Arxiu d'etiquetes: fàrmac

La farmacogenètica: un fàrmac per a cada persona

Qui no ha sentit a algú queixar-se de que els medicaments receptats pels metges no li fan res? Pot ser això cert? No tots els fàrmacs serveixen per a la mateixa població. Segueix llegint i descobreix els secrets de la farmacogenètica.

INTRODUCCIÓ

El mateix que passa amb els nutrients, passa amb els fàrmacs. Un altre dels objectius de la medicina personalitzada és fer-nos veure que no tots els medicaments serveix per a totes les persones. No obstant, això no és nou perquè cap allà al 1900, el metge canadenc William Osler va reconèixer que existia una variabilitat intrínseca i pròpia de cada individu, de manera que cada persona reacciona de forma diferent davant d’un fàrmac. És així com anys més tard definiríem la farmacogenètica.

És important assenyalar que no és el mateix que la farmacogenómica, la qual estudia les bases moleculars i genètiques de les malalties per desenvolupar noves vies de tractament.

Abans de tot necessitem començar pel principi: què és un fàrmac? Doncs bé, un fàrmac és tota substància fisicoquímica que interactua amb l’organisme i el modifica, per tractar de curar, prevenir o diagnosticar una malaltia. És important saber que els fàrmacs regulen funcions que fan les nostres cèl·lules, però no són capaces de crear noves funcions.

A part de conèixer si un fàrmac és bo o no per a una persona, també s’ha de tenir en compte la quantitat d’aquest que s’ha d’administrat. I és que encara no coneixem l’origen de totes les malalties, és a dir, desconeixem la majoria de les causes moleculars i genètiques reals de les malalties.

La classificació de les malalties es basa principalment en símptomes i signes i no en les causes moleculars. A vegades, un mateix grup de patologies és agrupat, però entre ells existeix una base molecular molt diferent. Això comporta que l’eficàcia terapèutica sigui limitada i baixa. Davant els fàrmacs, podem manifestar una resposta, una resposta parcial, que no ens produeixi cap efecte o que l’efecte sigui tòxic (Figura 1).

efectivitat i toxicitat
Figura 1. Efectivitat i toxicitat d’un fàrmac a la població. Els diferents colors mostren les diferents respostes (verd: efectiu i segur; blau: segur, però no efectiu; vermell: tòxic i no efectiu; groc: tòxic, però efectiu) (Font: Mireia Ramos, All You Need is Biology)

ELS FÀRMACS AL NOSTRE COS

Els fàrmacs acostumen a fer el mateix recorregut pel nostre cos. Quan ens prenem un fàrmac, normalment per via digestiva, aquest és absorbit pel nostre cos i va a parar al torrent sanguini. La sang el distribueix als teixits diana on ha de fer efecte. En aquest cas parlem de fàrmac actiu (Figura 2). Però no sempre és així, sinó que a vegades necessita activar-se. És llavors quan parlem de profàrmac, el qual necessita fer escala al fetge abans d’aterrar al torrent sanguini.

La majoria de les vegades, el fàrmac que ingerim és actiu i no necessita passa a visitar al fetge.

active and prodrug
Figura 2. Diferència entre un profármac i un fármac actiu (Font: Agent of Chemistry – Roger Tam)

Una vegada que el fàrmac ja ha anat al teixit diana i ha interactuat amb les cèl·lules en qüestió, es produeixen deixalles del fàrmac. Aquestes restes continuen circulant per la sang fins a arribar al fetge, que els metabolitza per a expulsar-los per una de les dues vies d’expulsió: (i) la bilis i excreció junt amb els excrements o (ii) la purificació de la sang pels ronyons i la orina.

LA IMPORTÀNCIA DE LA FARMACOGENÈTICA

Un clar exemple de com segons els polimorfismes de la població hi haurà diferent variabilitat de resposta el trobem en els gens transportadors. La glicoproteïna P és una proteïna situada a la membrana de les cèl·lules, que actua com a bomba d’expulsió de xenobiòtics cap a l’exterior de la cèl·lula, és a dir, tots els compostos químics que no formen part de la composició dels organismes vius.

Els humans presentem un polimorfisme que ha estat molt estudiat. Depenent del polimorfisme que posseeixi cada individu, la proteïna transportadora tindrà una activitat normal, intermèdia o baixa.

En una situació normal, la proteïna transportadora produeix una excreció bastant alta del fàrmac. En aquest cas, la persona és portadora de l’al·lel CC (dues citosines). Però si només té una citosina, combinada amb una timina (totes dues són bases pirimidíniques), l’expressió del gen no és tant bona i l’activitat d’expulsió és menor, donant una situació intermèdia. En canvi, si una persona presenta dues timines (TT), l’expressió de la glicoproteïna P a la membrana de la cèl·lula serà baixa. Això suposarà una menor activitat del gen responsable i, conseqüentment, major absorció en sang ja que el fàrmac no és excretat. Aquest polimorfisme, el polimorfisme TT, és perillós pel pacient, ja que passa molt fàrmac a la sang, resultant tòxic pel pacient. Per tant, si el pacient és TT la dosis haurà de ser menor.

Aquest exemple ens demostra que coneixent el genoma de cada individu i com actua segons el seu codi genètic en base a ell, podem saber si l’administració d’un fàrmac a un individu serà l’adequada o no. I en base a això, podem receptar un altre medicament que s’adapti millor a la genètica d’aquesta persona.

APLICACIONS DE LA FARMACOGENÈTICA

Les aplicacions d’aquestes disciplines de la medicina de precisió són moltes. Entre elles es troben optimitzar la dosi, escollir el fàrmac adequat, donar un pronòstic del pacient, diagnosticar-lo, aplicar la teràpia gènica, monitoritzar el progrés d’una persona, desenvolupar nous fàrmacs i predir possibles respostes adverses.

Els progressos que han tingut lloc en la genòmica, el disseny de fàrmacs, teràpies i diagnòstics per a les diferents patologies, han avançat notablement en els últims anys, i han donat pas al naixement d’una medicina més adaptada a les característiques de cada pacient. Ens trobem, per tant, al llindar d’una nova manera d’entendre les malalties i la medicina.

I això es produeix en una època en la que es vol deixar enrere el món de pacients que davant una malaltia o malestar són atesos i diagnosticats de la mateixa manera. Per rutina, se’ls prescriuen els mateixos medicaments i dosis. Per aquest motiu ha sorgit la necessitat d’una alternativa científica que, basada en el codi genètic, ofereix tractar al malalt de manera individualitzada.

REFERÈNCIES

  • Goldstein, DB et al. (2003) Pharmacogenetics goes genomic. Nature Review Genetics 4:937-947
  • Roden, DM et al. (2002) The genetic basis of variability in drug responses. Nature Reviews Drug Discovery 1:37-44
  • Wang, L (2010) Pharmacogenomics: a system approach. Syst Biol Med 2:3-22
  • Ramos, M. et al. (2017) El código genético, el secreto de la vida. RBA Libros
  • Foto portada: Duke Center for Applied Genomics & Precision Medicine

MireiaRamos-catala2

Malalties rares: la lluita contra l’oblit

Estem acabant el mes de febrer, i això significa que el Dia de les Malalties Rares s’apropa. La síndrome de Marfan, la síndrome de Williams, la síndrome de DiGeorge, la malaltia de Crohn, l’anèmia de Fanconi, la mucopolisacaridosis, entre moltes altres componen la llista d’aquestes malalties. Però per què se les anomena malalties minoritàries o rares?

QUÈ SÓN LES MALALTIES MINORITÀRIES?

Una malaltia minoritària és aquella que afecta a menys d’1 de cada 2.000 persones. Tot i que individualment són rares, hi ha moltes malalties d’aquest tipus (6.000-7.000), de manera que hi ha molts pacients afectats.

Tot i que la definició de malaltia minoritària és la que acabo d’anomenar, en la indústria farmacèutica és aquella malaltia on no és rentable desenvolupar un fàrmac degut al baix nombre de pacients, la poca informació disponible que hi ha, els diagnòstics deficients, la manca d’estudis clínics i la difícil localització de pacients. És per aquest motiu que les famílies creen les seves pròpies fundacions per aconseguir finançament per la recerca d’aquestes malalties.

Fa uns anys aquestes malalties eren socialment oblidades, però, per sort, actualment ja són socialment transcendentals i reconegudes.

Com he dit, existeixen al voltant d’unes 7.000 malalties minoritàries descrites i cada any es descriuen entre 150 i 250 noves malalties, gràcies a les noves tecnologies.

Gran número d’aquestes malalties afecta a nens, és a dir, es manifesten en edat primerenca. Cal saber que la majoria tenen una base genètica, causades per mutacions en gens específics com la fibrosi quística o vàries distròfies musculars. Però també n’hi ha que estan relacionades amb factors ambientals, com alguns tipus d’anèmia per falta de vitamines o degut a medicaments. Aquest és el cas del mesotelioma maligne, un càncer de mama, on més del 90% dels casos són deguts a l’exposició d’amiant. No obstant, encara n’hi ha moltes sense conèixer el seu origen o dades de la prevalença.

LES MALALTIES MINORITÀRIES EN XIFRES

El fet que aquestes malalties afectin a poques persones i el desconeixement dels seus símptomes per part del públic i professionals, s’estima que el temps que transcorre entre l’aparició dels primers símptomes fins al diagnòstic és de 5 anys. En 1 de cada 5 casos poden passar més de 10 anys fins aconseguir el diagnòstic correcte. Això comporta no rebre suport ni tractament o rebre un tractament inadequat i empitjorar la malaltia.

No tots els centres hospitalaris tenen els mitjans per tractar els afectats, per això es calcula que pràcticament la meitat dels sofrents ha hagut de desplaçar-se i viatjar en els últims 2 anys fora de la seva província a causa de la seva malaltia, ja sigui en busca d’un diagnòstic o d’un tractament.

Les malalties minoritàries suposen un cost econòmic important. El cost del diagnòstic i del tractament suposa al voltant del 20% dels ingressos anuals de cada família afectada. Això suposa una mitja de més de 350€ per família i mes, una xifra molt representativa de l’alt cost que suposa l’atenció a les malalties rares. Les despeses a cobrir en la majoria dels casos, es relacionen amb l’adquisició de medicaments i altres productes sanitaris, el tractament mèdic, les ajudes tècniques i l’ortopèdia, el transport adaptat, l’assistència personal i l’adaptació de l’habitatge.

TRACTAMENT PER LES MALALTIES MINORITÀRIES

Només el 1-2% de les malalties minoritàries tenen actualment algun tipus de tractament, per tant, queda molt per investigar.

Existeixen 4 tipus bàsics de tractament per a les malalties genètiques minoritàries:

TERÀPIES FARMACOLÒGIQUES

Consisteix en la modificació d’una reacció bioquímica normal o patològica per un agent químic extern.

El desenvolupament d’un medicament és un procés molt car i difícil de quantificar. Actualment s’han d’invertir molts milions perquè un nou fàrmac arribi al pacient.

Però què és un medicament? Un medicament és una petita molècula orgànica, que típicament ha de ser:

  • Específica per a resoldre un problema molecular (ex: impedir una interacció anormal entre dues proteïnes)
  • Molt activa i molt afina per la seva diana
  • Molt poc tòxica
  • Distribuir-se bé per tot l’organisme i arribar al teixit diana
  • Barat de produir o, al menys, que es pugui sintetitzar en quantitats industrials
  • Estable
  • Nou (patentable)
  • S’ha de comercialitzar

TERÀPIA GÈNICA

Intenta corregir gens defectuosos responsables de malalties en la línia somàtica (no sexual), ja sigui per:

  • Pèrdua de funció: incorporar el gen normal (ex: fenilcetonúria)
  • Guany de funció: eliminar la mutació responsable, eliminant la proteïna (ex: Huntington)

Limitacions:

  • Es pot corregir només les característiques reversibles d’una malaltia genètica
  • La mida de l’ADN a incorporar en el genoma del pacient
  • Resposta immunitària davant del vector víric (retrovirus, adenovirus adenoassociats)
  • Inactivació d’un gen essencial que pot provocar un problema major que la malaltia
  • Direccionalment a cèl·lules diana apropiades

TERÀPIA CEL·LULAR

Descriu el procés d’introduir noves cèl·lules en un teixit afectat, amb o sense teràpia gènica prèvia. És necessari introduir moltes cèl·lules perquè el tractament sigui efectiu i, a vegades, aquestes cèl·lules poden anar a teixits no desitjats o tenir algun tipus de creixement anormal.

CIRURGIA

Per exemple en defectes cardíacs congènits.

DIA DE LES MALALTIES RARES

Perquè les malalties rares ho deixin de ser, l’últim dia de febrer es celebra el Dia de les Malalties Rares, amb l’objectiu de sensibilitzar i conscienciar el públic sobre les malalties poc freqüents; així com també mostrar l’impacte en la vida dels pacients i reforçar la seva importància com a prioritat en la salut pública.

Es va establir el 2008 perquè, segons l’Organització Europea de Malalties Rares (EURORDIS), el tractament de moltes malalties poc freqüents és insuficient, així com les xarxes socials per donar suport a persones amb malalties minoritàries i les seves famílies. A més, mentre ja hi havia nombrosos dies dedicats a persones que pateixen malalties individuals (com la sida, el càncer, etc.), abans no hi havia hagut un dia per representar persones que pateixen malalties minoritàries. Es va escollir el 29 de febrer perquè és un dia “estrany”. Però es celebra l’últim dia de febrer en anys que no són de traspàs.

A continuació us deixo el vídeo promocional del Dia de les Malalties Rares de l’any 2015:

Vídeo 1. Dia de les Malalties Rares 2015, subtítols en castellà (Font: YouTube)

REFERÈNCIES

 

MireiaRamos-catala2

De la medicina tradicional a la medicina personalitzada

Des de la prehistòria, on la medicina va tenir els seus començaments amb plantes, minerals i parts d’animals; fins a dia d’avui, la medicina ha evolucionat a passos de gegant. Gran part de la “culpa” d’aquest fet li devem a la genètica, que ens permet parlar de medicina personalitzada. D’aquest tipus de medicina és del què tracta el següent article.

L’EVOLUCIÓ DE LES MALALTIES

Per parlar de medicina hem de conèixer primer les malalties. Però no podem pensar que totes les malalties són genètiques, sinó que existeixen malalties relacionades amb canvis anatòmics, fruit de la nostra evolució.

El ximpanzè és l’animal actual més proper a nosaltres, els humans, amb el que compartim el 99% del nostre genoma. Malgrat tot, els humans tenim característiques fenotípiques molt particulars com el cervell més desenvolupat, tan a mida com a expansió de l’escorça cerebral; pell que sua sense pèl, postura bípeda i dependència prolongada de les cries, que permet la transmissió de coneixements durant més temps; entre d’altres.

Possiblement, la postura bípeda va ser clau perquè es produís aviat la divergència entre el llinatge del ximpanzé i el d’humans; i també és la raó de l’aparició d’algunes malalties relacionades amb factors anatòmics. Entre ells trobem hèrnies, morenes, varius, desordres de la columna, com hèrnies dels discos intervertebrals; osteoartritis en l’articulació del genoll, prolapse uterí i dificultats en el part.

El fet de que la pelvis es remodelés (Figura 1) i fos més estreta va resultar en problemes obstètrics milions d’anys després, quan el cervell es va expandir i, per conseqüència, el crani també. Els caps dels fetus eren més llargs i gran, cosa que produïa dificultats en el part. Això explica perquè els parts dels humans són és llargs i prolongats en comparació amb el dels ximpanzés i altres animals.

19
Figura 1. Comparació de la pelvis en humans i ximpanzès en postura bípeda (Font: Libros maravillosos – La especie elegida (capítulo 5))

L’evolució cap a la vida moderna ens ha comportat molts canvis en tots els sentits. En comparació amb els nostres avantpassats caçadors i recol·lectors (Figura 2), la nostra dieta ha canviat molt i no té res a veure amb el que mengen la resta de primats. Per aquests últims, la fruita representa la majoria de la ingesta, però per nosaltres ho és la carn vermella. A més, som els únics animals que seguim alimentant-nos de llet passat el període de lactància.

cazadores y recolectores
Figura 2. Imatge d’humans caçadors i recol·lectors (Font: Río Verde en la historia)

Si al canvi en la dieta li afegim el sedentarisme i la poca activitat física dels humans moderns, pot ajudar a explicar la gravetat i la freqüència d’algunes malalties humanes modernes.

L’estil de vida també pot produir-nos afectacions. Per exemple la miopia, que la seva taxa és major en individus occidentals que llegeixen molt o fan activitats de visió de prop, en comparació amb individus de pobles aborígens.

Un altre exemple clar és l’alteració en l’etapa reproductiva femenina. Actualment les dones tenen fills cada vegada més tard. Això també va lligat a una disminució de la duració de la lactància materna. Aquests canvis, que socialment es poden considerar positius, tenen efectes negatius sobre la salut dels òrgans reproductius. Està demostrat que la combinació de menarquia precoç, la lactància limitada o inexistent i una menopausa més tardana són els principals factors de risc pel càncer de mama i ovari.

Els éssers humans cada vegada vivim més anys i volem la millor qualitat de vida. És fàcil que a major longevitat apareguin més malalties, pel deteriorament de l’organisme i de les seves cèl·lules.

L’EVOLUCIÓ DE LA MEDICINA

La història de la medicina és la història de la lluita dels homes contra les malalties i, des de començaments d’aquest segle, també és la història de l’esforç humà per mantenir la salut.

Els coneixements científics de la medicina els hem adquirit basant-nos en l’observació i en l’experiència, però no sempre ha sigut així. Els nostres avantpassats van experimentar les malalties i la por a la mort abans de poder-se fer una imatge racional d’elles, i la medicina de llavors es trobava immersa en un sistema de creences, mites i rituals.

Però en els últims anys ha nascut la genòmica personalitzada, que et diu els teus factors de risc. Això obre una porta a la medicina personalitzada, que ajusta els tractaments als pacients depenent del seu genoma (Figura 3). Utilitza la informació dels gens i proteïnes d’una persona per prevenir, diagnosticar i tractar una malaltia, i tot gràcies a la seqüenciació del genoma humà.

PGX_BROCHURE
Figura 3. La medicina personalitzada pretèn tractar a les persones individualment, segons el seu genoma (Font: Indiana Institute of Personalized Medicine)

Els mètodes moleculars que fan possible la medicina de precisió, inclouen proves de variació de gens, proteïnes i nous tractaments dirigits a mecanismes moleculars. Amb els resultats d’aquests proves i tractaments es pot determinar l’estat de la malaltia, predir l’estat futur d’aquesta mateixa, la resposta al medicament i el tractament o, inclús, el paper dels aliments que ingerim en determinats moments, el que resulta de gran ajuda als metges a individualitzar el tractament de cada pacient.

Per això tenim al nostre abast la nutrigenètica i la nutrigenòmica, que a l’igual que la farmacogenètica i la farmacogenòmica, ajuden a l’avenç d’una medicina cada vegada més dirigida. Per tant, aquestes disciplines són avui en dia un dels pilars de la medicina personalitzada, ja que suposa tractar cada pacient de forma individualitzada i a mida.

L’evolució cap a la medicina de precisió és personalitzada, preventiva, predictiva i participativa. Cada vegada hi ha més accés a la informació i el pacient és més proactiu, avançant-se als problemes, prevenint-los i estant preparats per enfrontar-los eficientment.

REFERÈNCIES

  • Varki, A. Nothing in medicine makes sense, except in the light of evolution. J Mol Med (2012) 90:481–494
  • Nesse, R. and Williams, C. Evolution and the origins of disease. Sci Am. (1998) 279(5):86-93
  • Mackenbach, J. The origins of human disease: a short story on “where diseases come from”. J Epidemiol Community Health. (2006) 60(1): 81–86
  • Foto portada: Todos Somos Uno

MireiaRamos-catala