Arxiu d'etiquetes: evolució biologica

Evolució per a principiants 2: la coevolució

Després de l’èxit d’Evolució per a principiants, seguim amb un article per seguir coneixent aspectes bàsics de l’evolució biològica. Per què hi ha insectes que semblen orquídies i viceversa? Per què gaseles i guepards són gairebé igual de ràpids? Per què el teu gos t’entén? En altres paraules, què és la coevolució?

QUÈ ÉS LA COEVOLUCIÓ?

Ja sabem que és inevitable que els éssers vius estableixen relacions de simbiosi entre ells. Uns depenen d’altres per sobreviure, i alhora, de l’accés a elements del seu entorn com aigua, llum o aire. Aquestes pressions mútues entre espècies fan que evolucionin conjuntament i segons evolucioni una espècie, obligarà al seu torn a l’altra a evolucionar. Vegem alguns exemples:

POL·LINITZACIÓ

El procés més conegut de coevolució el trobem en la pol·linització. Va ser de fet el primer estudi coevolutiu (1859), a càrrec de Darwin, encara que ell no utilitzés aquest terme. Els primers en utilitar-lo van ser Ehrlich i Raven (1964).

Els insectes ja existien molt abans de l’aparició de plantes amb flor, però el seu èxit es va deure al descobriment que el pol·len és una bona reserva d’energia. Al seu torn, les plantes troben en els insectes una manera més eficaç de transportar el pol·len cap a una altra flor. La pol·linització gràcies al vent (anemofilia) requereix més producció de pol·len i una bona dosi d’atzar perquè almenys algunes flors de la mateixa espècie siguin fecundades. Moltes plantes han desenvolupat flors que atrapen als insectes fins que estan coberts de pol·len i els deixen escapar. Aquests insectes presenten pèls en el seu cos per permetre aquest procés. Al seu torn alguns animals han desenvolupat llargs apèndixs (becs dels colibrís, espiritrompes de certes papallones…) per accedir al nèctar.

Polilla de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock
Arna de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock

És famós el cas de l’arna de Darwin (Xanthopan morganii praedicta) de la qual ja hem parlat en una ocasió. Charles Darwin, estudiant l’orquídia de Nadal (Angraecum sesquipedale), va observar que el nèctar de la flor es trobava a 29 cm de l’exterior. Va intuir que hauria d’existir un animal amb una espiritrompa d’aquesta mida. Onze anys després, el mateix Alfred Russell Wallace el va informar que havia esfinxs de Morgan amb trompes de més de 20 cm i un temps més tard es van trobar a la mateixa zona on Darwin havia estudiat aquesta espècie d’orquídia (Madagascar). En honor de tots dos es va afegir el “praedicta” al nom científic.

També existeixen les anomenades orquídies abelleres, que imiten femelles d’insectes per assegurar la seva pol·linització. Si vols saber més sobre aquestes orquídies i la de Nadal, no et perdis aquest article de l’Adriel.

Anoura fistulata, murcielago, bat
El ratpenat Anoura fistulata i la seva llarga llengua. Foto de Nathan Muchhala

Però moltes plantes no només depenen dels insectes, també algunes aus (com els colibrís) i mamífers (com ratpenats) són imprescindibles per a la seva fecundació. El rècord de mamífer amb la llengua més llarga del món i segon vertebrat (per darrere del camaleó) se l’emporta un ratpenat de l’Equador (Anoura fistulata); seva llengua mesura 8 cm (el 150% de la longitud del seu cos). És l’únic que pol·linitza una planta anomenada Centropogon nigricans, malgrat l’existència d’altres espècies de ratpenats en el mateix hàbitat de la planta. Això planteja la pregunta sobre si l’evolució està ben definida i es dóna entre parells d’espècies o per contra és difusa i es deu a la interacció de múltiples espècies.

RELACIONS DEPREDADOR-PRESA

El guepard (Acinonyx jubatus) és el vertebrat més ràpid sobre la terra (fins a 115 km/h). La gasela de Thomson (Eudorcas thomsonii), el segon (fins a 80 km/h). Els guepards han de ser prou ràpids per capturar alguna gasela (però no totes, a risc de desaparèixer ells mateixos) i les gaseles prou ràpides per escapar alguna vegada i reproduir-se. Sobreviuen les més ràpides, així que al seu torn la naturalesa selecciona els guepards més ràpids, que són els que sobreviuen al poder menjar. La pressió dels depredadors és un factor important que determina la supervivència d’una població i quines estratègies ha de seguir la població per sobreviure. Així mateix, els depredadors hauran de trobar solucions a les possibles noves formes de vida de les seves preses per tenir èxit.

Guepardo persiguiendo una gacela. Foto de Federico Veronesi

Guepard perseguint una gasela de Thomson a Kenya. Foto de Federico Veronesi

El mateix succeeix amb altres relacions depredador-presa, paràsit-hoste o herbívors-plantes, ja sigui amb el desenvolupament de la velocitat o altres estratègies de supervivència com verins, punxes…

HUMANS I GOSSOS… I BACTERIS

La nostra relació amb els gossos, que data de temps prehistòrics, també és un cas de coevolució. Això ens permet, per exemple, crear llaços afectius amb només mirar-los. Si vols ampliar la informació, et convidem a llegir aquest article passat on vam tractar el tema de l’evolució de gossos i humans en profunditat.

Un altre exemple és la relació que hem establert amb els bacteris del nostre sistema digestiu, indispensables per a la nostra supervivència. O també amb els patògens: han coevolucionat amb els nostres antibiòtics, de manera que en usar-los indiscriminadament, s’ha afavorit la resistència d’aquestes espècies de bacteris als antibiòtics.

IMPORTÀNCIA DE LA COEVOLUCIÓ

La coevolució és un dels principals processos responsables de la gran biodiversitat de la Terra. Segons Thompson, és la responsable que hi hagi milions d’espècies en lloc de milers.

Les interaccions que s’han desenvolupat amb la coevolució són importants per a la conservació de les espècies. En els casos on l’evolució ha estat molt estreta entre dues espècies, l’extinció d’una portarà a l’altra gairebé amb seguretat també a l’extinció. Els humans alterem constantment els ecosistemes i per tant, la biodiversitat i evolució de les espècies. Amb només la disminució d’una espècie, afectem moltes més. És el cas de la llúdriga marina (Enhydra lutris), que s’alimenta d’eriçons.

Nutria marina (Enhydra lutris) comiendo erizos. Foto de Vancouver Aquarium
Llúdriga marina (Enhydra lutris) menjant eriçons. Foto de Vancouver Aquarium

En ser caçada per la seva pell, el segle passat els eriçons van augmentar de nombre, van arrasar poblacions senceres d’algues (consumidores de CO2, un dels responsables de l’escalfament global), les foques que trobaven refugi en les algues ara inexistents, eren més caçades per les orques… la llúdriga és doncs una espècie clau per a l’equilibri d’aquest ecosistema i del planeta, ja que ha evolucionat conjuntament amb els eriçons i algues.

De les relacions coevolutives entre flors i animals depèn la pol·linització de milers d’espècies, entre elles moltes d’interès agrícola, de manera que no cal perdre de vista la gravetat de l’assumpte de la desaparició d’un gran nombre d’abelles i altres insectes en els últims anys. Un complex cas de coevolució que ens afectaria directament és la reproducció de la figuera.

EN RESUM

Com hem vist, la coevolució és el canvi evolutiu entre dues o més espècies que interactuen, de manera recíproca i gràcies a la selecció natural.

Perquè hi hagi coevolució s’ha de complir:

  • Especificitat: l’evolució de cada caràcter d’una espècie es deu a pressions selectives del caràcter de l’altra espècie.
  • Reciprocitat: els caràcters evolucionen de manera conjunta.
  • Simultaneïtat: els caràcters evolucionen al mateix temps.

REFERENCIAS

mireia querol rovira

Evolució per a principiants

L’evolució biològica encara no és ben compresa pel públic general, i quan parlem d’ella en el nostre llenguatge abunden expressions que confonen encara més com funcionen els mecanismes que donen lloc a la diversitat d’espècies. A través de preguntes que potser t’has formulat alguna vegada, en aquest article farem un primer apropament als principis bàsics sobre evolució i desmitificarem falses idees sobre ella.

L’EVOLUCIÓ ÉS REAL? NO ÉS NOMÉS UNA TEORIA, UNA IDEA NO DEMOSTRADA DEL TOT?

Fora de l’àmbit científic, la paraula “teoria” s’usa per referir-se a fets que no han estat provats o suposicions. Però una teoria científica és l’explicació d’un fenomen recolzada per proves i evidències, resultat de l’aplicació del mètode científic.

diagrama mètode científic
Esquema del mètode científic. Imatge per Mireia Querol adaptada de Lauro Chieza

Com es desprèn del diagrama, les teories poden ser modificades, millorades o revisades si es prenen noves dades que no segueixin recolzant la teoria, però sempre es basen en unes dades i experiments repetibles i comprovables per qualsevol investigador per a ser considerats com a vàlids.

Així doncs, poca gent posa en dubte la Teoria Heliocèntrica (la Terra gira al voltant del Sol), o la Teoria Gravitatòria de Newton, però en l’imaginari popular se segueix creient que la Teoria de l’Evolució formulada per Charles Darwin (i Alfred Russell Wallace) és simplement una hipòtesi i que no evidències que la recolzin. Amb els nous avenços científics seva teoria ha estat millorada i detallada, però més de 150 anys després, ningú ha pogut demostrar que sigui incorrecta, just al contrari.

QUINES PROVES TENIM DE QUE L’EVOLUCIÓ ÉS CERTA?

Les evidències són múltiples i en aquest article no podrem aprofundir en elles. Algunes de les proves de les que disposem són:

  • Registre paleontològic: l’estudi dels fòssils ens informa sobre les semblances i diferències d’espècies de fa milers o milions d’anys respecte les actuals i permet establir parentius entre elles.
  • Anatomia comparada: la comparació de certes estructures que són molt semblants entre organismes diferents, permet establir si tenen un avantpassat comú (estructures homòlogues, per exemple, cinc dits en alguns vertebrats) si han desenvolupat adaptacions similars (estructures anàlogues, per exemple, les ales de les aus i els insectes), o si han perdut la seva funció (òrgans vestigials, per exemple l’apèndix).
anatomia comparada, órganos homólogos
Òrgans homòlegs en humans, gats, balenes i ratpenats
  • Embriologia: l’estudi d’embrions de grups emparentats mostra una gran semblança en les fases més primerenques del desenvolupament.
  • Biogeografia: l’estudi de la distribució geogràfica dels éssers vius revela que les espècies habiten en general les mateixes regions que els seus avantpassats, encara que hi hagi altres regions amb climes similars.
  • Bioquímica i genètica: les similituds i diferències químiques permeten establir relacions de parentiu entre diferents organismes. Per exemple, espècies més emparentades entre si presenten una estructura del seu ADN més semblant que altres més llunyanes. Tots els éssers vius compartim una part d’ADN, és a dir, part de les teves instruccions” també es troben en una mosca, un planta, o un bacteri, prova que tots els éssers vius tenim un avantpassat comú.

ÉS CERT QUE ELS ORGANISMES S’ADAPTEN AL MEDI I ESTAN DISSENYATS PER VIURE EN EL SEU HÀBITAT?

Les dues expressions, freqüentment utilitzades, impliquen que els éssers vius tenen un paper actiu per adaptar-se al medi o “algúels ha dissenyat perquè visquin perfectament on són. És el típic exemple de Lamarck i les seves girafes: a força d’estirar el coll per arribar a les fulles dels arbres més altes, com a resultat actualment les girafes tenen aquest coll per donar-li aquest ús. En tenir una necessitat, s’adapten a ella. És justament al revés: és el medi qui selecciona els més aptes, és a dir, la natura “selecciona” els que siguin més eficaços per sobreviure, i per tant reproduir-se. És el que es coneix com a selecció natural, un dels mecanismes principals de l’evolució. S’han de complir tres requisits perquè actuï:

  • Variabilitat fenotípica: hi ha d’haver diferències entre individus. Algunes girafes tenien el coll lleugerament més llarg que altres, igual que hi ha persones més altes, baixes, d’ulls blaus o marrons.
  • Eficàcia biològica: aquesta diferència, ha de suposar un avantatge. Per exemple, les girafes amb un coll lleugerament més llarg podien sobreviure i reproduir-se, mentre les altres no.
  • Herència: aquests caràcters s’han de transmetre a la següent generació, amb la qual cosa els fills seran lleugerament diferents per a aquesta característica, mentre que la característica “coll curtes transmet cada vegada menys.
seleccion natural
La variabilitat en la població provoca que els individus amb característiques favorables es reprodueixin més i transmetin els seus gens a la següent generació, augmentant la proporció d’aquests gens. Imatge presa de Understanding Evolution.

Amb el pas dels anys aquests canvis és van acumulant, fins que les diferències genètiques són tan grans que algunes poblacions ja no es poden reproduir amb d’altres: hauria aparegut una nova espècie.
Si heu pensat que és un procés semblant a la selecció artificial que fem amb les diferents races de gossos, vaques que donin més llet, arbres que donin més fruits i més grans, enhorabona, teniu un pensament semblant al de Darwin ja que és va inspirar en uns quants d’aquests fets. Per tant, a els éssers vius som mers espectadors del procés evolutiu, dependents dels canvis del seu hàbitat i del seu material genètic.

¿PER QUÈ ELS ÉSSERS VIUS SÓN DIFERENTS ENTRE SI?

La variabilitat genètica permet que actuï la selecció natural. Els canvis en el material genètic (habitualment ADN) són causats per:

  • Mutacions: canvis en el genoma que poden tenir conseqüències negatives o letals per a la supervivència, indiferents o beneficioses per a la supervivència i reproducció. En l’últim cas aquests gens passaran a les següents generacions.
  • Flux genètic: és el moviment de gens entre poblacions (la migració d’individus permet aquest intercanvi al reproduir-se amb altres d’una població diferent).
  • Reproducció sexual: permet la recombinació de material genètic d’individus diferents, donant lloc a noves combinacions d’ADN.

Les poblacions amb més variabilitat genètica tindrien sobre el paper més possibilitats de supervivència en cas de succeir algun canvi en el seu hàbitat. Poblacions amb menys variabilitat (per exemple, per estar aïllades geogràficament) són més sensibles a qualsevol canvi, cosa que pot provocar la seva extinció.

L’evolució pot observar-se en éssers amb una taxa de reproducció molt elevada, per exemple bacteris, ja que acumulen mutacions més ràpidament. Has sentit alguna vegada que els bacteris es tornen resistents als nostres antibiòtics o alguns insectes als pesticides? Evolucionen tan ràpidament que en pocs anys han estat seleccionats els més adaptats per sobreviure als nostres antibiòtics.

¿SOM ELS ANIMALS MÉS EVOLUCIONATS?

De la Teoria de l’Evolució es desprenen diverses conseqüències, com l’existència d’un ancestre comú i que per tant, som animals. Encara actualment, fins i tot entre els més joves, hi ha la idea que som una cosa diferent entre els éssers vius i ens situem en un pedestal especial en l’imaginari col·lectiu. Aquest pensament antropocèntric ja li va valer a Darwin burles i enfrontaments més de 150 anys enrere.

caricatura, darwin, mono, orangutan
Caricatura de Darwin com un orangutan. Imatge de domini públic publicada per primera vegada el 1871

Utilitzem en el nostre llenguatge ser “més evolucionatcom a sinònim de més complex, i al considerar-nos una espècie que ha arribat a un alt nivell de comprensió del seu entorn, molta gent creu que l’evolució ha arribat a la seva fi amb nosaltres.

La pregunta un error de formulació: en realitat l’evolució no persegueix cap fi, simplement succeeix, i el fet que el pas de milions d’anys permet l’aparició d’estructures complexes, no vol dir que formes de vida més simples no estiguin perfectament adaptades a l’hàbitat on es troben. Bacteris, algues, taurons, cocodrils, etc., s’han mantingut molt semblants al llarg de milions d’anys. L’evolució és un procés que va començar a actuar en el moment que va aparèixer la vida i segueix actuant en tots els organismes, fins i tot en nosaltres, encara que hem modificat la manera en què actua la selecció natural (avenços mèdics, tecnològics, etc.).

¿LLAVORS SI VENIM DEL MICO, PER QUÈ ENCARA HI HA MICOS?

La veritat és que no venim del mico, som micos, o per ser més rigorosos, simis. No hem evolucionat a partir de cap primat existent. Com vam veure en un article anterior, humans i la resta de primats compartim un ancestre comú i la selecció natural ha anat actuant de manera diferent en cada un de nosaltres. És a dir, l’evolució l’hem de visualitzar com un arbre, on cada branca seria una espècie, i no com una línia recta.

darwin, árbol, evolución, darwin tree, arbre evolutiu
Primer esquema de l’arbre evolutiu de Darwin en el seu quadern de notes (1837). Imatge de domini públic.

Algunes branques deixen de créixer (les espècies s’extingeixen), mentre que altres segueixen diversificant-se. El mateix s’aplica per a la resta d’espècies, per si t’havies preguntat: “si els amfibis vénen dels peixos, per què hi ha encara els peixos?”. Actualment les anàlisis genètiques han aportat tal quantitat de dades que dificulten les relacions de parentiu de l’arbre clàssic de Darwin.

árbol filogenético, clasificación seres vivos, árbol de la vida
Classificació dels éssers vius basada en els tres dominis, Archaea, Bacteria i Eukarya segons dades de Carl R. Woese (1990). Dins d’Eukarya s’inclouen els regnes Protista, Fungi, Plantae i Animalia. Imatge de Rita Daniela Fernández.

L’evolució és un tema molt extens que segueix generant dubtes i controvèrsies. En aquest article hem intentat apropar a persones no iniciades alguns conceptes bàsics, en els quals podem aprofundir en el futur. Tens alguna pregunta sobre evolució? T’interessa aprofundir en algun tema que no haguem tractat? Pots deixar-nos els teus comentaris a continuació.

REFERÈNCIES

mireia querol rovira