Arxiu d'etiquetes: eutrophication

Lack of phosphorus puts global food security at risk

Phosphorus (P) is an indispensable element for life on Earth. Essential structures for any organism like DNA or RNA contain this element, and plants can not perform photosynthesis without it. Because of this, crops require huge amounts of phosphorus to meet the standards of efficiency and productivity needed to feed an ever-growing human population. However, this is a limiting and finite resource, and the predictions are not promising: reserves will be depleted in about 100-150 years. That will lead to significant geopolitical problems still unimaginable because, apart from the ephemeral nature of this resource, there is the fact that 90% of stocks are in the hands of only 6 countries. Conflict is served.


Anyone who has ever had to buy fertilizer will recognize this sequence: N-P-K (nitrogen, phosphorus, potassium). They are the most used nutrients for gardening and plant production in general. Without them, plants do not grow or can not develop enough to persist in the long term. Of the three main nutrients, potassium is the most abundant in the earth’s crust (representing approximately 2.4% of the earth’s surface by weight), especially in ancient seabed and lakebeds, as well as being the most available for plants. On the other hand, nitrogen in its gaseous form is extremely abundant (78.1% of the air around us is molecular nitrogen), but not their molecules in solid form, which are usually scarce due to their high mobility throughout the soil. However, thanks to the Haber-Bosch process (which lead researchers to win the Nobel Prize in Chemistry), solid nitrogen (in the form of ammonia) was produced from gaseous nitrogen, leading to a high availability of this inorganic fertilizer.

Friz Haber (right) with a scientist who manipulates the Haber-Bosch method. This way of extracting the atmospheric nitrogen and turning it into ammonia is considered, by many scientists and historians, as the most important invention of the modern history. Without it, the world would not have been able to afford even half of the current food demand. Source: el juicio de fritz haber.


Phosphorus, however, is the third party in discordance. Essential for life, it is the main component of DNA, RNA, ATP (the energy used in cellular processes) and phospholipids, which cover cell membranes. It is present in the bones and is involved in almost any animal biological process. In addition, it is imperative for plant growth: without phosphate, photosynthesis can not be carried out. The biggest problem with phosphorus is that it is not free in nature. Plants and, in general, all organisms, satisfy their phosphorus needs thanks, mainly, to another living organism: animals, from plants and, these, from animal residues or their corpses, which release the Phosphate in the decomposition process. In fact, the most important fertilizers until the arrival of inorganic fertilizers, already in the twentieth century, were the excrements and urine of farm animals, which contain a large amount of phosphorus, in addition to the other elements already mentioned. However, as a result of the Haber-Bosch invention and the increase in food demand as a result of population growth, phosphorus deposits, which are in the form of minerals and are actually scarce in the earth’s crust, began to be exploited.

Guano accumulated on an islet of Peru. Guano, together with excrements and urine from farm animals, was an important source of phosphorus until the 20th century. This substrate, formed from continuous depositions of seabirds, seals and bats, is still very much appreciated even today, especially in organic farming. Source: Hiding in Honduras.



Phosphorus is an irreplaceable and non-synthesizable resource. Reserves are finite and are being wasted, since much of the fertilizer applied is not assimilated by plants and, through the soil, ends up in the sea or in the lakes, where they unbalance the ecosystems. Being such a scarce resource, it is often the limiting resource in most ecosystems. For that reason, an overfertilization of phosphorus is often exploited by autotrophic algae to grow uncontrollably, which, in many cases, causes blooms that can generate important animal, economic and environmental losses.

Extension of the vegetation of the Mar Menor (Murcia) in 2014 and 2016. 85% of the vegetation has died in less than two years, due to strong phenomena of eutrophication, in which phosphorus has played a key role. The excess of nutrients allows algae proliferation, which end up causing difficulties of light infiltration which, in turn, preclude phothosynthesis, causing the death of plants. Source: El País.


The United States Geological Survey (USGS) has estimated the world’s reserves of phosphorus at 71 billion tonnes. 90% of these are in the hands of 6 countries: Morocco (where, according to the USGS, 75% of the world’s mineral reserves are found there), China, Algeria, Syria, South Africa and Jordan. However, United States and, specially, China (accounting for 47% of world phosphate production), are the countries that are currently extracting more phosphorus from their deposits. This production has been increasing in the last years, and it will go to more in the coming decades. According to this recent article by Nature, it will be necessary to double, by the year 2050, the use of phosphate fertilizers to meet the demand of food, in a world where there will already be 9,000 million humans. But, by then, more than half of the phosphorus in the reservoirs will have been used. This study warned of the possibility that we were reaching the peak of phosphorus production, although new calculations estimate their peak around the year 2040. In any case, if we continue with the current production, the reserves will be depleted in no more than 100 years.

World phosphate rock reserves by country. Morocco capitalizes on reserves, followed by China and Algeria. Around 90% of the world’s phosphorus reserves are found in Africa, which predicts a future in which this continent will play a very important role in the negotiations for this finite resource. Source: WRForum.


A symptom of the potential shortage of phosphorus in the not too distant future is the rise in phosphorus prices that has been observed recently due to rising demand. Between 2007 and 2008 the price of phosphate tons increased threefold from 2005 values, and cost up to 9 times more than in the 1970s. In addition, it has been estimated that by 2035 phosphorus demand will exceed supply, what will cause an increased prices and, with them, political tensions. No stranger to it, many countries are working on ensuring a supply of this valuable resource for a few more decades. China, for example, which is now the largest producer (what does not mean the holder of the largest reserves) has begun to impose 135% tariffs on its exports. The United States, on the other hand, has signed a bilateral free trade agreement with Morocco, which gives it the rights to exploit their long-term phosphate deposits. Taking into account that most of Morocco’s phosphate reserves are in Western Sahara (a region that has fought for its independence since its occupation in 1975), it is not surprising that the United States has always supported Morocco in the United Nations Security Council, vetoing any proposal in favor of the independence of Western Sahara.

Rise of prices of different phosphate minerals. Prices are expected to rise in the coming decades, as phosphate deposits are depleted. Source: USDA.
Estimation of the evolution of phosphoric rock production and the moment when it will reach the peak of production. Many scientists agree that reserves will last between 60 and 130 years. Source: Cordell et al., 2009.


According to the latest estimates, phosphorus deposits will be depleted, affecting crops around the world. This decline in food production will have a global repercussion, especially in the poorest countries, the most susceptible to a possible decrease in food production. Failing to establish measures to reduce global population, the lack of phosphorus combined with climate change will lead to tense relations between many countries, leading to geopolitical conflicts on a global scale.

According to Metson et al. (2016) a plant-based diet would help to reduce the phosphorus demand. According to their calculations, a vegetarian person requires approximately 4 kg of phosphate rock per year, almost 3 times less than a meat-based diet, which consumes about 11.8 kg of phosphorus per year. Source: Jeremy Keith.

For that reason, the main solution is to use phosphorus in a more rational way and to recycle it as much as possible. Today, around 80% of phosphorus is lost between the exploitation of the mineral, its transport and its application in the fields, which requires us to make a more sustainable use of this resource. However, the world food security will only be able to mantain its production by recycling. The main proposal would be to return to the beginning: to collect human excrets and urine, generated in cities and towns, to recover all that phosphorus that, in other conditions, would end up in the aquatic environment. Approximately 100% of the phosphorus consumed by mankind through food is excreted in excrets and urine. Collecting it would be like a double-edged sword: on the one hand we would satisfy the phosphorus demand of the crops and, on the other hand, we would avoid the eutrofization of waters due to the excess of these nutrients. Furthermore, a change in diet, prioritizing vegetables instead of meat, would reduce the demand of phosphorus between 20 and 45%, according to Cordell et al. (2009). Other solutions include the recovering of the use of manure in more rural and less-technological areas and promoting the composting of food waste in households, factories and commercial establishments. Finally, a waste from wastewater treatment plants, called struvite (magnesium ammonium phosphate) could help to fertilize the fields in an effectively and cleanly way.

Struvite ore, like the one from the image, is obtained spontaneously in sewage treatment plants. Although it causes obstruction problems in the water treatment plant pipes due to its crystallization, it could be used as a clean fertilization system that would provide phosphorus, nitrogen and magnesium. Source: Creative Commons.

The madness begun at the beginning of the 20th century with the exploitation of the phosphoric rock to produce food in great quantity is almost over, and this requires us to adapt our crops and, perhaps, our way of life, to a future that will have to drink a lot of the proceedings carried out in the past. There is a need for a change of mentality, centered on a reduction of the world population and on a major sustainability of natural resources, if we really want to guarantee a world where no one is hungry.


Why did change the water colour?

In August of 2016, the news of a green pool at the Olympic Games in Riode Janeiro was published in all media. Everyone was shocked and spokeon the topic, but this phenomenon occurs in nature more often than wethink, for example in  lake Urmia (Iran), lake Clicos (Lanzarote), Lake Hilier (Australia), etc. Would you like to know the reason for these changes?


We have heard speak so much about the surprising pool’s colour change of them Games Olympic, but do you know the scientific explanation to this effect?

The Rio 2016 Olympic Games pool. The color change was apparent and caused by the proliferation of microscopic algae. (Image: Verne. El País).

This phenomenon of change of color  is very common in the nature. It is the eutrophication of  water. This concept makes reference to the proliferation of organisms due to an increase in the concentration of nutrients in water. So understand it easily: an increase of food occurs in water and  resulting in a rise in organisms which modify the characteristics of the water such as color, turbulence, etc.

In water bodies like lakes or swimming pools, this phenomenon is more commonly, but in sea also appear this blooms of organisms (above all phytoplacton).

Example of eutrophication by algae in a lake. (Image: Radio wtcv)

The main nutrients that influence the eutrophication of lakes are the limiting factors nitrogen and phosphorus. In bodies of sweet water this last is determinant, while in salted water the nitrogen tends to be the limiting factor. A increase of these nutrient’s concentrations  begins the process of eutrophication and proliferation of photosintetic organisms (mostly microalgae and  photosynthetic bacteria as cyanobacteria or archaebacteria as the Holobacterias).

When a lake receive excessive nutrients, all the trophic structure  can change very quickly. Water is too fertilized and photosynthetic organisms proliferate causing an algae or microorganisms bloom.

Basic diagram of eutrophication (Image: Sachink Biology)

Normally, we speak of  microalgae (phytoplankton) and cyanobacteria blooms, but in certain cases, when the change of nutrients is more drastic (that affects to the composition or chemical characteristics of  water) we can speak of the proliferation of bacteria and Archaea. For example in lake Urmia (Iran), proliferate exponentially the Halobacteria that support large saline concentrations. Due to the low rainfall and continuous extraction ofwater for agriculture, water becomes more salty and impede the life of the majority of organisms and favouring the blooms of the more specialized, as Halobacteria. The red pigmentation arises by the presence of a pigment known as bacteriorhodopsin.

Satellite image of lake Urmia (Iran). The change of color is produced by proliferation of bacteria of the family Halobacteriaceae. (Image: La Vanguardia)

The example of Rio’s pool shows the initial stages  of algae bloom. Some lakes, however, are in more advanced stages of eutrophication, as it would be the case of the Clicos Lake in Lanzarote. In this Lake proliferate exponentially the  Ruppia maritima algae.

Photograph of the Clicos Lake in Lanzarote. (Image: National Geographic)


Natural eutrophication process is highly regulated, since it tends to a balance between the inputs (precipitation, runoff, erosion…) and outputs of nutrients. There are three trophic states trophic in lakes: the oligotrophic, the mesotrophic and the eutrophic, depending on certain characteristics of water such as the concentration of nutrients and oxygen, its turbulence, the primary production etc. These states marke ‘age’ of lakes, i.e., a young lake will be oligrotrophic while one older will tend to eutrophication.In the following table we find some differences between these threetrophic states:

Table with some differences between the different trophic states.

The ecosystems natural present resilience, i.e., capacity to return to the normal state after a sudden disturbance. Even so, with time, the ancient lakes tend to accumulate sediments and organic remains,making finally the Lake in a swamp. This process can last thousands of years.

The anthropogenic eutrophication makes reference to one type of eutrophication caused by humans. Waste water, waters rich in fertilizers and other types of pollution are the main causes of this type of eutrophication. The ecosystem is not capable of eliminating as many nutrients in a balanced way and they tend to accumulate. In this case, the process lasts much less that the natural: as only some decades are sufficient.

Comparison between the two types of eutrophication. (Image: New Brunswick, Canadá).


The eutrophication, however, mark the beginning of the death of ecosystem. But, how?

The increase in nutrient concentrations produces an increase in the proliferation of aquatic plants and algae carried out photosynthesis. Therefore an organism bloom occurs and causes the formation of a barrier in the water. In the surface, the concentration of oxygen is maintained while in deep areas, where the light not penetrates with ease, is produces an increase of aerobic breathing  and decreases the photosynthesis. This process of oxigen consumption  causes that every time has less concentration of this gas and the medium is again anoxic.With enough oxygen, species before peacefully living in the Lake, now will disappear.

In the diagram you can see the barrier created by the proliferation of algae, leaving the deeper areas in a dark environment without oxygen. (Modified image from SPE International)

On the other hand, a high biological activity  implies a decrease of the dissolution of certain nutrients in the water, causing a change in the pH and salinity of this, conditioning seriously also the habitability of these waters and favoring the proliferation of extremophiles. In addition, the presence of certain algae suppose  the production of toxins that affect negatively to the lake’s native populations  The main toxic cyanobacteria that tend to proliferate easily are Anabaena sp, Cylindrospermopsis sp., Microcystis sp. and Oscillatoria sp. This implies a great loss in the diversity of the area.

Comparison of diversity in a oligotrophic lake and eutrophic one. (Image: Madrid+d)

Finally, the organic remains of dead organisms accumulate at thebottom of thelake, thus increasing the sediment layer. By time, the volume of water has been reduced significantly,turning the place into a swamp.


As in the majority of cases, the actions of the man have serious consequences in the environment. We must avoid the pollution or will lose the great diversity that surrounds us.


  • Eutrofización. Nestor Mazzeo. (PDF, spanish)
  • Personal notes, Biology degree at UIB.
  • Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems. Michael Chislock. Available  here .

  • Cover photo: Axena.