Arxiu d'etiquetes: fósil viviente

Los xifosuros: “fósiles vivientes” entre los artrópodos

Los xifosuros o “cangrejos cacerola” son, probablemente, unos de los artrópodos vivientes más primitivos que existen. De aspecto prehistórico, marinos y extremadamente reducidos en la fauna actual, estos organismos emparentados con los arácnidos han sobrevivido, sin apenas sufrir cambios, a numerosas extinciones…hasta ahora. En este artículo os explicamos con detalle sus principales características, así como sus actuales amenazas.

¿Qué son los xifosuros?

Los xifosuros (del griego antiguo xíphos “espada” y ourá “cola”), conocidos popularmente como “cangrejos cacerola” o “cangrejos herradura”, son unos artrópodos marinos cuyo origen se remonta al Ordovícico (485,4 ±1,9 – 443,8 ±1,5 MA), en el Paleozoico. Originalmente, constituían una fracción importante de la fauna acuática; sin embargo, a día de hoy su número es extremadamente reducido y su diversidad actual se limita a 4 especies clasificadas dentro de un sólo orden (Limulida), siendo el resto grupos fósiles.

Para saber más sobre fósiles: Conociendo los fósiles y su edad“.

Limulus polyphemus o cangrejo cacerola atlántico. Fuente: Dominio Público.

Debido a su estabilidad morfológica con respecto a las formas fósiles del Carbonífero y del Triásico, las especies actuales son consideradas “fósiles vivientes (un término que sólo debería usarse en un contexto divulgativo), además de las únicas que sobrevivieron a diversos procesos de extinción.

¿Qué lugar ocupan en el árbol de la vida?

De la misma manera que con los picnogónidos o arañas de mar (a las cuales ya dedicamos una entrada), la posición de los xifosuros en el árbol de la vida ha sido objeto de discusión. Hasta hace unos años, los xifosuros se agrupaban con los euriptéridos o escorpiones marinos (actualmente extintos) debido a ciertas similitudes morfológicas, formando el grupo de los Merostomata. Sin embargo, análisis más detallados determinaron que los escorpiones marinos no estarían directamente relacionados con los xifosuros, por lo que actualmente el grupo Merostomata se considera artificial y, consecuentemente, carente de validez científica.

Eurypterus, fósil de euriptérido más común y primer género descrito. Autor: Obsidian Soul, CC.

La posición más aceptada en la actualidad es que los xifosuros constituyen por sí solos una clase de artrópodos (clase Xiphosura) dentro de la superclase de los quelicerados (subfilum de los queliceromorfos). Al mismo tiempo, se clasifican dentro del grupo de los euquelicerados junto con dos clases más: los arácnidos y los ya mencionados euriptéridos.

Y sobre todo…a pesar de su nombre común y de ser marinos, ¡NO están emparentados con los crustáceos!

Fuente: Tree of Life Web Project.

Anatomía externa e interna

Al igual que la mayoría de queliceromorfos actuales, los xifosuros tienen el cuerpo dividido en dos segmentos o tagmas (prosoma y opistosoma), la cabeza indiferenciada del tórax, y las antenas y las mandíbulas ausentes. Sin embargo, el carácter que mejor define a los queliceromorfos es la presencia de quelíceros, unos apéndices preorales modificados que desempeñan funciones relacionadas sobre todo con la alimentación. En las arañas, por ejemplo, constituirían los típicos “colmillos”.

Los xifosuros presentan un tamaño que oscila entre unos pocos hasta 60 cm de longitud. Dorsalmente, su cuerpo está cubierto por un caparazón quitinoso no segmentado dividido en dos partes articuladas más o menos equivalentes al prosoma y al opistosoma:

Visión dorsal. Imagen modificada a partir de la fotografía original de Didier Descouens, CC.

Veamos las características anatómicas más significativas de las formas actuales (Limulida):

Tagmas: prosoma y opistosoma

En el prosoma, el caparazón está surcado por tres crestas: una central y dos laterales. En la parte anterior de la cresta central se sitúan dos ocelos diminutos, y en la parte externa de las laterales, los ojos compuestos. El caparazón se prolonga lateralmente hacia atrás formando una especie de alas, las puntas genales. Ventralmente, se ensancha anteriormente formando un área triangular, el hipostoma, donde se encuentran diversos órganos sensoriales, como los ocelos ventrales (degeneran en la edad adulta) y el órgano frontal.

El opistosoma presenta los segmentos fusionados (diferenciados en el orden “Synziphosurina”, actualmente extinto); sin embargo, éstos aún pueden identificarse mediante las espinas móviles laterales y las fosetas dorsales (6 en total, correspondientes a los 6 segmentos fusionados). El opistosoma finaliza en una espina caudal articulada, el telson, el cual da nombre al grupo.

Visión dorsal. Imagen modificada a partir de la fotografía original de Didier Descouens, CC.

Apéndices

El prosoma contiene 6 pares de apéndices: un par de quelíceros para capturar el alimento y 5 pares de patas locomotoras. Éstas últimas presentan una doble función, pues además de permitir el desplazamiento del animal, su base está provista de unos fuertes dientes con los que trituran el alimento. Estas mismas bases también se unen en el centro formando un canal (endostoma) para canalizar el alimento y llevarlo a la boca. Todas las patas locomotoras acaban en una quela o pinza bien formada, excepto el primer par en los machos. El último par presenta un órgano en ambos sexos, la flabela, que utilizan para analizar la composición del agua.

Incorporados al prosoma también están los quilarios, unos apéndices vestigiales correspondientes al primer par de apéndices del opistosoma que actúan de tope para impedir que el alimento triturado se escape por detrás de las bases del último par de patas locomotoras.

Detalle de los apéndices del prosoma (visión ventral). Imagen modificada a partir de la fotografía original de Wayne marshall, CC en Flickr.

El opistosoma también presenta 6 pares de apéndices muy modificados: un par de opérculos genitales más o menos fusionados, en cuya cara posterior se abren los orificios genitales, y 5 pares de branquias laminares para respirar, protegidas por la placa que forman los opérculos.

Visión ventral. Imagen modificada a partir de la fotografía original de KatzBird, CC en Flickr.

Un sistema circulatorio muy especial

Para tratarse de artrópodos, los xifosuros presentan un sistema circulatorio altamente desarrollado, con un complejo de “venas” y “arterias” que poco dista de las de organismos más complejos. Su sangre contiene dos tipos celulares: los amebocitos, equivalentes a los leucocitos o glóbulos blancos, y los cianocitos, equivalentes a los eritrocitos o glóbulos rojos, pero con hemocianina en lugar de hemoglobina. Cuando la hemocianina transporta oxígeno o entra en contacto con el aire, la sangre de estos organismos adquiere un color azul muy característico.

El líquido azul que observamos en la imagen corresponde a la sangre del individuo. Autor: Dan Century, CC en Flickr.

Biología

Reproducción y desarrollo

Durante la época reproductora, se acercan en grandes grupos a las playas o estuarios. En el momento del apareamiento, los machos se colocan encima de las hembras sujetándolas mediante las pinzas rudimentarias del primer par de patas. Con el macho a sus espaldas, las hembras se dirigen a la arena donde excavan un agujero en el que depositan entre 200-300 huevos sin fecundar. A continuación, el macho riega los huevos con su esperma (fecundación externa), que quedan enterrados bajo la arena por las mareas.

¡La reproducción de los xifosuros es todo un espectáculo!. Autor: U.S. Fish and Wildlife Service Northeast Region, CC en Flickr.

Tras la eclosión, los xifosuros pasan por dos estadios larvarios pelágicos (viven en la columna de agua) antes de alcanzar la forma adulta bentónica asociada al sustrato: larva trilobítica, con los apéndices opistosómicos poco formados y el telson corto, y larva prestwiquianela, con los apéndices y el telson bien formados. Su esperanza de vida puede alcanzar los 20 años.

Ecología y distribución

Los xifosuros actuales son esencialmente marinos, aunque entre sus parientes fósiles también los había que habitaban aguas salobres y dulces. Son excavadores y habitan en el fondo sobre limos y sustratos arenosos entre 3-9 metros de profundidad. Para excavar, utilizan los márgenes de su caparazón y los cuatro primeros pares de patas locomotras, mientras el telson levanta el opistoma de manera que el quinto par pueda analizar y filtrar el agua.

En caso de nadar, lo hacen de forma invertida, como vemos en este vídeo de Wayne Brear:

Son depredadores de anélidos, moluscos, así como de otros invertebrados bentónicos. Asimismo, también pueden alimentarse de algas que cortan con las pinzas de sus patas.

Como ja se ha comentado, la diversidad actual de xifosuros está representada por 4 especies dentro del orden Limulida: Limulus polyphemus (costa atlántica de América del Norte), Tachypleus tridentatus, Tachypleus gigas y Carcinoscorpius rotundicauda (costa indopacífica).

Distribución aproximada de las 4 especies vivientes de xifosuros. Fuente: Charmichael & Brush, 2012.

¿Cuál es su estado de conservación?

Los humanos lo hemos vuelto a hacer. A pesar de haber sobrevivido a numerosas extinciones, los xifosuros se encuentran ahora más amenazados que nunca por motivos antrópicos. Entre las principales amenazas destacan:

  • Alteración de sus hábitats: cambios en la temperatura del agua debido al calentamiento global, contaminación y empobrecimiento o destrucción de las playas (esenciales para su reproducción). Es, de entre todas las amenazas, la más problemática.
  • Uso como cebo: tradicionalmente, los xifosuros se han capturado para su uso como cebo en la industria pesquera.
  • Usos biomédicos: la sangre de los xifosuros se utiliza en biomedicina en un test denominado Limulus amebocyte lysate” (LAL), puesto que sus amebocitos reaccionan ante ciertas endotoxinas bacterianas formando coágulos. El LAL se usa, por lo tanto, para detectar la presencia de bacterias sobre distintos materiales. Actualmente, la forma de obtener la sangre es muy invasiva y, a pesar de devolver a los individuos a su hábitat, su mortalidad tras la extracción es elevada.
  • Uso en investigaciones sobre la visión, el sistema endocrino y otros procesos fisiológicos.
  • Alimentación: en algunos países asiáticos, se consumen en platos tradicionales o en ciertos rituales.
  • Compra/venta como animales de compañía.
Proceso de extracción de sangre para el test LAL. Fuente: National Geographic/Getty Images.
Plato preparado a base de xifosuro en Si Racha (Tailandia). Autor: Marshall Astor, CC.

Los pocos datos existentes sobre su estado de conservación proceden de la especie americana Limulus polyphemus, actualmente en situación vulnerable y con una tendencia decreciente de sus poblaciones desde hace 100 años (según la UICN).

Recientemente se ha descubierto que los xifosuros son un componente importante de las redes tróficas bénticas; además, sus huevos son un suplemento alimenticio de la dieta de diferentes aves migratorias costeras de EUA. Es por esto que actualmente existe un interés creciente en conservar y promover sus poblaciones, además de por su importancia biomédica, cultural y económica.

.           .           .

Resolver las relaciones filogenéticas de un grupo en su mayoría extinto, como lo es el de los xifosuros, no es una tarea sencilla. Mas ahora que empezamos a vislumbrar su origen y parentesco, estamos condenándolos poco a poco a su desaparición. ¡Ni los fósiles vivientes se salvan de la sexta extinción!

Referencias

  • Carmichael, R. H. & Brush, E. (2012). Three decades of horseshoe crab rearing: a review of conditions for captive growth and survival. Reviews in Aquaculture, 4(1): 32-43.
  • Chacón, M. L. M. & Rivas, P. (2009). Paleontología de invertebrados. IGME.
  • Grimaldi, D. & Engel, M. S. (2005). Evolution of the Insects. Cambridge University Press.
  • Marshall, A. J., & Williams, W. D. (1985). Zoología. Invertebrados (Vol. 1). Reverté.
  • Pujade-Villar, J. & Arlandis, J. S. (2002). Fonaments de zoologia dels artròpodes (Vol. 53). Universitat de València.
  • The IUCN Red List of Threatened Species: Horseshoe crabs.
  • Xifosuros: Animales de la realeza. Boletín Drosophila.

Imagen de portada propiedad de Didier Descouens, CC.

Conociendo los fósiles y su edad

En All You Need Is Biology a menudo hacemos referencia a los fósiles para explicar el pasado de los seres vivos. ¿Pero qué es exactamente un fósil y cómo se forma? ¿Para qué sirven los fósiles? ¿Te has preguntado alguna vez cómo lo hace la ciencia para saber la edad de un fósil? Sigue leyendo para descubrirlo!

¿QUÉ ES UN FÓSIL?

Si piensas en un fósil, seguramente lo primero que te viene a la cabeza es un hueso de dinosaurio o una concha petrificada que te encontraste en el bosque, pero un fósil es mucho más. Los fósiles son restos (completos o parciales) de seres vivos que han vivido en el pasado (miles, millones de años)  o rastros de su actividad que quedan conservados (generalmente en rocas sedimentarias). Así pues, existen diferentes tipos de fósiles:

  • Petrificados y permineralizados: son los que corresponden a la definición clásica de fósil en el que las partes orgánicas o huecos son sustituidas por minerales (ver apartado siguiente). Su formación puede dejar moldes internos o externos (por ejemplo, de conchas) en el que el material original puede desaparecer. La madera fosilizada de esta manera se conoce como xilópalo.

    cangrejo herradura, fósil, cosmocaixa, mireia querol rovira
    Fósil petrificado de cangrejo herradura y sus pisadas. CosmoCaixa. Foto: Mireia Querol Rovira
  • Icnofósiles: restos de la actividad de un ser vivo que quedan registradas en la roca y dan información sobre el comportamiento de las especies. Pueden ser modificaciones del entorno (nidos y otras construcciones), huellas (icnitas), deposiciones (coprolitos -excrementos-, huevos…) y otras marcas como arañazos, dentelladas…
    Cosmocaixa, huevos, dinosaurio, nido, mireia querol rovira
    Huevos de dinosaurio (nido). CosmoCaixa. Foto: Mireia Querol Rovira

    coprolitos, cosmocaixa, excrementos fósiles, mireia querol rovira
    Coprolitos, CosmoCaixa. Foto: Mireia Querol Rovira
  • Ámbar: se trata de resina fósil de más de 20 millones de antigüedad. Antes pasa por un estado intermedio que se llama copal (menos de 20 millones de años). La resina, antes de pasar a ámbar, puede atrapar insectos, arácnidos, polen… en este caso se consideraría un doble fósil.

    ámbra, ambre, cosmocaixa, mireia querol rovira
    Pieza de ámbar a la lupa con insectos en su interior, CosmoCaixa. Foto: Mireia Querol Rovira
  • Fósiles químicos: son los combustibles fósiles, como el petróleo y el carbón, que se formaron por la acumulación de materia orgánica a altas presiones y temperaturas junto con la acción de bacterias anaerobias (que no utilizan oxigeno para su metabolismo).
  • Subfósil: cuando el proceso de fosilización no se completa (por haber pasado poco tiempo, o las condiciones para que se diera la fosilización no fueron propicias) los restos se conocen como subfósiles. No tienen más de 11.000 años de antigüedad. Es el caso de nuestros antepasados más recientes (Edad de los Metales).
Ötzi, un subfósil. Es la momia natural más antigua de Europa. Vivió durante el Calcolítico (Edad de Cobre) y murió hace 5.300 años. Foto: Wikimedia Commons
Ötzi, un subfósil. Es la momia natural más antigua de Europa. Vivió durante el Calcolítico (Edad de Cobre) y murió hace 5.300 años. Foto: Wikimedia Commons
  • Fósil viviente: nombre que se da a seres vivos actuales muy parecidos a organismos ya extintos. El caso más famoso es el del celacanto, que se creía extinguido desde hacía 65 millones de años hasta que fue redescubierto en 1938, pero hay otros ejemplos como los nautilos.

    ammonites, nautilus, cosmocaixa, fósil, mireia querol rovira
    Comparación entre la concha de un nautilus actual (izquierda) y un ammonite de millones de años de antigüedad (derecha). CosmoCaixa. Foto :Mireia Querol Rovira
  • Pseudofósiles: son formaciones en las rocas que parecen restos de seres vivos, pero en realidad se han formado por procesos geológicos. El caso más conocido son las dendritas de pirolusita, que parecen vegetales.

    pritolusita, dendritas pirolusita, cosmocaixa, mireia querol rovira
    Infiltraciones de pirolusita en piedra calcárea. CosmoCaixa. Foto: Mireia Querol

Lógicamente los fósiles se hicieron más comunes a partir de la aparición de partes duras (conchas, dientes, huesos…), hace 543 millones de años (Explosión del Cámbrico). El registro fósil anterior a ese período es muy escaso. Los fósiles más antiguos que se conocen son los estromatolitos, rocas formadas por la precipitación de carbonato cálcico debido a la actividad de bacterias fotosintéticas que aún existen en la actualidad.

La ciencia que estudia los fósiles es la Paleontología.

stromatolite, estromatòli, estromatolito, mireia querol rovira, fossil, fósil
Estromatolito de 2.800 millones de años de antigüedad, Australian Museum. Foto: Mireia Querol Rovira

¿CÓMO SE FORMA UN FÓSIL?

La fosilización se puede dar de cinco maneras distintas:

  • Petrificación: es la sustitución de la materia orgánica por sustancias minerales de los restos de un ser vivo enterrado. Se obtiene una copia exacta del organismo en piedra. El primer paso de la petrificación es la permineralización (los poros del organismo están rellenos de mineral pero el tejido orgánico está inalterado. Es la fosilización más común que sufren los huesos).
  • Gelificación: el organismo queda incrustado en el hielo y no sufre apenas transformaciones.
  • Compresión: el organismo muerto queda sobre una capa blanda del suelo, como el lodo, y queda cubierto por capas de sedimentos.
  • Inclusión: los organismos quedan atrapados en ámbar o petróleo.
  • Impresión: los organismos dejan impresiones en el barro y se conserva la marca hasta que el barro se endurece.

    Procesos de fosilización y fósiles resultantes. Autor desconocido
    Procesos de fosilización y fósiles resultantes. Autor desconocido

UTILIDAD DE LOS FÓSILES

  • Los fósiles nos dan información de cómo eran los seres vivos en el pasado, resultando una evidencia de la evolución biológica y una ayuda para establecer los linajes de los seres vivos actuales.
  • Permiten analizar fenómenos cíclicos como cambios climáticos, dinámicas atmósfera-océano e incluso las perturbaciones orbitales de los planetas.
  • Los que son exclusivos de una determinada época permiten datar con bastante exactitud las rocas en las que se encuentran (fósiles guía).
  • Dan información de procesos geológicos como el movimiento de los continentes, presencia de antiguos océanos, cadenas montañosas…
  • Los fósiles químicos son nuestra principal fuente de energía actual.
  • Dan información sobre el clima del pasado, por ejemplo, estudiando los anillos de crecimiento de los troncos fósiles o las deposiciones de materia orgánica en las varvas glaciales.

    mireia querol rovira, tronco fósil, xilópalo, AMNH
    Troncos fósiles donde se observan anillos de crecimiento. American Museum of Natural History. Foto: Mireia Querol Rovira

DATACIÓN DE LOS FÓSILES

Para conocer la edad de los fósiles existen métodos indirectos (datación relativa) y directos (datación absoluta). Como no hay ningún método perfecto y la precisión disminuye con la antigüedad, los yacimientos se suelen datar con más de una técnica.

DATACIÓN RELATIVA

Los fósiles se datan según el contexto en el que han sido encontrados, si están asociados a otros fósiles (fósiles guía) u objetos de los que se conoce la edad y según el estrato en el que se encuentran.

En geología, los estratos son los distintos niveles de rocas que se ordenan según su profundidad: según la estratigrafía, los más antiguos son los que se encuentran a mayor profundidad, mientras que los más modernos son los más superficiales, ya que los sedimentos no han tenido tanto tiempo para depositarse en el sustrato. Lógicamente si hay movimientos de tierras y alteraciones geológicas la datación sería incorrecta si sólo existiera este método.

estratigrafía
Esquema de las eras geológicas y estratos con sus correspondientes fósiles. Fuente

DATACIÓN ABSOLUTA

Son más precisas y se basan en las características físicas de la materia.

DATACIÓN RADIOMÉTRICA

Se basan en la velocidad de desintegración de isótopos radioactivos presentes en rocas y fósiles. Los isótopos son átomos del mismo elemento pero con distinta cantidad de neutrones en su  núcleo. Los isótopos radioactivos son inestables, por lo que se transforman en otros más estables a una velocidad conocida por los científicos emitiendo radiación. Comparando la cantidad de isótopos inestables con los estables en una muestra, la ciencia puede estimar el tiempo que ha transcurrido desde que se formó el fósil o roca.

carbono 14
Esquema del ciclo del Carbono 14. Fuente
  • Radiocarbono (Carbono-14): en organismos vivos, la relación entre el C12 y el C14 es constante, pero cuando mueren, esta relación cambia ya que el C14 deja de incorporarse en el cuerpo y el que queda se descompone radioactivamente en un periodo de semidesintegración de 5730 años. Conociendo la diferencia entre el C12 y C14 de la muestra, podremos datar cuando murió el organismo. El límite máximo de datación por este método son 60.000 años, por lo tanto sólo se aplica a fósiles recientes.
  • Berilio 10-Aluminio 26: tiene la misma aplicación que el C14, pero tiene un período de semidesintegración muchísimo mayor, por lo que permite dataciones de 10 millones de años, e incluso de hasta 15 millones de años.
  • Potasio-Argón (40K/40Ar):  se utiliza para datar rocas y cenizas de origen volcánico de más de 10.000 años . Es el método que se utilizó para datar las huellas de Laetoli, el primer rastro de bipedismo de nuestro linaje dejado por Australopitecus afarensis.
  • Series del Uranio (Uranio-Torio): se utilizan diversas técnicas mediante los isótopos del uranio. Se utilizan en materiales de carbonato de calcio, (como corales) y depósitos minerales en cuevas (espeleotemas).
  • Calcio 41: permite datar restos óseos en un intervalo de tiempo entre 50.000 y 1.000.000 de años.

DATACIÓN POR PALEOMAGNETISMO

El polo norte magnético ha ido cambiando a lo largo de la historia de la Tierra, y se conocen sus coordenadas geográficas en distintas épocas geológicas.

Algunos minerales tienen propiedades magnéticas y se dirigen hacia el polo norte magnético cuando están en suspensión acuosa, por ejemplo en las arcillas. Pero si se depositan en el suelo, quedan fijados hacia la posición que tenía el polo norte magnético en ese momento. Si observamos hacia qué coordenadas están orientados esos minerales en el yacimiento lo podemos asociar con una época determinada.

Deposición de partículas magnéticas orientadas hacia el polo norte magnético. Fuente: Understanding Earth, Press and Seiver, W.H. Freeman and Co.
Deposición de partículas magnéticas orientadas hacia el polo norte magnético. Fuente: Understanding Earth, Press and Seiver, W.H. Freeman and Co.

Esta datación se utiliza en restos dipositados sobre fondos arcillosos y como el polo norte magnético ha estado varias veces en las mismas coordenadas geográficas, se obtiene más de una fecha de datación. Según el contexto del yacimiento, se podrán descartar algunas de estas fechas hasta llegar a una definitiva.

DATACIÓN POR TERMOLUMINISCENCIA Y LUMINISCENCIA ÓPTICA SIMULADA

Ciertos minerales (cuarzo, feldespato, calcita…) acumulan modificaciones en su estructura cristalina debidas a la desintegración radiactiva del entorno. Estas modificaciones son acumulativas, continuas y dependientes del tiempo de exposición a la radiación. Cuando se somete al mineral a estímulos externos, emite luz debido a estas modificaciones. Esta luminiscencia es muy débil y distinta según se le aplique calor (TL), luz visible (OSL) o infrarrojos (IRSL).

Termoluminiscencia de la fluorita. Foto: Mauswiesel
Termoluminiscencia de la fluorita. Foto: Mauswiesel

Sólo se pueden datar muestras que hayan estado protegidas de la luz solar o calor a más de 500ºC, ya que entonces se reinicia “el reloj” al liberarse la energía de manera natural.

RESONANCIA PARAMAGNÉTICA ELECTRÓNICA (ESR)

La ESR (electro spin resonance) consiste en someter la muestra a radiación y medir la energía absorbida por la muestra en función de la cantidad de radiación a la que ha estado sometida durante su historia. Es un método complejo del que puedes obtener más información aquí.

 REFERENCIAS

Mireia Querol Rovira