Arxiu d'etiquetes: extinction

The humans have done it again: the Anthropocene, another shameful achievement for mankind

Science books have to be modified again. Joining other famous geological epochs of the Cambrian, Jurassic or Pleistocene another one must be added from now: the Anthropocene. On August 2016 a group of experts confirmed what everyone suspected: mankind have been so interventionist in terrestrial processes that the natural cycle have changed irretrievably. We have already suffering the consequences, and the human footprint on our planet will be present until after our demise

INTRODUCTION

The history of the modern man, Homo sapiens sapiens, was not easy in the beginning. It is believed that we appeared on the Middle Paleolithic, about 200,000 years ago in Africa. In those days humans were already good hunters, but also good preys, and although the species was thriving and spreading across the planet, this was done slowly and always influenced by severe climate changes. It took 100,000 years to leave Africa and anothers 80,000 to reach America. During all that time and until almost the present day, humans being was at the mercy of the Earth and its whims, which decided at will the fate of our ancestors. However, the Ice Age ended, the Holocene began and thereby unprecedented technological advancement. The industrial revolution definitely transformed humans and the way they interact with the world, which suffered the devastating consequences of an ambitious and unaware species about their enormous global influence.

mamut
Humans have been nomadic most of their existence, with a strong dependence on environmental conditions that conditioned their prey. With the agriculture and lifestock the first villages were created, leading to the modern style. Source: Return of Kings.

WHAT IS A GEOLOGICAL TIME AND HOW IT IS POSSIBLE TO ENTER AND LEAVE IT?

At first glance, it may seem a mere syntactical question or a whim of geologists. However, designate a geological time is important when defining long periods of time sharing similar environmental conditions. Normally, a geological period usually lasts no less than 2 million years, and the fossil record is used to find out a major discontinuity in the typical pattern of the biota of that actual period. Therefore, an epoch tend to finish when an abrupt climate change occur (the Pleistocene ends with the last of the great glaciations), leading to changes in the biota (the meteorite that wiped out the non-avian dinosaurs caused the end of the Cretaceous period). However, these abrupt changes must be occur globally and in a short space of time to really be considered as a different geological epoch.

geological-time-scale
Earth is divided into periods whichare divided into geological epochs. These periods are marked by relatively stable and / or with a characteristic biota. These epochs are usually finished by events that involve drastic changes for living organisms on a global scale. Source: philipmarshall.net.

THE ANTHROPOCENE

The term is not new (it was used for the first time in the mid XIX century during the industrial revolution) but regained importance in early 2000, thanks to Paul Crutzen. This chemist, together with other colleagues, discovered the compounds that were destroying the ozone layer, which makes him to win the Nobel Prize in Chemistry. In his speech, he had special interest in stressing that the Holocene “was over forever” to make way for the Anthropocene, the age of humans. His article in Nature about the Anthropocene was a reference for many scientists working on projects about environmental problems in the Anthropocene epoche. On August 29, 2016, the expert group of the Anthropocene voted at the International Geological Congress (IGC) to formally establish the Anthropocene as a new geological epoch.

Grinding Shop
The industrial revolution changed the course of Earth forever. Vast amounts of fossil fuels were burned and their products emitted into the atmosphere. The production system took a turn, giving priority to production and thereby to make unprecedented use of the planet’s resources. In the photo, British workers in a factory of agricultural products in 1928. Source: Daily mail.

BUT, WHY ARE WE IN THE ANTHROPOCENE?

As we mentioned before, to change the geological epoch it has to be evident that environmental conditions are changing on a global scale. And that is what is happening since the early 50s of the last century, date in which researchers have officially marked the beginning of the Anthropocene. In this Science article, researchers from around the world gathered geological evidence showing with certainty that mankind has changed the planet severely and it should already talk about another geological era. The researchers also pointed to the products of the many atomic tests of the 50s as the starting point of the Anthropocene.

mushroom-cloud-of-first-hydrogen-bomb-test
The nuclear tests of the 50s, like this one in which the first hydrogen bomb (Ivy Mike) was tested, caused the release of large amounts of radioactive materials into the atmosphere. These particles were settled and that has allowed researchers to have evidence in order to demonstrate the impact of human actions on a global scale. Source: CBC.

EVIDENCE OF THE ANTHROPOCENE

Since the beginning of the industrial revolution, more than two centuries ago, numerous anthropogenic deposits have been accumulated in the earth’s crust, from new minerals and rocks to aluminum, cement and petroleum products such as plastics. Just after these lines, we show the main evidence put forward by researchers to justify the change of epoch:

High levels of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), plastics, fertilizers and pesticides in sediments. The burning of oil, coal and other wood products are the source of large amounts of PAHs in the atmosphere, that they just finally end settling in the earth’s crust and living things.Referring to fertilizers, little abundant nutrients in the soil such as nitrogen and phosphorous have doubled in the last century due to the increasing number of crops, many of which following the intensive model to maximize production. Moreover, plastics are already present worldwide. Its high resistance to degradation prevents natural recycling, which causes large quantities to deposit and, especially, to end in the sea, where there are authentic plastic islands, as the Great Pacific garbage patch .

plastics
Plastic is the most widely-product made from oil on Earth. Its impact on the environment is one of the most serious at present, and  global sedimentation leaves traces of our presence until thousands of years after our disappearance. Source: The Guardian.

Radioactive elements of nuclear tests. The detonation of the atomic bomb called Trinity in 1945 in New Mexico (USA), was followed by a long list of other nuclear tests during the Cold War. As a result, large amounts of carbon-14 and plutonium-239, among other molecules, were released into the atmosphere and sedimented years later in many parts of the globe, constituting a proof of the great human impact on Earth.

sediment
This core, extracted by the geologists that have determined that we are in a new era, shows the accumulation of human origin material in the sediments of a lake in Greenland. In it was found pesticides, radioactive nitrogen, heavy metals, increases in the concentration of greenhouse gases and plastics. Source: Science.

High concentrations of CO2 and CH4 in the atmosphere. From 1850 and especially in the following decades, the levels of these gases in the atmosphere broke with the typical pattern of the Holocene, getting itself to achieve, in our century, 400 ppm (parts per million) of CO2, an increase of more of 150 points from the pre-industrial situation. This increase in atmospheric CO2 has a direct impact on the temperature of the Earth. It is believed that the global temperature has increased by around 1 ° C since 1900, and will increase between 1.5 and 3.5 ° C by the year 2100.

aumento-co2
This chart shows the unprecedented increase in CO2, methane and nitrous oxide in the atmosphere. Although CO2 is the best known gas and which has the greatest impact on a large scale, the other two gases have greater power to limit heat dissipation into space. The increase of these gases is closely related to the increase of global temperature. Source: CSIRO.

The increase of the ratio of extinction of living organisms in all parts of the world as a result of human activities. Since 1500 the extinction of species by humans has increased, but is from the XIX century onwards when the extinctions are present in the entire planet. The distribution of species has been disrupted due to human activities such as agriculture and deforestation and the introduction of invasive species, causing changes in the habits of native species and often come to displace and even to extinguish. This unprecedented high extinction ratio is considered by many people as an unmistakable symbol that we are in front of the sixth mass extinction on Earth.

ratio-extincion
Since the beginning of the industrial revolution, the rate of extinction of vertebrates is 100 times greater than in the past. At this rate, it is estimated that in the following centuries the number of extinct species will reach 75% of the existing ones. The dotted black line in this graph shows the rate of pre-industrialization extinction, while others refer to the cumulative percentage of extinct species since 1500. Source: Science.

FUTURE

Whatever the fate of humanity and future actions undertaken to mitigate climate change, what is clear is that the human footprint will remain indelible in the earth’s surface for millions of years, similar to what occurred after the Permian or Cretaceous mass extincion. The strata will show the follies and excesses carried out by us, perhaps as a warning for the following species that dares to relieve humanity of its status as the dominant species.

REFERENCES

Ricard-anglès

 

The living space of organisms

We all have our own living space, the place where we feel comfortable, like we were at home. We also have our routines, habits and that list of preferences that make us unique. Each of us, ultimately, have our own ecological niche, an extensive concept for each species that share the Earth with us. From it comes an important ecological processes such as competition or speciation, a key concepts for understanding the assembly and dynamics of natural ecosystems.

INTRODUCTION

When you are asked how you would describe close people, the first thing that comes to your mind is their way of being when you’re with them and what they loves to do. We know what is the first thing they always ask in a restaurant, what annoys them, what sites they like to frequent, what they like to do when they have free time and even how they behave when they like someone. If we have also lived with them, we could guess almost their daily routine since they wake up until they go to bed. Although we do not always have the same behaviour, there are many traits, hobbies and routines that characterize and differentiate us. Each of us have our comfort zone, our hobbies, food preferences and people with whom we love spending our free time.

7852026050_3fd72271f8_b
The dietary preferences of each of us and our routines and hobbies serve as a comparison to illustrate the diversity of ecological niches in the natural world. Source: Flickr, George Redgrave.

THE ECOLOGICAL NICHE OF A SPECIES

This “living space” that all of us have and in which we feel identified, is also comparable to the ecological niche of the organisms. The ecological niche of a species is a concept that always has been presented us as the “occupation”, “profession” or “work” that an organism carries up in the place where it lives (Wikipedia or CONICET), but the definition includes more than that. Hutchinson (1957) defined it as: ” n-dimensional hypervolume, where the dimensions are environmental conditions and resources, that define the requirements of a species to persist over time.” Despite the confusing definition, it is interested to point out the term “n-dimensional” as the ecological niche is based on this idea. An ecological niche is nothing more than all those multidimensional species requirements. In other words, the ecological niche of a species would be everything that involve the species and make it to prosper and survive where it is. Refers, ultimately, to all those variables that affect them in their daily lives, both biological variables -the contact with other species- and the physical and chemical ones-the climate and the habitat where they live-. An ecological niche of a species would be the spectrum of food it eats or can consume, the time of the day in which it is active to perform its functions, the time of the year and the way it carries out the reproduction, the predators and preys, the habitat it tolerates and all those physical and chemical factors that allow this species to remain viable.

warblers
These 5 species of warblers of North America seem to occupy the same habitat (the fir), but actually not. The truth is that each warbler occupies a different position in the tree. Source: Biology forums.

To give an illustrative example, let us place ourselves in the African savannah. The main grazing ungulates and those which perform mass migrations are compound by zebras, wildebeest and Thomson’s gazelles. At first glance, you might think that their ecological niche is very similar: same habitat, same routine, same predators and same food. The same food? Absolutely not. During migration, zebras go ahead, devouring tall grass, which is the worst quality. They are followed by wildebeest, which eat what remains standing, and these are followed by Thomson gazelle, which eat the high-quality grass, which is starting to grow again.

picg8
Although at first glance it may seem that feed on the same food, each species focuses on a different part of the plant. Source: Abierto por vacaciones.

CAN TWO SPECIES LIVE TOGETHER WITH THE SAME NICHE IN THE SAME PLACE?

The competitive exclusion principle, proposed by Gause (1934), states that two species occupying the same niche can not coexist in the long term as they come into competition for resources. Thus, in a competitive process for the same ecological niche, there is always a winner and a loser. In the end, one of the competitors is imposed by another, and then two things can happen: the extinction of the loser one (image A) or a traits displacement in order to occupy another niche (image B). In fact, the competitive exclusion principle is behind the current problems with invasive species. Invasive species niche is very similar to native species niche and, when they converge in the same habitat, the invasive species end up displacing native species, as they are better ecological competitors. It also often happens, of course, the opposite: the exotic species is worse than its counterpart and the competitor fails to thrive in the new environment.

20_08_competitvexclusion-l1335993938015
Image A | This study was conducted in order to observe the effect of competitive exclusion in two species of protists. Both species occupy almost identical ecological niches, but they are not living together in nature. The density of one falls sharply when they are forced to share the same space, until it eventually disappears. This same process occurs with invasive species. Source: Jocie Broth.
pinzones
Image B | When the 3 species of Darwin’s finches (in different colors) coexist on the same island, a trait displacement occurs by competitive exclusion. Individuals from the ends tend to have very similar bill depths to those of the other species, resulting in a niche overlap and subsequent competition. The final boundaries are established thanks to this process. Source: Nature.

THE FUNCTIONAL EQUIVALENCE

We have seen that to share ecological niche is synonymous of having conflict between species. However, there is a situation in which problem do not take place. The hypothesis of functional equivalence proposed by Hubbell proclaims that if the niches are identical and the species life parameters (fertility, mortality, dispersion) are also the same, none of them has a competitive advantage over the other, and the battle ends in tables. This fact seems to occur only in a very stable ecosystem in a Panama rainforest island (Barro Colorado). Different species of trees, as having almost identical parameters of life, do not compete between them and are distributed randomly, as if the individuals of different species belong to the same species. Furthermore, it seems that speciation in this kind of rainforest could also occur by chance, which would have caused the high density of species that harbor these forests.

1503897694_2ab5f7ba2e_b
Tropical forests have a tree species density unique in the world. One hectare of tropical forest may contain up to 650 tree species, more than the number of tree species present in both Canada and continental US. Will Hubbell’s functional equivalence theory be behind the explanation for this curious fact? Source: Flickr, Jo.

NEW NICHES, NEW SPECIES

Speciation, or the creation of new species, usually occurs when new ecological niches are created or the existing become unoccupied. In both cases, to occupy a new ecological niche imply a gradual differentiation from the initial population to become a genetically distinct species. As an example of formation of new ecological niches we have the case of the emergence of angiosperms. Their booming opened many new possibilities, thanks both to increasing diversity of seeds and fruits (which, in turn, increased the number of specialized species) and the emergence of complex flowers, which allowed the explosion of many pollinators (facilitating the emergence of new insectivores). As an example of unoccupied niche, there is the famous case of the extinction of non-avian dinosaurs. Dinosaurs dominated a lot of niches, from land to air ecosystems, and even the aquatic environment. Those empty niches was occupied by many mammals, thanks to their high fertility and plasticity (flexibility to adapt into different habitats). That eventually led large ratios of speciation in a short time, what is known as adaptive radiation.

Eomaia_NT
This is Eomaia scansoria, an extinct species of mammals that lived at the same time as the dinosaurs. The extinction of the dinosaurs opened up a wide range of possibilities to mammals, which, although they were expanding, remained in the background. Their great plasticity led them to colonize many habitats, by occupying the free ecological niches left by the dinosaurs. Source: Wikipedia.

ASSEMBLY OF COMMUNITIES

As we have seen, the ecological niche is behind fundamental ecological and evolutionary processes. All living communities today have been formed thanks to the niches of different species. Through competition, species niches were overlaping, and the communities were assembled like a puzzle. When a piece disappears, another takes its place, playing the role that the other had in the community. However, knowing the whole ecological niche of a species is arduous and, in most cases, impossible. As in human relationships, an exhaustive knowledge of everything that influences the life of a species (or the living space of a person) is of great importance in order to ensure their long-term preservation.

REFERENCES

Ricard-anglès

Madagascar: a paradise in danger

The country is suffering a great social, political and ecological crisis which is threatening the survival of much of its biodiversity, unique in the world. Selective logging of Madagascar rosewood is causing a biological crisis unprecedented in the country. Lemurs, one of the most affected groups, are treading on thin ice.

INTRODUCTION

When the French botanist Jean-Henri Humbert set foot on the massif of Marojejy for the first time, in 1948, he was so astonished of what he saw that 7 years later he published Une merveille de la nature à Madagascar, a book which exalted the incredible biodiversity and pristine forests present in the region1. The fact is that Marojejy is possibly the best example of the rich and varied fauna and flora that Madagascar holds and, hence, the best indicator to take notice when the island begins to show signs of collapse. Unfortunately, both the region and the whole of Madagascar live days of uncertainty, and the fear of the disappearance of this treasure is becoming more real day after day.

Silky_Sifaka_Pink_Face_Closeup
A silky sifaka (Propithecus candidus) in Marojejy (Photo: Simponafotsy, Creative Commons).
5729172910_47145d1431_o
The fossa (Cryptoprocta ferox) is the largest carnivore in Madagascar, and endemic to the island (Photo: Becker1999).

Madagascar, the world’s fourth largest island, has an area of just over the Iberian Peninsula and contains a unique biological wealth. Despite its size and the relative proximity to the African continent, it has remained isolated from other continents since 80 million years ago, causing the local flora and wildlife have evolved independently from the rest. As a result, more than 90% of Madagascar’s species are considered unique in the world2. A 90% of reptiles3, 60% of birds4 and 80% of the island flora5 are endemic, as well as some unique lineages of mammals such as lemurs and fossas. However, all are at imminent risk of extinction due to the events experienced in the country in the recent years.

Deforestation-of-TRF-a-case-study-of-Madagascar_img_3
Almost 80% of the original forest has already disappeared. A 90% of Madagascar’s endemic species live on the forest (Image: EOI).

CAUSES OF THE ECOLOGICAL CRISIS IN THE COUNTRY

Deforestation has been present on the island since its colonization by humans, approximately 2000 years ago. However, in recent years, the delicate political situation in the country has led to their forests to their limits. With an unprecedented population growth, an extreme poverty (one of the highest in the world 6, 7) and a pressing political crisis, the nature of the island is helpless and besieged by multiple fronts. In addition to the traditional system of slash and burn deforestation, which allows local people to open forests to cultivate, it has appeared an unexpected player led by international companies. Selective logging of species of the genus Dalbergia (rosewood), rare in the forests and precious in the developed world due to its characteristic color and the strength of its wood, has become the main threat for the biodiversity of the island. It must be added, to the direct impact that involves the extraction of specific species of forest, resulting threats that can be even more damaging for the biodiversity, such as poaching, opening roads, habitat alteration, introduction of invasive species or intimidation of local populations by criminal organizations that manage the illegal exploitation8.

loads-rosewood-Toamasina-009
Rosewood illegal shipment in the Toamasina’s port, Madagascar (Photo: The Guardian).

Selective logging, present and endemic for decades, took a breather in 2000, thanks to its ban in National Parks. However, due to a deep political crisis occurred in 2009, which ended with a coup d’etat, the situation got out of hand, and criminal organizations took control, entering with impunity in the National Parks of the country9. Many of these National Parks are literally being swept away and looted, and they are nothing more than a mirage of what they were once. Despite the restoration of democracy in 201310 and the promises of the elected president to end the “plague” that selective logging of rosewood was causing to the country11, nothing is being done to fight against poaching.

Masoala-Logging-Camp_Toby-Smith-photo
Masoala logging camp, storing timber from Masoala National Park (Photo by Toby Smith, National Geographic).

WHICH COUNTRIES ARE BEHIND POACHING?

China is by far, the major importer of illegal timber from Madagascar. The main reasons are the growth of its middle class, which demands new furniture in line with their new standard of living, and the facilities granted by China due to its lax legislation on illegal timber12. A considerable part of this wood is used to make furniture in the style of the Ming Dynasty, which can be sold for $ 20,000. As there is no control on the illegal timber entering to the country, it is impossible to trace their origin. That’s why, in many cases, furniture and musical instruments manufactured in Europe or North America have been made with some or all with illegal timber13.

1201cmg2
French transport company (CMA CMG Delmas) loading illegal timber in Madagascar (Photo: Mongabay).
Rosewood-Vase-Shop_Erik-Patel-photo
Factory processing rosewood timber (Photo by Erik Patel, National Geographic).

BIODIVERSITY IN DANGER

Due to the opening of roads to remove rosewood timber, lemurs and other native species have become the target of poachers. At the beginning of the political crisis of 2009, a huge amount of lemurs and other wildlife were hunted to feed the thousands of loggers who often live in the forest while carrying out the logging. However, later, a luxury market which involved lemurs emerged, supplying restaurants with its meal in the larger cities and selling them as a delicacy.

Hunted_Silky_Sifakas
Silky sifakas and white head lemurs (Eulemur albifrons) hunted to be sold as food (Photo: Simponafotsy, Creative Commons).
Sin título
Silky sifakas and white head lemurs (Eulemur albifrons) hunted to be sold as food (Photo: Marojejy Website).
0820lemur
A red-ruffed lemur (Varecia rubra), critically endangered, lies dead victim of poaching (Photo: Mongabay).

Although the amount of death lemurs at the hands of poachers is unknown, there are many species that are suffering the impact, many of them in serious danger of extinction like the indri lemur -the largest lemur alive-, the Tattersall’s sifaka or the silky sifaka. The latter, has just a population estimated of 300 individuals. The situation of lemurs is so dramatic that a study of 2012 warned that 90% of the 103 species of lemurs should be on the Red List14. In addition, 23 of them should be qualified as Critically Endangered, the highest threat level.

Indri_indri_001
An indri (Indri indri). This specie is Critically Endangered (Photo: Erik Pattel).
Propithecus_tattersalli_001
A Tattersall’s sifaka (Propithecus tattersalli). This specie is Critically Endangered (Photo: Jeff Gibbs).

During this time it has also been an increase of trade of wild animals to serve as exotic pets, mainly affecting chameleons and turtles15, but has also been intensified the smuggling of lemurs16. In fact, a study of 2015 estimated that the number of lemurs captured in freedom for the exotic pet market could reach the creepy number of 28,000 in the last 3 years17.

pets-11
A ring-tailed lemur (Lemur catta) in a pet cage. The smuggling to supply the exotic pet market is decimating its population (Photo: Importance of lemurs).

IS THERE ANY LONG TERM SOLUTION?

There is always a way to make things get better. Here there is some of them:

  • Avoid selective logging of rosewood should be the number one priority to reduce the collateral damage it generates. Since 2011 the Malagasy species of the genus Dalbergia belong to CITES Appendix 3, granting them a greater degree of protection and regulating their trade. However, the controls remain inefficient and wood is coming from Madagascar towards the ports of China. In 2013, CITES urged China to increase controls in ports, but nothing was done about it. As indicated in this 2015 article of The guardian18, illegal timber from Madagascar continues entering in large amounts, because Chinese law allows importing timber without requiring export permits.
  • Effective monitoring forest by independent observers could yield results. In fact, this system has already been implemented in countries such as Cambodia and Cameroon, achieving good results19.
  • DNA fingerprinting is another method that it has recently been used on confiscated ivory to determine which populations of African elephants are being hunted. DNA testing has already been applied recently to track limber in other countries20.
  • Finally, it is necessary that each and every one of us avoid purchasing exotic pets from Madagascar if there is no legal certification that tells us we are not damaging them.

With all these solutions, an increase of public awareness and a greater international responsability regarding environmental problems, it may still has a glimmer of hope for wildlife in Madagascar.

REFERENCES

  1. http://www.marojejy.com/Intro_e.htm
  2. Hobbes & Dolan (2008), p. 517
  3. Okajima, Yasuhisa; Kumazawa, Yoshinori (15 July 2009). “Mitogenomic perspectives into iguanid phylogeny and biogeography: Gondwanan vicariance for the origin of Madagascan oplurines”.Gene(Elsevier441 (1–2): 28–35. doi:1016/j.gene.2008.06.011.PMID 18598742.
  4. Conservation International (2007).“Madagascar and the Indian Ocean Islands”Biodiversity Hotspots. Conservation International. Archived from the original on 24 August 2011. Retrieved 24 August 2011.
  5. Callmander, Martin; et. al (2011). “The endemic and non-endemic vascular flora of Madagascar updated”. Plant Ecology and Evolution144 (2): 121–125. doi:5091/plecevo.2011.513. Archived from the original (PDF) on 11 February 2012. Retrieved 11 February 2012.
  6. http://www.wildmadagascar.org/overview/FAQs/why_is_Madagascar_poor.html
  7. http://allafrica.com/stories/201510070931.html
  8. http://www.marojejy.com/Breves_e.htm
  9. http://news.mongabay.com/2009/08/lessons-from-the-crisis-in-madagascar-an-interview-with-erik-patel/
  10. http://newafricanmagazine.com/madagascar-a-new-political-crisis/
  11. http://news.mongabay.com/2015/09/activist-arrested-while-illegal-loggers-chop-away-at-madagascars-forests/
  12. http://news.mongabay.com/2009/12/major-international-banks-shipping-companies-and-consumers-play-key-role-in-madagascars-logging-crisis/
  13. https://www.sciencedaily.com/releases/2010/05/100527141957.htm
  14. http://www.bbc.com/news/science-environment-18825901
  15. http://www.ecologiablog.com/post/4016/malasia-se-incauta-de-300-tortugas-en-peligro-de-extincion-procedentes-de-madagascar
  16. http://news.mongabay.com/2009/03/conservation-groups-condemn-open-and-organized-plundering-of-madagascars-natural-resources/
  17. http://journals.cambridge.org/action/displayAbstract;jsessionid=AC9F12B7B37BD27ED8538264F7A0B46B.journals?aid=10245472&fileId=S003060531400074X
  18. http://www.theguardian.com/environment/2015/feb/16/rosewood-madagascar-china-illegal-rainforest
  19. http://www.trocaire.org/sites/trocaire/files/resources/policy/2006-forest-monitoring.pdf
  20. http://voices.nationalgeographic.com/2010/05/20/madagascar_logging_crisis/
  21. Imagen de portada: Alexis Dittberner, n0mad.mu project.

Ricard-anglès

The thylacine: we extinguished it

Today marks 79 years of the death of the last known thylacine, Benjamin, at the zoo in Hobart (Tasmania). The thylacine, Tasmanian wolf or Tasmanian tiger is one of the classic examples of extinct animals by humans. Its fame is due to its relatively recent extinction, its strange anatomy and the existence of videos of the last thylacine, which transmits certain uneasiness to know that no longer exists. Do you want to know their characteristics, the causes of their disappearance and their cloning project?

THE THYLACINE, A MARSUPIAL

Despite its many names, the thylacine (Thylacinus cynocephalus*) was not related to wolves or tigers (placental mammals), as it was a marsupial animal. Marsupials are a mammals’ infraorder in which the young is born at a very early stage of development, almost in embryonic state. The best known representatives are kangaroos, koalas, wallabies, possums and bandicoots.

Un dels pocs llops marsupials que es conserven taxidermitzats en el món. Museo nacional de Ciencias Naturales, Madrid. Foto: Mireia Querol
One of the few preserved thylacine taxidermy in the world. Museo Nacional de Ciencias Naturales, Madrid. Photo: Mireia Querol

After a very short gestation, newborn moves to one of the mother‘s nipples where is seized several months. In most marsupials, nipples, -and therefore the newborn- are protected by a pouch. When the brood completes its development, it will release the nipple and leave the pouch to explore the outside. Look in the following video the birth and migration of the embryo of a red kangaroo:

DESCRIPTION

The thylacine was native of Australia and Papua New Guinea, but in the seventeenth century (arrival of European settlers Oceania) was found only in Tasmania.

mapa tilacino, thylacine distribution, tigre de tasmania, lobo de tasmania
Old thylacine distribution. Map by Discover Life

It was an animal with physical traits of wolf, tiger and kangaroo due to convergent evolution, which made him a unique case and an enigma to science before their taxonomy was known. Its closest relative is the Tasmanian devil (Sarcophilus harrisii).

He looked like a big dog with a thick, stiff tail. Its weight was about 30 kg on average. The fur was short, gray-brown with 13-20 vertical black stripes at the rear. It is estimated that lived between 5 and 7 years in the wild.

Instal·lació d'exemplars dissecats. Foto: South Australian Museum
Display of taxidermy thylacines. Photo: South Australian Museum

It was capable of bipedal jumps and upright posture for short periods of time. They were also good swimmers. The anatomy of the thylacine when stood up, with its tail resting on the ground, reminds the kangaroo as evidenced by the following filming of 1933:

FEEDING

The thylacine was exclusively carnivorous, feeding on kangaroos, emus, wallabies and wombats. It was a solitary and crepuscular hunter who caught their prey by ambushes, as it was not very fast. It could turn the palm of the leg up like cats do. This increased movement of the leg would have allowed them subdue prey more easily after a surprise attack. In contrast, animals with reduced mobility in the leg, as some canines, prefer the persecution of the ambush and often hunt in herds.

Benjamin abriendo la boca en una respuesta a una amenza similar a un bostezo. Zoo de Beaumaris, foto de David Fleay.
Benjamin gasping similarly to yawning in response to a threat. Hobart Zoo. Photo by David Fleay.

Another unique feature was the ability it had to open its mouth. Equipped with 46 teeth, its powerful jaws could be opened at an angle of 120 degrees, allowing him to swallow large chunks of meat.

La impresionante capacidad bucal del tilacino. Foto: desconocido
The thylacine’s impressive buccal capacity. Photo: video capture by David Fleay

Look in the following video the last moving record of Benjamin (1933), from which was obtained the above screenshot:

To view the 7 videos that remain from this fantastic animal, enter The Thylacine videos.

REPRODUCTION

Thylacines could reproduce from June to December. It were born 2-4 pups per litter, who spent three months in the pouch but were still dependent on its mother‘s milk more than nine months. Unlike many marsupials, in the thylacine pouch opened to the rear of the body.

tilacino embarazada, cria tilacino
Only existing photographs of females with brood in the pouch. Photo taken from The Thylacine Museum

EXTINCTION

Australian Aborigines already knew and hunted the thylacine, as seen in their 1000 b.C art. The first possible thylacine footprints discovered by Europeans are from 1642, although it was not until 1808 that a detailed description of the species was made.

tilacino cazado
Thylacine hunted in 1869. Photo of public domain

There are several hypotheses that point to the extinction of the Tasmanian tiger, in the majority, humans are the main blamable. Like it happens nowadays in Spain, the Tasmanian wolf was quickly accused of killing cattle and hen, so despondent rewards were offered for the animal and was the subject of an intensive hunt. Later research has concluded that its jaw was not strong enough to kill an adult sheep.

Única imatge existen d'un llop marsupial amb una presa. Investigacions recents suggereixen que es tracta d'un muntatge amb un especimen dissecat per donar-li mala fama. Foto de H. Burrell
Only existing picture of a thylacine with a prey. Later research suggest that is a farce with a taxidermy specimen to give them bad reputation. Photo by H. Burrell (1921)

With the colonization of Australia, the habitat and prey of the thylacine were diminished drastically. They were also victims of introduced species on the continent by humans, such as dogs, foxes and dingoes (wolf subspecies). It is also probably that suffered some diseases that lead them to death.

ültimo tilacino salvaje cazado por Wilfred Batty. Foto: desconocido (Wikimedia commons)
Last wild thylacine hunted by Wilfred Batty (1930). Photo: unknown (Wikimedia Commons)

In 1920 the thylacine was already on the verge of extinction. In 1930, it was hunted by a farmer the last known wild specimen and in 1933 arrived at Hobart Zoo the nicknamed Benjamin. In 1936, he was forgotten outside his cage and did not survive the freezing temperatures at night. 59 days before, it had been approved officially the protection of the species.

Only 128 years after his “discovery” the last thylacine died. Photo by David Fleay colored by Neitshade

After the 50 years required by the scientific community without any sightings or evidence of its existence, the thylacine was officially declared extinct by IUCN in 1986. Many claim to have seen the thylacine and even filmed one in the wild, but there are no no definitive evidence.

CURRENT RESEARCH

The International Thylacine Specimen Database is an international database that compiles all existing records of the Tasmanian wolf (museum specimens, bones, photos, videos…). Since 1999, there have been attempts to bring the thylacine back to life by cloning techniques, which have been unsuccessful. In 2008, Australian scientists were able to extract DNA from specimens preserved in alcohol and activate a gene implanting it in a mouse embryo and in 2009 the complete sequencing of mitochondrial DNA was published. The elusive goal is to activate the complete genome of thylacine, to have a real possibility of cloning. But if that happens, what are the ethical, economic and scientific implications of the reappearance of an extinct species? The debate is still open.

*Thylacinus cynocephalus from greek θύλακος (thylakos, “pouch”) and κυνοκἐφαλος (kinokefalos, “dog-headed”).

REFERENCES

MIREIA QUEROL ALL YOU NEED IS BIOLOGY

You are a bit Neanderthal

Neanderthals are perhaps the better known ancestor for the general public, as like as Australopithecus afarensis (Lucy). The classical view of them, a rough, coarse, crude, unintelligent beings, is still alive in the popular imagination (even “Neanderthal” is used as an insult), but in recent years the research tells us they were not like this. Discover in this article who they were and why you’re a bit Neanderthal.

WHAT WAS A NEANDERTHAL LIKE?

Homo neanderthalensis was the first hominin fossil discovered and currently we have hundreds of fossil specimens of all ages, so is the best known fossil hominin. Got its name from the Neander Valley (Neanderthal in German), a valley near Düsseldorf.

distribución geográfica neandertal
Geographical distribution of the Neanderthals. Image by Ryulong

They lived in Europe (including Siberia) and southwestern Asia,  350,000-28,000 years ago (40,000 according to some sources), an era marked by glacial cycles. They existed in the world longer than us, Homo sapiens.

Neanderthals had various adaptations to cold, as robustness and less height than H. sapiens, and a wide nasal cavity.

Comparación del cráneo de sapiens i neanderthalensis. Cleveland Museum of Natural History. Foto de Matt Celeskey.
Skull comparison between sapiens and neanderthalensis. Cleveland Museum of Natural History. Photo by Matt Celeskey.

Skull highlights its size, with an average capacity of 1,475 cm3, somewhat higher than the modern human skull, and is more elongated backwards (protrusion or occipital bun). Also it is observed easily a powerful supraorbital torus (bone above the eye sockets). Their pelvis was wider than ours and had shorter legs.

homo neanderthalensis, hombre de neandertal, neanderthal, american museum of natural history, amnh
Recreation of a skeleton of H. neanderthalensis. American Museum of Natural History. Photo by Mireia Querol

HOW THEY LIVED?

FEEDING

Neanderthals were skilled and selective hunters, they faced large animals (as witnessed from their injuries, some fatal) and used hunting strategies like the populations of Homo sapiens that arrived in Europe after them. They were seasonal hunters due to seasonal climate (basically reindeer in winter, deer and wild boar in summer). So their diet was based on meat, but near the coast also ate molluscs such as mussels, which were boiled to open them. It is likely that practiced cannibalism. Also captured marine mammals such as monk seals and dolphins stranded, and also ate cooked cereals.

UTENSILS

Homo neanderthalensis had a lithic industry (stone work for constructing tools) called Mousterian, also associated with other species such as H. heidelbergensis and Homo sapiens that requires great skill and planning. In some deposits it has been found composite tools using adhesives.

Neandertal con ornamentación de plumas. Reconstrucción de Fabio Fogliazza.
Neanderthal with feather ornamentation. Reconstruction by Fabio Fogliazza.

There are no remains of clothes, but is likely that they used fur to cover them given the climatic changes that they faced.

In Spanish caves perforated shells were found with traces of pigments, suggesting that they were used as dishes for body painting or dyeing fur. It is suggested that perhaps they were the first to make cave paintings, contrary to the belief that we are the only ones who did it. They also carved bone and used feathers as personal decoration. All this suggests some sort of symbolic thought, associated until recently as an exclusive feature of Homo sapiens.

pintura rupestre, manos, arte rupestre, pinturas rupestres más antiguas, pinturas neandertales
Cave paintings of hands (“Groups of hands”) and red disks in El Castillo cave, Spain. They are the oldest in Europe (41,000 years) and maybe Neanderthals painted it, rather than sapiens as previously thought. Photo: Science.

SOCIETY

Neanderthals are believed that lived in family groups, although recent studies suggest that females would move to other families when they reached adulthood, while adult men remained with the original family.

entierro, neandertal, neanderthal, compasion, autoconciencia
Neanderthal showing compassion to a dead partner. Recreations by Elisabeth Daynès, CosmoCaixa Barcelona. Photo by Mireia Querol

One of the most important features of the Neanderthals is that they were probably the first human ancestors that buried their dead, which shows an awareness of the individual self and their peers, plus some symbolic or abstract thought as mentioned above. This increased the survival of individuals and made stronger social bonds, and also helped other dependent people such as elderly and sick fellows (as the old man from La Chapelle-aux-Saints). Their life expectancy was about 40 years.

DID THE NEANDERTHALS TALK?

Another unanswered question, though are reaching strength opinions of some scientists as Juan Luis Arsuaga, thanks to the remains of the site with more fossils of Homo in the world, La Sima de los Huesos (Burgos). Neandedrthals could have an oral language, against the widespread thinking so far that they had a communication based in grunts. In addition to the anatomical language adaptations, the Neanderthal DNA contains the FoxP2 gene, related to speech in H. sapiens.

neanderthal
Recreation of a Neanderthal camp. Neanderthal Museum in Krapina, Croatia.

NEANDERTHAL EXTINCTION

The extinction of Neanderthals is one of the most controversial debates in paleoanthropology. They disappeared 28,000 years ago, after the arrival of anatomically modern humans in Europe about 60,000 years ago. A time ago extinction was associated with their lower intellectual capacity, but we have seen that did not have to be this way, since they were much like us. Inability to adapt to climate changes? Less reproductive capacity? More infant mortality? Less efficiency for resources or hunting? Direct wars? Imported diseases? Or … maybe sex?

HYBRIDIZATION BETWEEN H. SAPIENS  AND H. NEANDERTHALENSIS

Refused for a long time, we now know that our species reproduced with Neanderthals when they were about to be genetically incompatible (100,000 years ago), because they coexisted between 2,600 and 5,400 years ago and left fertile offspring. So much so, that the Neanderthal genome accumulated by all living human beings is 20%, although the percentage in an individual -without african roots-  is from 1 to 3%.

In June 22nd was published in Nature the discovery of a jaw in Romania of an anatomically modern Homo sapiens (40,000 years old) containing between 6 and 9% of Neanderthal DNA, which implies that their neanderthalensis ancestry was only 4 or 6 generations back in his pedigree.

pelirrojo, redhead, neanderthal
Redhead Homo sapiens and recreation of H. neanderthalensis. Photo by Science

So another possible explanation for their extinction is due to these reproductive crossings. Homo sapiens were more numerous, which could have caused that the Neanderthal genes were diluted” over thousands of generations. This is known as extermination by hybridization.

WHAT IMPLICATIONS WE HAVE BEING A BIT NEANDERTHALS?

It is believed that Neanderthals genes brought us some advantages, as some characteristics of the skin and hair, such as color and thickness, which could help our species to colonize cooler areas. In fact some Neanderthals could be light-skinned and redheads.

But some diseases can be associated to that heritage: increased risk of biliary cirrhosis, lupus, diabetes, Crohn’s disease and even difficulty in quitting smoking (smokers: not worth using it as an excuse).

In short, it is exciting to think that we lived and even mated with a species so similar to ours and that somehow, still exist in each of us. We may not be as special as we thought.

Currently we are the only representatives of the genus Homo, but in ancient times it was not. Can you imagine a world where you would meet  a Neanderthal  in the street and tell them good morning”?

 

neanderthal, suit, traje, camisa, nenadertal
Neanderthal in suit. Photo: Neanderthal Museum/H. Neumann

REFERENCES

MIREIA QUEROL ALL YOU NEED IS BIOLOGY

Dogs made us more sapiens

Look at the dog resting at your side as you read this article or the Yorkshire Terrier that you‘ve seen in the street. French Bulldog, Pug, Chihuahua, West Highland, Golden Retriever, Pinscher… sometimes it’s hard to think that the ancestor of all these races is the wolf. It is known that the variety of breeds of current dogs is due to artificial selection by humans, but the debate is still alive when trying to answer questions about where, when, how and why it occurred domestication of wolves. Have dogs influenced our evolution as a species? Why do we have such a close relationship with them?

HIPOTHESES ABOUT THE ORIGIN OF THE DOG

Currently it is known that the ancestor of the dog is the wolf (Canis lupus), probably of some extinct species. The dog (Canis lupus familiaris) is in fact one of the two domestic subspecies of the wolf; the other is the Australian dingo (Canis lupus dingo) although it is considered wild nowadays.

canis lupus lupus, lobo europeo, eurasian wolf
Eurasian wolf (Canis lupus lupus). Photo by Bernard Landgraf.

The first hypotheses that attempt to explain the origin of the dog, were based on the idea that our ancestors caught wolf cubs and raised them as pets. But since domestication is a slow and long process, this belief is now ruled out. What tell us the most recent researchs?

  • A research in 2002 argued for an Asian origin (China today) 15,000 years ago, based on analysis of mitochondrial DNA from more than 600 dogs.
  • Another researh in 2010  placed the origin of the dog about 12,000 years ago in the Middle East, based on fossils.
  • In 2013, a mitochondrial DNA analysis of prehistoric canids, modern dogs and wolves concluded that domestication occurred between 18,800-32,100 years ago in Europe, much earlier than previously thought. The dog would be then the first living being domesticated by humans, since its origin predates agriculture. This would cast serious doubts in the same year’s rechearch telling that some wolves were able to metabolize starch, and therefore the cereals of early farmers, which favored (among other things) the rapprochement between wolves and humans.
Cánido de Razboinichya, fósil de 33.000 años de antigüedad que persenta rasgos de domesticación. Foto tomada de Plos One.
The Razboinichya canid, a 33.000 years old fossil with evidence of domestication. Photo taken of Plos One.

Agriculture and ranching surely influenced the evolution of the dog, but the contact between humans and wolves was when we were hunters and gatherers, before the domestication of animals more profitable (cows, sheep ). But how did it happen?

THE WOLF WAS DOMESTICATED ITSELF

The domestication of the wolf is unique because it is the only large carnivore in which we have succeeded. As reported by Science in April 2015, most scientists believe that were the wolves who approached human settlements voluntarily. Those who were less timid, more easily obtained food from the remains of dead animals left by our ancestors. Over time, these wolves survived longer and each generation was slightly different to previous, less and less fearful of humans. Humans would choose the most docile up to live with them. Wolves’ social skills and cooperation with its kind were maybe features that helped to cooperation with humans.

Entierro de una mujer y un perro del Neolítico, en Ripoli (Italia). Museo Nacional de Antigüedades de Chieti. (Créditos)
Neolithic burial of a woman and a dog, Ripoli (Italia). National Museum of Antiques of Chieti. (Credits)

Over thousands of years the relationship between humans and dogs has been coevolution (one has influenced the evolution of the other and vice versa), so much to create bonds with just a look, something  that we might think that is a exclusive hominid feature. When you look into the eyes of your dog the same hormone is released in both (oxytocin), the same hormone that is released when a mother looks at her son. If you also have the feeling that your dog understands you when you look at it, you smile at it, you talk to it … apparently you’re not entirely wrong.

CONSEQUENCES OF LIVING TOGETHER WITH DOGS IN HOMO SAPIENS

Althought your dog is just a pet and/or part of your family, they are now also used for almost the same tasks as those already profited early modern Homo sapiens:

  • Help for hunting: dogs could track the dam because they have a better smell, pursue and harass it until we killed it if it was too big for them. In addition, it is possible that humans communicated with dogs with his eyes, making a quieter hunting.
  • Search for buried or hidden food.
  • Transporting objects: fossils indicate that the first dogs carried objects in its backs and pulled carts.
  • Monitoring and protection against other predators, through better night vision and hearing.
  • Use as alternative food if hunting was scarce.
  • After the appearance of ranching, to control livestock.

The dog in turn, also made a profit from its union with H. sapiens, especially in the way of food easy to get.

Tassili dogs cave painting
Cave paintinf inTassili (Argelia) showing a hunting scene with dogs

An important consequence of the domestication of the wolf is that it was the starting point of the domestication of other animals. Our ancestors understood the advantages that supposed to have domesticated animals to their advantage, so the ranching revolution started about 10,000 years ago.

Furthermore, Pat Shipman, antrophologist, has published recently a paper and a book where explains the advantage that H. sapiens with dogs would have had against H. neanderthalensis, even contributing to the extinction of this species. Apparently the advantages set forth above associated with dogs, not only gave the first modern sapiens advantage to compete with other carnivores for food, scarce in full glaciation. Also they had an advantage over the Neanderthals, which had only their own means to feed. Not only disappeared with our arrival the Neanderthal population in Europe, so did the mammoths, European lions and buffalos.

Recreaciópn de un campamento neandertal. American Museum of Natural History. Foto de Mireia Querol
Recreation of a neanderthal camp. American Museum of Natural History. Photo by Mireia Querol

The causes of extinction of the species most similar to ours, the Neanderthals, remain a mystery. The reasons are probably multiple but rarely we ask ourselves that “man’s best friend” has contributed to this. Perhaps thanks to them you’re reading this article and I’m writing it, perhaps we are here as a species thanks to dogs.

REFERENCES

MIREIA QUEROL ALL YOU NEED IS BIOLOGY

Pangolin: poaching is condemning it to extinction

Neither the tiger or elephant or rhino: the most hunted mammals by humans are pangolins, to the point of critically threaten their survival as a species. Discover the only mammal with scales, its current condition and what can we do to prevent the extinction of all species of pangolin in the world.

WHAT IS A PANGOLIN?

manis tricuspis, pangolin, árbol, tree, trepando
Tree pangolin (Phataginus tricuspis). (Photo by Bart Wursten).

The name pangolin (also known as scaly anteater or trenggiling) includes 8 different species distributed by a variety of habitats (tropical rainforests, dry forests, savanna areas, cultivated fields…) in Africa and Asia. They measure between 90 cm and 1.65 m. They are the only family in the order Pholidota: although physically similar, armadillos, sloths and anteaters are not its relatives (order Xenarthra). Most are nocturnal, solitary and shy, so there are still many questions about their biology and behavior in the wild (they don’t usually survive captivity).

MORPHOLOGY

Pangolins are the only mammals with scales: they are made of keratin (like our nails) and give them a look like a pineapple or artichoke. Scales are very sharp and they can move them voluntarily. If pangolins feel threatened hiss and puff, curl into a ball leaving the scales exposed and secrete pestilential acids to ward off predators (tigers, lions, panthers and humans).

leon, leona, pangolin, bola, lion, defensa
An impenetrable defense even to a lioness. (Photo by Holly Cheese)

The claws allow them both climb as digging: terrestrial pangolins hide and breed in underground galleries and arboreal pangolins do the same in hollows on trees. The tail of the tree pangolin is prehensile to attach to the branches. In addition, pangolins are excellent swimmers.
They are mainly bipedal animals: forepaws are so large that force them to walk on its hind legs, with a maximum speed of 5 km/h. Watch a pangolin walking and feeding:

NUTRITION

Pangolin has no teeth and is unable to chew. It feeds on ants and termites, which locates with its powerful sense of smell (the view is underdeveloped) and catch them with its sticky and long tongue (may be longer than the body itself, up to 40 cm). The stones swallowed involuntarily and corneal structures of their stomach help them to crush the exoskeletons of insects. With its powerful claws destroy their nests to access them and avoid their attack plugging his ears and nostrils, besides having an armored eyelid. It is estimated that a pangolin can consume about 70 million insects per year, which makes them important regulators of the population of ants and termites.

lengua, pangolin, tongue
The tongue of the pangolin. (Photo by Wim Vorster).

REPRODUCTION

Pangolins can reproduce at any time of the year. After pregnancy (two to five months, depending on species) only one young is born (African species) or up to three (Asian species).

pangolin, hembra, female, mamas, breast, pecho, tetas
Female pangolin. (Photo by Scott Hurd)

The pangolin is born with soft scales, which begin to harden after two days. When after a month come out of the burrow, they travel on the tail of her mother and become independent at 3-4 months. Their lifespan is unknown, although in captivity an individual lived until 20 years old.

pangolin, baby, cría, zoo bali
Female with her baby in the tail. Bali zoo. (Photo by Firdia Lisnawati)

THREATS AND CONSERVATION

In addition to habitat destruction, the main threat that pangolins face is direct hunting for human consumption. Although there are international laws to protect them, it is estimated that about 100 000 pangolins are hunted annuallyGiven the defense strategy of this animal, poachers only have to catch them of the ground. Like other species, like sharks, the food market and traditional medicine are the main causes of directing the pangolin towards extinction.

pangolin, jaulas, tráfico ilega, illegal trade, bushmeat
Illegal trade in pangolin. (Photo by Soggydan Benenovitch).

WHY PANGOLINS ARE POACHED?

  • Bushmeat is considered a delicacy and an indicator of high social status in Vietnam and China. The pangolin fetus soup is sold as an elixir to increase virility and improve breast milk production. The price of bushmeat on the black market can reach $ 300 per kilo. The price of an individual can reach $ 1,000.
sopa, feto, soup, pangolin, feto, fetus
Pangolin fetus soup. (Photo by TRAFFIC).
  • Blood is sold as a tonic to improve health and as an aphrodisiac.
  • Scales can reach $ 3000 per kilo and are used for almost anything: to cure from acne to cancer. This belief is curious, considering that the scales have the same structure as our fingernails.
pangolín, china, medicina, medicine, tradicional, cura para el cáncer
Products of traditional Chinese medicine made of pangolin. (Photo by TRAFFIC).

All these purported medicinal and magical effects have no scientific basis, making yet more nonsense pangolin smuggling.

CONSERVATION

The population trend of all species of pangolin is declining in some cases to an alarming extent. The IUCN (International Union for the Conservation of Nature) Red List of Threatened Species classifies them as it follows:

RED LIS CATEGORIES IUCN
IUCN Red List categories. (Image from iucn.org)

Because of their status, IUCN restored in 2012 a group of specialists within the Species Survival Commission (SSC) dedicated to pangolins (Pangolin Specialist Group -PangolinSG-). Its main objective are do research to increase knowledge of pangolins, the threats they face and how they can be mitigated to facilitate preservation.

The conservation projects that are being carried out include campaigns to reduce the demand of bushmeat and pangolin scales and the tightening of laws. Still, the total ignorance of populations’ state and low survival in captivity for breeding makes it difficult to design strategies for their conservation.

WHAT CAN YOU DO FOR PANGOLIN?

  • Reject any product derived from this animal, either bushmeat, scales or “miracle” products for the cure of diseases. Read the labels of any traditional remedies, especially if they are from the Asian market, and recall that its hypothetical benefits have no scientific basis, so that you can rethink their use.
  • Share information. If you own new data on pangolins, photos or videos contact with PangolinSG to cooperate with the investigation. Talk about them in your immediate environment to raise awareness and publicize this fantastic single animal.
  • Do a PhD about pangolins. Lot of research on these species is still needed, so if you are a student and you are planning to do a PhD, you can collaborate with PangolinSG with your future research.
  • Become a PangolinSG volunteer. Get involved in the development and implementation of projects and conservation programs.
  • Make a financial donation so PangolinSG can continue its work.

In conclusion, more scientific research, a change of mind and protection policies are needed to prevent the pangolin become an example of extinct species at the hands of ours, as it is about to happen to white rhino.

REFERENCES

MIREIA QUEROL ALL YOU NEED IS BIOLOGY