablemente es posterior, pero fue crucial para el desarrollo de vida en nuestro planeta, dado que transformó la atmosfera en una mucho más oxigenada y gracias a ello la vida en la Tierra pudo evolucionar.

SONY DSC
Amazonas, el pulmón de la Tierra (Autor: Christian Cruzado; Flickr)

¿QUÉ PIGMENTOS SE USAN?

Las cianobacterias comparten pigmentos con las plantas terrestres y el resto de eucariotas fotosintéticos. Estos pigmentos son fundamentalmente clorofilas a y b (las universales), siendo los c y d solo presentes en algunos grupos. Además hay dos pigmentos que también son universales: los carotenos, que actúan como antenas que transmiten la energía a las clorofilas o protegen el centro de reacción contra la autooxidación, y las ficobiliproteínas (ficocianina, ficoeritrina, etc.), que aparecen tanto en cianobacterias como en otros grupos de eucariotas fotosintéticos y se encargan de capturar la energía lumínica.

¿Por qué hay esta variabilidad de pigmentos accesorios? Porque cada pigmento tienen un espectro de absorción diferente, y el tener diferentes moléculas permite recoger mucho mejor el espectro de la luz solar; es decir, la captación de energía es mucho más eficiente.

El resto de bacterias fotosintéticos anoxigénicos no tienen clorofilas y, en su lugar, tienen moléculas específicas de procariotas, las bacterioclorofilas.

Pigment_spectra.png
Espectro de absorción de diferentes pigmentos (Fuente: York University)

¿Dónde se localizan los pigmentos?

En organismos con fotosíntesis oxigénica, las cianobacterias y eucariotas fotosintéticos, los pigmentos están en estructuras complejas. En las cianobacterias, en el citoplasma periférico hay una serie de sacos aplanados concéntricos denominados tilacoides, los cuales solo están rodeados por una membrana. En el lumen del tilacoide es donde se encuentran los pigmentos. En los eucariotas, en cambio, encontramos los cloroplastos: orgánulos intracelulares propios de los eucariotas fotosintéticos donde se realiza la fotosíntesis con mínimo 2 membranas, aunque pueden ser más, y numerosos tilacoides dispuestos de diferentes maneras según los organismos. Ambos grupos, por lo tanto, realizan fotosíntesis oxigénica y presentan tilacoides; la diferencia es que en los eucariotas, los tilacoides se encuentran en el interior de los cloroplastos.

Plagiomnium_affine_laminazellen
Células vegetales en las que son visibles los cloroplastos (Autor: Kristian Peters – Fabelfroh)

En cambio, en organismos con fotosíntesis anoxigénica hay distintas opciones. Las bacterias púrpuras contienen los pigmentos en cromatóforos, una especie de vesículas en el centro o periferia de la célula. En cambio, en las bacterias verdes (Chlorobi y Chloroflexi) se encuentran vesículas aplanadas en la periferia de la célula sobre la membrana plasmática donde están las bacterioclorofilas. En Heliobacterium, el pigmento está adosado a la cara interna de la membrana plasmática. Generalmente no son estructuras complejas, y suelen tener membranas simples.

ORIGEN DE LOS ORGANISMOS FOTOSINTÉTICOS

La evidencia fósil de los primeros organismos fotosintéticos son los estromatolitos (3,2 Ga). Son unas estructuras formadas por láminas finas superpuestas de organismos junto con sus depósitos de carbonato cálcico. Estas formaciones aparecen en zonas someras, de mares cálidos y bien iluminados. Aunque muchas tienen forma de columna, se observan desviaciones porque se orientan hacia la luz del Sol. En su momento, tuvieron una importancia capital en la construcción de formaciones arrecíficas y, también, en los cambios de composición de la atmósfera.  Actualmente hay algunos que aún se encuentran vivos.

1301321830_947d538a4d_o.jpg
Estromatolitos (Autor:Alessandro, Flickr)

REFERENCIAS

  • Apuntes obtenidos en diversas asignatura durante la realización del Grado de Biología Ambiental (Universidad Autónoma de Barcelona) y el Máster de Biodiversidad (Universidad de Barcelona).
  • Font Quer, P. (1953): Diccionario de Botánica. Editorial Labor, Barcelona.
  • Izco, J., Barreno, E., Brugués, M., Costa, M., Devesa, J. A., Fernández, F., Gallardo, T., Llimona, X., Parada, C., Talavera, S. & Valdés, B. (2004) Botánica 2.ªEdición. McGraw-Hill, pp. 906.
  • Willis, K.J. & McElwain, J.C. (2014) The Evolution of Plants (second edition). Oxford University Press, 424 pp.

Difusió-castellà

Conociendo los fósiles y su edad

¡ATENCIÓN! 

ESTE ARTÍCULO ESTÁ ANTICUADO.

LEE LA VERSIÓN ACTUAL Y MEJORADA AQUÍ.

En All You Need Is Biology a menudo hacemos referencia a los fósiles para explicar el pasado de los seres vivos. ¿Pero qué es exactamente un fósil y cómo se forma? ¿Para qué sirven los fósiles? ¿Te has preguntado alguna vez cómo lo hace la ciencia para saber la edad de un fósil? Sigue leyendo para descubrirlo!

¿QUÉ ES UN FÓSIL?

Si piensas en un fósil, seguramente lo primero que te viene a la cabeza es un hueso de dinosaurio o una concha petrificada que te encontraste en el bosque, pero un fósil es mucho más. Los fósiles son restos (completos o parciales) de seres vivos que han vivido en el pasado (miles, millones de años)  o rastros de su actividad que quedan conservados (generalmente en rocas sedimentarias). Así pues, existen diferentes tipos de fósiles:

  • Petrificados y permineralizados: son los que corresponden a la definición clásica de fósil en el que las partes orgánicas o huecos son sustituidas por minerales (ver apartado siguiente). Su formación puede dejar moldes internos o externos (por ejemplo, de conchas) en el que el material original puede desaparecer. La madera fosilizada de esta manera se conoce como xilópalo.

    cangrejo herradura, fósil, cosmocaixa, mireia querol rovira
    Fósil petrificado de cangrejo herradura y sus pisadas. CosmoCaixa. Foto: Mireia Querol Rovira
  • Icnofósiles: restos de la actividad de un ser vivo que quedan registradas en la roca y dan información sobre el comportamiento de las especies. Pueden ser modificaciones del entorno (nidos y otras construcciones), huellas (icnitas), deposiciones (coprolitos -excrementos-, huevos…) y otras marcas como arañazos, dentelladas…
    Cosmocaixa, huevos, dinosaurio, nido, mireia querol rovira
    Huevos de dinosaurio (nido). CosmoCaixa. Foto: Mireia Querol Rovira

    coprolitos, cosmocaixa, excrementos fósiles, mireia querol rovira
    Coprolitos, CosmoCaixa. Foto: Mireia Querol Rovira
  • Ámbar: se trata de resina fósil de más de 20 millones de antigüedad. Antes pasa por un estado intermedio que se llama copal (menos de 20 millones de años). La resina, antes de pasar a ámbar, puede atrapar insectos, arácnidos, polen… en este caso se consideraría un doble fósil.

    ámbra, ambre, cosmocaixa, mireia querol rovira
    Pieza de ámbar a la lupa con insectos en su interior, CosmoCaixa. Foto: Mireia Querol Rovira
  • Fósiles químicos: son los combustibles fósiles, como el petróleo y el carbón, que se formaron por la acumulación de materia orgánica a altas presiones y temperaturas junto con la acción de bacterias anaerobias (que no utilizan oxigeno para su metabolismo).
  • Subfósil: cuando el proceso de fosilización no se completa (por haber pasado poco tiempo, o las condiciones para que se diera la fosilización no fueron propicias) los restos se conocen como subfósiles. No tienen más de 11.000 años de antigüedad. Es el caso de nuestros antepasados más recientes (Edad de los Metales).
Ötzi, un subfósil. Es la momia natural más antigua de Europa. Vivió durante el Calcolítico (Edad de Cobre) y murió hace 5.300 años. Foto: Wikimedia Commons
Ötzi, un subfósil. Es la momia natural más antigua de Europa. Vivió durante el Calcolítico (Edad de Cobre) y murió hace 5.300 años. Foto: Wikimedia Commons
  • Fósil viviente: nombre que se da a seres vivos actuales muy parecidos a organismos ya extintos. El caso más famoso es el del celacanto, que se creía extinguido desde hacía 65 millones de años hasta que fue redescubierto en 1938, pero hay otros ejemplos como los nautilos.

    ammonites, nautilus, cosmocaixa, fósil, mireia querol rovira
    Comparación entre la concha de un nautilus actual (izquierda) y un ammonite de millones de años de antigüedad (derecha). CosmoCaixa. Foto :Mireia Querol Rovira
  • Pseudofósiles: son formaciones en las rocas que parecen restos de seres vivos, pero en realidad se han formado por procesos geológicos. El caso más conocido son las dendritas de pirolusita, que parecen vegetales.

    pritolusita, dendritas pirolusita, cosmocaixa, mireia querol rovira
    Infiltraciones de pirolusita en piedra calcárea. CosmoCaixa. Foto: Mireia Querol

Lógicamente los fósiles se hicieron más comunes a partir de la aparición de partes duras (conchas, dientes, huesos…), hace 543 millones de años (Explosión del Cámbrico). El registro fósil anterior a ese período es muy escaso. Los fósiles más antiguos que se conocen son los estromatolitos, rocas formadas por la precipitación de carbonato cálcico debido a la actividad de bacterias fotosintéticas que aún existen en la actualidad.

La ciencia que estudia los fósiles es la Paleontología.

stromatolite, estromatòli, estromatolito, mireia querol rovira, fossil, fósil
Estromatolito de 2.800 millones de años de antigüedad, Australian Museum. Foto: Mireia Querol Rovira

¿CÓMO SE FORMA UN FÓSIL?

La fosilización se puede dar de cinco maneras distintas:

  • Petrificación: es la sustitución de la materia orgánica por sustancias minerales de los restos de un ser vivo enterrado. Se obtiene una copia exacta del organismo en piedra. El primer paso de la petrificación es la permineralización (los poros del organismo están rellenos de mineral pero el tejido orgánico está inalterado. Es la fosilización más común que sufren los huesos).
  • Gelificación: el organismo queda incrustado en el hielo y no sufre apenas transformaciones.
  • Compresión: el organismo muerto queda sobre una capa blanda del suelo, como el lodo, y queda cubierto por capas de sedimentos.
  • Inclusión: los organismos quedan atrapados en ámbar o petróleo.
  • Impresión: los organismos dejan impresiones en el barro y se conserva la marca hasta que el barro se endurece.

    Procesos de fosilización y fósiles resultantes. Autor desconocido
    Procesos de fosilización y fósiles resultantes. Autor desconocido

UTILIDAD DE LOS FÓSILES

  • Los fósiles nos dan información de cómo eran los seres vivos en el pasado, resultando una evidencia de la evolución biológica y una ayuda para establecer los linajes de los seres vivos actuales.
  • Permiten analizar fenómenos cíclicos como cambios climáticos, dinámicas atmósfera-océano e incluso las perturbaciones orbitales de los planetas.
  • Los que son exclusivos de una determinada época permiten datar con bastante exactitud las rocas en las que se encuentran (fósiles guía).
  • Dan información de procesos geológicos como el movimiento de los continentes, presencia de antiguos océanos, cadenas montañosas…
  • Los fósiles químicos son nuestra principal fuente de energía actual.
  • Dan información sobre el clima del pasado, por ejemplo, estudiando los anillos de crecimiento de los troncos fósiles o las deposiciones de materia orgánica en las varvas glaciales.

    mireia querol rovira, tronco fósil, xilópalo, AMNH
    Troncos fósiles donde se observan anillos de crecimiento. American Museum of Natural History. Foto: Mireia Querol Rovira

DATACIÓN DE LOS FÓSILES

Para conocer la edad de los fósiles existen métodos indirectos (datación relativa) y directos (datación absoluta). Como no hay ningún método perfecto y la precisión disminuye con la antigüedad, los yacimientos se suelen datar con más de una técnica.

DATACIÓN RELATIVA

Los fósiles se datan según el contexto en el que han sido encontrados, si están asociados a otros fósiles (fósiles guía) u objetos de los que se conoce la edad y según el estrato en el que se encuentran.

En geología, los estratos son los distintos niveles de rocas que se ordenan según su profundidad: según la estratigrafía, los más antiguos son los que se encuentran a mayor profundidad, mientras que los más modernos son los más superficiales, ya que los sedimentos no han tenido tanto tiempo para depositarse en el sustrato. Lógicamente si hay movimientos de tierras y alteraciones geológicas la datación sería incorrecta si sólo existiera este método.

estratigrafía
Esquema de las eras geológicas y estratos con sus correspondientes fósiles. Fuente

DATACIÓN ABSOLUTA

Son más precisas y se basan en las características físicas de la materia.

DATACIÓN RADIOMÉTRICA

Se basan en la velocidad de desintegración de isótopos radioactivos presentes en rocas y fósiles. Los isótopos son átomos del mismo elemento pero con distinta cantidad de neutrones en su  núcleo. Los isótopos radioactivos son inestables, por lo que se transforman en otros más estables a una velocidad conocida por los científicos emitiendo radiación. Comparando la cantidad de isótopos inestables con los estables en una muestra, la ciencia puede estimar el tiempo que ha transcurrido desde que se formó el fósil o roca.

carbono 14
Esquema del ciclo del Carbono 14. Fuente
  • Radiocarbono (Carbono-14): en organismos vivos, la relación entre el C12 y el C14 es constante, pero cuando mueren, esta relación cambia ya que el C14 deja de incorporarse en el cuerpo y el que queda se descompone radioactivamente en un periodo de semidesintegración de 5730 años. Conociendo la diferencia entre el C12 y C14 de la muestra, podremos datar cuando murió el organismo. El límite máximo de datación por este método son 60.000 años, por lo tanto sólo se aplica a fósiles recientes.
  • Berilio 10-Aluminio 26: tiene la misma aplicación que el C14, pero tiene un período de semidesintegración muchísimo mayor, por lo que permite dataciones de 10 millones de años, e incluso de hasta 15 millones de años.
  • Potasio-Argón (40K/40Ar):  se utiliza para datar rocas y cenizas de origen volcánico de más de 10.000 años . Es el método que se utilizó para datar las huellas de Laetoli, el primer rastro de bipedismo de nuestro linaje dejado por Australopitecus afarensis.
  • Series del Uranio (Uranio-Torio): se utilizan diversas técnicas mediante los isótopos del uranio. Se utilizan en materiales de carbonato de calcio, (como corales) y depósitos minerales en cuevas (espeleotemas).
  • Calcio 41: permite datar restos óseos en un intervalo de tiempo entre 50.000 y 1.000.000 de años.

DATACIÓN POR PALEOMAGNETISMO

El polo norte magnético ha ido cambiando a lo largo de la historia de la Tierra, y se conocen sus coordenadas geográficas en distintas épocas geológicas.

Algunos minerales tienen propiedades magnéticas y se dirigen hacia el polo norte magnético cuando están en suspensión acuosa, por ejemplo en las arcillas. Pero si se depositan en el suelo, quedan fijados hacia la posición que tenía el polo norte magnético en ese momento. Si observamos hacia qué coordenadas están orientados esos minerales en el yacimiento lo podemos asociar con una época determinada.

Deposición de partículas magnéticas orientadas hacia el polo norte magnético. Fuente: Understanding Earth, Press and Seiver, W.H. Freeman and Co.
Deposición de partículas magnéticas orientadas hacia el polo norte magnético. Fuente: Understanding Earth, Press and Seiver, W.H. Freeman and Co.

Esta datación se utiliza en restos dipositados sobre fondos arcillosos y como el polo norte magnético ha estado varias veces en las mismas coordenadas geográficas, se obtiene más de una fecha de datación. Según el contexto del yacimiento, se podrán descartar algunas de estas fechas hasta llegar a una definitiva.

DATACIÓN POR TERMOLUMINISCENCIA Y LUMINISCENCIA ÓPTICA SIMULADA

Ciertos minerales (cuarzo, feldespato, calcita…) acumulan modificaciones en su estructura cristalina debidas a la desintegración radiactiva del entorno. Estas modificaciones son acumulativas, continuas y dependientes del tiempo de exposición a la radiación. Cuando se somete al mineral a estímulos externos, emite luz debido a estas modificaciones. Esta luminiscencia es muy débil y distinta según se le aplique calor (TL), luz visible (OSL) o infrarrojos (IRSL).

Termoluminiscencia de la fluorita. Foto: Mauswiesel
Termoluminiscencia de la fluorita. Foto: Mauswiesel

Sólo se pueden datar muestras que hayan estado protegidas de la luz solar o calor a más de 500ºC, ya que entonces se reinicia “el reloj” al liberarse la energía de manera natural.

RESONANCIA PARAMAGNÉTICA ELECTRÓNICA (ESR)

La ESR (electro spin resonance) consiste en someter la muestra a radiación y medir la energía absorbida por la muestra en función de la cantidad de radiación a la que ha estado sometida durante su historia. Es un método complejo del que puedes obtener más información aquí.

 REFERENCIAS

Mireia Querol Rovira