Arxiu d'etiquetes: fig

Plants and animals can also live in marriage

When we think about the life of plants it is difficult to imagine without interaction with the animals, as they establish different symbiotic relationships day after day. These symbiotic relationships include all the herbivores, or in the contradictory way, all the carnivorous plants. But there are many other super important interactions between plants and animals, such as the relationships that allow them to help each other and to live together. So, this time I want to present mutualism between plants and animals.

And, what is mutualism? it is the relationship established between two organisms in which both benefit from living together, i.e., the two get a reward when they live with the other. This relationship increase their biological effectiveness (fitness), so there is a tendency to live always together.

According to this definition, both pollination and seed dispersal by animals are cases of mutualism. Let’s see.


Many plants are visited by animals seeking to feed on nectar, pollen or other sugars they produce in their flowers and, during this process, the animals carry pollen from one flower to others, allowing it reaches the stigma in a very effective way. Thus, the plant gets the benefit of fertilization with a lower cost of pollen production, which would be higher if it was dispersed through the air. And the animals, in exchange, obtain food. Therefore, a true relationship of mutualism is stablished between the two organisms.

 “Video:The Beauty of Pollination” – Super Soul Sunday – Oprah Winfrey Network (

The extreme mutualism occurs when the species evolve depending on the other organism, i.e., when there is coevolution. We define the coevolution such as these evolutionary adaptations that allow two or more organisms to establish a deep relationship of symbiosis, due that the evolutionary adaptations of one specie influence the evolutionary adaptations of another organism. For example, this occurs between various orchids and their pollinators, as is the well- known case of Darwin’s orchid. But there are many other plants that also have co-evolved with their pollinators, as a fig tree or cassava.

In no way, this should be confused with the trickery produced by some plants to their pollinators, that is, when they do not obtain any direct benefit. For example, some orchids can attract their pollinators through odours (pheromones) and their curious forms that resemble female pollinator, stimulating them to visit their flowers. The pollinators will be impregnated with pollen, which will be transported to other flowers due to the same trickery.

Bee orchid (Ophrys apifera) (Autnor: Bernard DUPONT, flickr).


The origin of seed dispersal by animals probably had occurred thanks to a co-evolutionary process between animals and mechanisms of seed dispersal in which both plants and animals obtain a profit. The most probably is that this process began in the Carboniferous (~ 300MA), as it is believed that some plants like cycads developed a false fleshy fruits that could be consumed by primitive reptiles that would act as seed dispersers. This process could have intensified the diversification of flowering plants (angiosperms), small mammals and birds during the Cretaceous (65-12MA).

The mutualism can occur in two ways within the seed dispersal by animals.

The first case is carried out by animals that eat seeds or fruits. These seeds or some parts of the fruits (diaspores) are expelled without being damaged, by defecation or regurgitation, allowing the seed germination. In this case, diaspores are carriers of rewards or lures that result very attractive to animals. That is the reason why fruits are usually fleshy, sweet and often have bright colours or emit scents to attract them.

For example, the red-eyed wattle (Acacia cyclops) produces seeds with elaiosomes (a very nutritive substance usually made of lipids) that are bigger than the own seed. This suppose an elevated energy cost to the plant, because it doesn’t only have to produce seeds, as it has to generate the award too. But in return, the rose-breasted or galah cockatoo (Eolophus roseicapillus) transports their seeds in long distances. Because when the galah cockatoo eats elaiosomes, it also ingest seeds which will be transported by its flight until they are expelled elsewhere.

On the left,  Galah  cockatoo (Eolophus roseicapillus) (Autnor: Richard Fisher, flickr) ; On the right, red-eyed wattle’s seeds (black) with the elaiosome (pink) ( Acacia cyclops) (Autnor: Sydney Oats, flickr).

And the other type of seed dispersal by animals that establishes a mutualistic relationship occurs when the seeds or fruits are collected by the animal in times of abundance and then are buried as a food storage to be used when needed. As long as not all seed will be eaten, some will be able to germinate.

A squirrel that is recollecting som nuts (Author: William Murphy, flickr)

But this has not finished yet, since there are other curious and less well-known examples that have somehow made that both animals and plants can live together in a perfect “marriage.” Let’s see examples:

Azteca and Cecropia

Plants of the genus Cecropia live in tropical rain forests of Central and South America and they are very big fighters. The strategy that allow them to grow quickly and capture sunlight, avoiding competition with other plants, resides in the strong relationship they have with Azteca ants. Plants provide nests to the ants, since their stems are normally hollow and with separations, allowing ants to inhabit inside. Furthermore, these plants also produce Müllerian bodies, which are small but very nutritive substances rich in glycogen that ants can eat. In return, the ants protect Cecropia from vines and lianas, allowing them to success as a pioneer plants.

Ant Plants: CecropiaAzteca Symbiosis (

Marcgravia and Bats

Few years ago, an interesting plant has been discovered in Cuba. This plant is pollinated by bats, and it has evolved giving rise to modified leaves that act as satellite dish for echolocation performed by these animals. That is, their shape allow bats to locate them quickly, so they can collect nectar more efficiently. And at the same time, bats also pollinate plants more efficiently, as these animals move very quickly each night to visit hundreds of flowers to feed.

Marcgravia (Author: Alex Popovkin, Bahia, Brazil, Flickr)

In general, we see that the life of plants depends largely on the life of animals, since they are connected in one way or another. All the interactions we have presented are part of an even larger set that make life a more complex and peculiar one, in which one’s life cannot be explained without the other’s life. For this reason, we can say that life of some animals and some plants resembles a marriage.



  • Notes from the Environmental Biology degree (Universitat Autònoma de Barcelona) and the Master’s degree in Biodiversity (Universitat de Barcelona).
  • Bascompte, J. & Jordano, P. (2013) Mutualistic Networks (Chapter 1. Biodiversity and Plant-Animal Coevolution). Princeton University Press, pp 224.
  • Dansereau, P. (1957): Biogeography: an Ecological Perspective. The Ronald Press, New York., pp. 394.
  • Fenner M. & Thompson K. (2005). The Ecology of seeds. Cambridge: Cambridge University Press, 2005. pp. 250.
  • Font Quer, P. (1953): Diccionario de Botánica. Editorial Labor, Barcelona.
  • Izco, J., Barreno, E., Brugués, M., Costa, M., Devesa, J. A., Fernández, F., Gallardo, T., Llimona, X., Parada, C., Talavera, S. & Valdés, B. (2004) Botánica ªEdición. McGraw-Hill, pp. 906.
  • Murray D. R. (2012). Seed dispersal. Academy Press. 322 pp.
  • Tiffney B. (2004). Vertebrate dispersal of seed plants through time. Annual Review of Ecology, Evolution and Systematics. 35:1-29.
  • Willis, K.J. & McElwain, J.C. (2014) The Evolution of Plants (second edition). Oxford University Press, pp. 424.
  • National Geographic (2011). Bats Drawn to Plant via “Echo Beacon”.

Evolution for beginners 2: coevolution

After the success of Evolution for beginners, today we’ll continue  knowing the basics of biological evolution. Why  exist insects that seem orchids and vice versa? Why gazelles and cheetahs are almost equally fast? Why your dog understands you? In other words, what is coevolution?


We know that it is inevitable that living beings establish symbiotic relationships between them. Some depend on others to survive, and at the same time, on elements of their environtment as water, light or air. These mutual pressures between species make that evolve together, and as one evolve as a species, in turn it forces the other to evolve. Let’s see some examples:


The most known process of coevolution is pollination. It was actually the first co-evolutionary study (1859) by Darwin, although he didn’t use that term. The first to use the word coevolution were Ehrlich and Raven (1964).

Insects existed long before the appearance of flowering plants, but their success was due to the discovery that nectar is a good reserve of energy. In turn, the plants found in the insects another way more effectively to carry pollen to another flower. Pollination by the wind (anemophily) requires more production of pollen and a good dose of luck to at least fertilize some flowers of the same species. Many plants have developed flowers that trap insects until they are covered with pollen and then set them free. These insects have hairs in their body to enable this process. In turn some animals have developed long appendages (beaks of hummingbirds, butterflies’ proboscis…) to access the nectar.

Polilla de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock
Darwin’s moth (Xantophan morganii praedicta). Photo by Minden Pictures/Superstock

It is the famous case of the Darwin’s moth (Xanthopan morganii praedicta) of which we have already talked about. Charles Darwin, studying orchid Christmas (Angraecum sesquipedale) saw that the nectar was 29 cm inside the flower. He sensed that there should exist an animal with a proboscis of this size. Eleven years later, Alfred Russell Wallace reported him that the Morgan’s sphinxs had proboscis over 20 cm long, and a time later they were found in the same area where Darwin had studied that species of orchid (Madagascar). In honor of both it was added “praedicta” to the scientific name.

There are also bee orchids that mimic female insects to ensure their pollination. To learn more about these orchids and the Christmas one, do not miss this post by Adriel.

Anoura fistulata, murcielago, bat
The bat Anoura fistulata and its long tongue. Photo by Nathan Muchhala

But many plants not only depend on insects, also some birds (like humming birds) and mammals (such as bats) are essential to pollination. The record for the longest mammal tongue in the world is for a bat from Ecuador (Anoura fistulata); its tongue measures 8 cm (150% of the length of its body). It is the only who pollinates one plant called Centropogon nigricans, despite the existence of other species of bats in the same habitat of the plant. This raises the question of whether evolution is well defined, and occurs between pairs of species or it is diffuse due to the interaction of multiple species.


The cheetah (Acinonyx jubatus) is the fastest vertebrate on land (up to 115 km/h). Thomson’s gazelle (Eudorcas thomsonii), the second (up to 80 km/h). Cheetahs have to be fast enough to catch a gazelle (but not all, at risk of disappearing themselves) and gazelles fast enough to escape almost once and reproduce. The fastest gaelles survive, so nature selects in turn faster cheetahs, which are who eat to survive. The pressure from predators is an important factor that determines the survival of a population and what strategies should follow the population to survive. Also, the predators will find solutions to possible new ways of life of their prey to succeed.

Guepardo persiguiendo una gacela. Foto de Federico Veronesi
Cheetah hunting a Thomson’s gazelle in Kenya. Photo by Federico Veronesi

The same applies to other predator-prey relationships, parasite-host relationships, plants-herbivores, improving their speed or other survival strategies like poison, spikes…


Our relationship with dogs since prehistoric times, it is also a case of coevolution. This allows, for example, to create bonds with just looking at them. If you want more information, we invite you to read this post where we talk about the issue of the evolution of dogs and humans in depth.

Another example is the relationship we have established with the bacteria in our digestive system, essential for our survival. Or with pathogens: they have co-evolved with our antibiotics, so using them indiscriminately has favored these species of bacteria to develop resistance to antibiotics.


Coevolution is one of the main processes responsible for the great biodiversity of the Earth. According to Thompson, is responsible for the millions of species that exist instead of thousands.

The interactions that have been developed with coevolution are important for the conservation of species. In cases where evolution has been very close between two species, if one become extint will lead to the extinction of the other almost certainly. Humans constantly alter ecosystems and therefore biodiversity and evolution of species. Just declining one species, we are affecting many more. This is the case of the sea otter (Enhydra lutris), which feeds on sea urchins.

Nutria marina (Enhydra lutris) comiendo erizos. Foto de Vancouver Aquarium
Sea otter (Enhydra lutris) eating sea urchins. Photo by Vancouver Aquarium

Being hunted for their fur, urchins increased number, devastated entire populations of algae (consumer of CO2, one of the responsible of global warming), seals who found refuge in the algae nonexistent now were more hunted by killer whales… the sea otter is therefore a key species for the balance of this ecosystem and the planet, as it has evolved along with urchins and algae.

Coevolutive relations between flowers and animals depend on the pollination of thousands of species, including many of agricultural interest, so we must not lose sight of the seriousness of the issue of the disappearance of a large number of bees and other insects in recent years. A complex case of coevolution that directly affects us is the reproduction of fig.


As we have seen, coevolution is the evolutionary change through natural selection between two or more species that interact reciprocally.

It is needed:

  • Specificity: the evolution of each feature of a species is due  to selective pressures of the feature of the other species.
  • Reciprocity: features evolve together.
  • Simultaneity: features evolve simultaneously.



The fig and its reproduction

Has anyone ever seen a fig flower? Surely even if you really look for it, you will not find any of them. In fact, neither Linnaeus, the great Swedish botanist, could discover the enigma of fig flowers and when he described the species and gave him a scientific name (Ficus carica L.), he said the fig had no flowers! But then how does the fig reproduce himself and origins its delicious summer fruit; the fig?


The flowers of the fig tree cannot be seen as they grow hidden inside the receptacle that supports them, the fig. They have developed a close relationship of mutualism with their pollinators so they don’t need to bloom externally offering sweet rewards. Indeed, each species of Ficus (including 750 species in family Moraceae) is pollinated by a unique wasp species (family Agaonidae; Blastophaga psenes in the case of the Mediterranean fig). It is a very complex case of coevolution between a plant and its pollinator in which neither species could survive without the other.

The mechanism of fig pollination works as a perfect gear. Female wasps are the first to visit the fig, where they arrive attracted by the smell of the mature female flowers. The female wasps possess special adaptations to penetrate the fig and achieve their ultimate goal: to leave their eggs inside. They have inverted teeth in the jaws and special hooks in the legs that let them to advance into the fruit. However, they have only one opportunity to deposit their eggs since most wasps lose their wings and antennae once they have entered the fig and therefore can no longer look for another. Once the eggs hatch, the wasp larvae feed on the contents of the fig. The male wasp larvae are the first to complete its development and when they reach sexual maturity, they seek female wasps, fertilize them and die inside the fig. The female wasps leave the figs a few days later, coinciding with the male flowers maturation and thus favoring that their exit will be carrying pollen. These fertilized and full of pollen wasps will look for a fig fruit again where to leave the pollen and eggs. Then the cycle begins again.

Open fig with its pollinator wasp (Foto: Royal Society Publishing).
Open fig with its pollinator wasp (Foto: Royal Society Publishing).


The fig is actually an infructescence (an ensemble of fruits that act as a single unit to facilitate the dispersion) with a special morphology called syconium. The syconium is a type of pear-shaped receptacle, thickened and fleshy with a small opening, the ostiole, that allows the entry of pollinators. Both male and female flowers (fig is monoecious) are together in the syconium, enveloped by bracts (white filaments found in the fig), but each one maturates in different time to avoid autopollination. Once the flowers are fertilized, the fruits originate within the same structure, thus flowers and fruits mix up.

Fig with the ostiole, hole by which wasps get into the flowers (Foto: barresfotonatura)
Fig with the ostiole, hole by which wasps get into the flowers (Foto: barresfotonatura)


Who would have said that the fig tree would have a so complex fructification mechanism? In fact, the fig tree is native to Asia but is now naturalized in the Mediterranean since prehistoric times. There is evidence of its consumption and cultivation from the Neolithic. The fig tree is considered as one of the first plants cultivated by mankind. In spring it produces fertilized figs (breba), increasing its production with two harvests per year.

Eivissa‘s fig tree (Ficus carica; Foto: barresfotonatura)
Eivissa‘s fig tree (Ficus carica; Foto: barresfotonatura)

Main Ficus species grow in tropical climates. In temperate areas, some of this species were brought for its interest in gardening. Many cities have grown these giants in their public gardens because their dramatic appearance. They can reach up to 30 meters high and they develop aerial roots that end up reaching the ground acting as buttress that hold their weight. The have become unique elements of our urban landscape; such as in the Parque Genovés, Cadiz or the magnificent specimen of Ficus rubiginosa located in the Botanic Garden of Barcelona.

Ornamental fig tree at the Parque Genovés, Cadiz (Foto: barresfotonatura)
Ornamental fig tree at the Parque Genovés, Cadiz (Foto: barresfotonatura)
Ficus socotrana with aerial roots in Ethiopia (Foto: barresfotonatura)
Ficus socotrana with aerial roots in Ethiopia (Foto: barresfotonatura)


  • Byng W (2014). The Flowering Plants Handbook: A practical guide to families and genera of the world. Plant Gateway Ltd., Hertford, UK.
  • Cruaud A, Cook J, Da-Rong Y, Genson G, Jabbour-Zahab R, Kjellberg F et al. (2011). Fig-fig wasp mutualism, the fall of the strict cospeciation paradigm? In: Patiny, S., ed., Evolution of plant-pollinator relationships. Cambridge: Cambridge University Press, pp. 68–102.
  • Font Quer P (1953). Diccionario de Botánica. Ed. Labor
  • Machado CA, Robbins N, Gilbert MTP & Herre EA (2005). Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proceedings of the National Academy of Sciences of the USA 102: 6558–6565.
  • Ramirez WB (1970). Host specificity of fig wasps (Agaonidae). Evolution 24: 680–691.
  • Serrato A & Oyama K (2012). Ficus y las avispas Agaonidae. ContactoS 85: 5–10.